
Pig Examples & Lab
Word Counting:

lines = LOAD '/user/maria_dev/g.txt' AS (line:chararray);
words = FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word;
grouped = GROUP words BY word;
wordcount = FOREACH grouped GENERATE group, COUNT(words);
DUMP wordcount;

Drivers & timesheets:

drivers = LOAD 'drivers.csv' USING PigStorage(',');
raw_drivers = FILTER drivers BY $0>1;
drivers_details = FOREACH raw_drivers GENERATE $0 AS driverId, $1 AS name;
timesheet = LOAD 'timesheet.csv' USING PigStorage(',');
raw_timesheet = FILTER timesheet by $0>1;
timesheet_logged = FOREACH raw_timesheet GENERATE $0 AS driverId, $2 AS hours_logged,
$3 AS miles_logged;
grp_logged = GROUP timesheet_logged by driverId;
sum_logged = FOREACH grp_logged GENERATE group as driverId,
SUM(timesheet_logged.hours_logged) as sum_hourslogged,
SUM(timesheet_logged.miles_logged) as sum_mileslogged;
join_sum_logged = JOIN sum_logged by driverId, drivers_details by driverId;
join_data = FOREACH join_sum_logged GENERATE $0 as driverId, $4 as name, $1 as
hours_logged, $2 as miles_logged;
dump join_data;

Drivers & Timesheets Lab

Start by transferring the files we will be working with to the linux filesystem of our vm

[maria_dev@sandbox-hdp ~] $ wget https://cse.sc.edu/~rose/587/CSV/drivers.csv
[maria_dev@sandbox-hdp ~] $ wget https://cse.sc.edu/~rose/587/CSV/timesheet.csv

Next transfer the files to HDFS:

[maria_dev@sandbox ~]$ hadoop fs -put drivers.csv /user/maria_dev
[mara_dev@sandbox ~]$ hadoop fs -put time_sheet.csv /user/maria_dev

Invoke grunt the pig interactive environment:

 [maria_dev@sandbox-hdp ~]$ pig
18/04/12 11:44:51 INFO pig.ExecTypeProvider: Trying ExecType : LOCAL
18/04/12 11:44:51 INFO pig.ExecTypeProvider: Trying ExecType : MAPREDUCE
18/04/12 11:44:51 INFO pig.ExecTypeProvider: Trying ExecType : TEZ_LOCAL
18/04/12 11:44:51 INFO pig.ExecTypeProvider: Trying ExecType : TEZ
18/04/12 11:44:51 INFO pig.ExecTypeProvider: Picked TEZ as the ExecType
2018-04-12 11:44:51,825 [main] INFO org.apache.pig.Main - Apache Pig version 0.16.0.2.6.3.0-235
(rexported) compiled Oct 30 2017, 02:55:15

2018-04-12 11:44:51,825 [main] INFO org.apache.pig.Main - Logging error messages to:
/home/maria_dev/pig_1523533491824.log
2018-04-12 11:44:51,846 [main] INFO org.apache.pig.impl.util.Utils - Default bootup file
/home/maria_dev/.pigbootup not found
2018-04-12 11:44:52,376 [main] INFO
org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop file system
at: hdfs://sandbox-hdp.horto
nworks.com:8020
2018-04-12 11:44:53,001 [main] INFO org.apache.pig.PigServer - Pig Script ID for the session: PIG-
default-caa28e7b-7ba7-4aa8-94da-3e6d4519f2d1
2018-04-12 11:44:53,373 [main] INFO org.apache.hadoop.yarn.client.api.impl.TimelineClientImpl -
Timeline service address: http://sandbox-hdp.hortonworks.com:8188/
ws/v1/timeline/
2018-04-12 11:44:53,483 [main] INFO org.apache.pig.backend.hadoop.PigATSClient - Created ATS Hook
grunt>

