Introduction

Database Management Systems

Database Management System (DBMS)

- Collection of
 - interrelated data and
 - set of programs to access the data
- Convenient and <u>efficient</u> processing of data
- Database Application Software

Evolution of Database Systems

- <u>Early days</u>: customized applications built on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Difficulty in accessing data
 - Atomicity of updates
 - Concurrency control
 - Security
 - Data isolation multiple files and formats
 - Integrity problems

Abstraction

- View level: different perspectives
 - application programs hide irrelevant data
- Logical level: data models
 - Logical representation of data
 - Different approaches: relational, hierarchical, network, object oriented, semi-structured, etc.
 - Data independence principle
- Physical level: how data is stored

Data Models

- A collection of tools for describing
 - Data
 - Relationships among data items
 - Semantics of stored data
 - Database constraints
- Entity-Relational Model
- UML
- Etc.

Database Management Systems

- Smaller and smaller systems
 - Past: large and expensive DBMS
 - Present: DBMS in most personal computers
- More and more data stored
 - Past: few MB
 - Present: terabyte (10¹² bytes), petabyte (10¹⁵ bytes)
- Functionality: from physical to view level
- Optimization

Data Definition Language (DDL)

- Defines the <u>database schema</u>
 and constraints
- DDL compiler → data dictionary
- Metadata data about data

Data Manipulation Language (DML)

- Accessing and manipulating the data
- Query Languages
 - Procedural user specifies what data is required and how to get those data
 - Nonprocedural user specifies what data is required without specifying how to get those data

MODELING DATA SEMANTICS

Entity Sets and Relationship Sets

- Database: collection of <u>entities</u> and <u>relationship</u> among entities
- Entity: object that exists and distinguishable from other objects
- Entity set: collection of similar objects
- Attribute: property of an entity and relationship sets

Attributes

- Domain: set of permitted values for each attributes
- Attribute types:
 - Simple vs. composite
 - Single-valued vs. multi-valued
 - Derived

Example E/R Diagram

Degree of Relationship Sets

- Number of entity sets participating in a relationship set
- Binary relationship set: two entity sets (most common)
- Multiway relationship set: connects more than two entity sets
- E.g., An owner frequents certain kennels for certain dogs
 - Binary relationship can't represent these requirements
 - Need 3-way relationship

Example 3-Way Diagram

Mapping Cardinality

- Number of entities to which another entity can be associated via a relationship set
 - One-one
 - Many-one (One-many)
 - Many-many

Roles

- Entity set may appear more then once in a relationship
- Label the edges between the relationships and the entity set with names called *roles*.
- E.g., relationships among the dogs:

Subclasses in E/R

- Special case, fewer entities, more properties
- E.g., show dog is a dog, but not all dogs are show dogs. It also have properties, type of competition, rank, etc.
- Assume subclasses form a tree (no multiple inheritance)
- ISA relationship

Example Subclass

Keys

- Set of attributes for one entity set such that no two entities in the set has the same value for all the attributes of the key
- Each entity set must have a key

Keys

- Super key: set of one or more attributes whose value iniquely determine each entity
- Candidate key: minimal super key
- Primary key: a selected candidate key

Example Multi-Attribute Key for Owner

Converting ER Model into Relations

Example Relation

Dog

Name	Age	Weight (lb)	Breed
Pepper	10	75	German Shepherd
Joker	4	83	Mix
Bruno	null	51	Boxer

Relational Data Model

- Set of <u>relation names</u>: R
- Set of <u>attribute names:</u> A
- Relation schema: $S=(r,\{a_1, ..., a_n\})$
 - r relation name in R
 - $-\{a_1, ..., a_n\}$ subset of \mathbb{A}
 - e.g., (Dog,{Name, Age, Weight, Breed})

Relational Data Model

 Tuple over a relation scheme S is a mapping

t:
$$\{a_1, ..., a_n\} \rightarrow \text{dom}(a_1 \cup ... \cup a_n)$$

Relational Data Model

- Relation over schema S is a set of tuples over the scheme
- Database: set of relations

Query Languages

- Relational Algebra
 - Set operations
- SQL
 - Bag operations

Relational Algebra

- Select (o)
- Project (П)
- Set difference (-)
- Union (\cup)
- **Rename** (Px(r))
- Set intersection (∩)
- Natural join (\otimes)

Structured Query Language SQL

Typical SQL query form: SELECT $A_1, A_2, ..., A_n$ FROM $r_1, r_2, ..., r_m$ WHERE C

- $-A_i$ s represent attributes to be returned
- $-r_i$ s represent relations
- C is a condition

Next Class Overview of Information Security (from CSCE 522 slides)