Determine the current working directory:

grunt> pwd
hdfs://sandbox-hdp.hortonworks.com:8020/user/maria_dev

Verify that the files we will be working with are in the current working directory:

grunt> ls
hdfs://sandbox-hdp.hortonworks.com:8020/user/maria_dev/.Trash <dir>
hdfs://sandbox-hdp.hortonworks.com:8020/user/maria_dev/.staging <dir>
hdfs://sandbox-hdp.hortonworks.com:8020/user/maria_dev/g.txt<r 1> 1746
hdfs://sandbox-hdp.hortonworks.com:8020/user/maria_dev/nfldata <dir>
hdfs://sandbox-hdp.hortonworks.com:8020/user/maria_dev/output <dir>
hdfs://sandbox-hdp.hortonworks.com:8020/user/maria_dev/outputwc <dir>
hdfs://sandbox-hdp.hortonworks.com:8020/user/maria_dev/test1 <dir>
grunt>

Ok. We are ready to start work! Load the first file into “drivers”:

grunt> drivers = LOAD 'drivers.csv' USING PigStorage(',');

Let’s take a peek at this data set. The following command will take a while, but will eventually dump
“drivers” to the console.

grunt> dump drivers

Let’s add the next line of the code. This has the effect of removing the first line which has column
heading information. (All lines except for the first line start with a integer representing a driver ID.)

grunt> raw_drivers = FILTER drivers BY $0>1;

If you like, you could also dump raw_drivers to the console to verify that the first line has been
filtered out.

grunt> dump raw_drivers

Next we create drivers_details, a new object consisting of the first two columns from raw_drivers

grunt> drivers_details = FOREACH raw_drivers GENERATE $0 AS driverId, $1 AS name;

Let’s look at the resulting table; column one is the driver ID and column two is the driver’s name:
grunt> dump drivers_details

Now, load the second data set, the timesheets:

grunt> timesheet = LOAD 'timesheet.csv' USING PigStorage(',');

Let’s take a peek at this data set. The following command will take a while, but will eventually dump
“drivers” to the console.

grunt> dump timesheet

As with the first dataset, we need to filter out the first row which contains column headings:

grunt> raw_timesheet = FILTER timesheet by $0>1;

We now select a subset of columns from raw_timesheet to create timesheet_logged:
Create column 1 from the first column of raw_timesheets and label it driverId
Create column 2 from the third column of raw_timesheets and label it hours_logged
Create column 3 from the second column of raw_timesheets and label it miles_logged

grunt> timesheet_logged = FOREACH raw_timesheet GENERATE $0 AS driverId, $2 AS
hours_logged, $3 AS miles_logged;

Let’s take a peek at timesheet_logged. We should have a row for every week of every drivers timesheet
data:

grunt> dump timesheet_logged

Create a new structure from timesheet_logged in which we group all of the rows for a given
driverId as a single tuple. We will end up with one tuple per driverId.

grunt> grp_logged = GROUP timesheet_logged by driverId;

Let’s take a peek at grp_logged to verify our expectation:

grunt> dump grp_logged

Now we are ready to sum up the hours and miles in each tuple to create sum_logged which has as
column 1 the driverId, column 2 the sum of hours logged, and column 3 the sum of miles logged.

sum_logged = FOREACH grp_logged GENERATE group as driverId,
SUM(timesheet_logged.hours_logged) as sum_hourslogged,
SUM(timesheet_logged.miles_logged) as sum_mileslogged;

Let’s take a peek at sum_logged to verify our expectation:
grunt> dump sum_logged

Now we create a new table by joining the sum_logged and drivers_details tables by matching
rows that have the same driverId.

grunt> join_sum_logged = JOIN sum_logged by driverId, drivers_details by driverId;

Let’s take a peek at join_sum_logged to verify our expectation:
grunt> dump join_sum_logged

Finally, create a new table called join_data, by selecting columns 1, 5, 2, and 3 from the table
join_sum_logged.

grunt> join_data = FOREACH join_sum_logged GENERATE $0 as driverId, $4 as name, $1 as
hours_logged, $2 as miles_logged;

Finally, we have the overall solution, a table with a row for each driver listing the driver Id, driver name,
total hours, and total miles. Let’s take a peek at join_data to verify our expectation:
grunt> dump join_data

