
CSCE 311
Spring 2020
Project #4

Assigned: April 7, 2020
Due: April 21, 2020

Objective

To implement DEVICES package in OSP2 in particular disk scheduling. The Devices package
is described in chapter 6 of the OSP 2 manual. The java classes to be implemented in this project
will deal with the creation and management of IORBs, the Device class and the
DiskInterruptHandler class to support disk scheduling. see sections 10.1-10.4 of the Silberschatz
textbook for related material.

Required to turn in: Follow all directions regarding hand-in procedures. Points will be
deducted if you do not follow directions precisely. You must submit an electronic copy of the
*.java files that comprise your solution (or your best try) via dropbox. Late assignments will
incur a 10% per day penalty. You must document your code and provide a one-page explanation
of how you accomplished the assignment (or what you have currently and why you could not
complete). You should describe your use, creation, and manipulation of data structures to
accomplish the assignment. Submit you write-up via dropbox.

Building and executing the simulation
Download the archive file containing the files for this project.
For unix or linux or Mac: If you are using a unix or linux machine then you will probably want
to download the tar file: Ports.tar. Download the archive and extract the files using the command
tar –xvf Devices.tar

For a windows box: If you are using a windows box, then you will probably be happier with a
zipped folder: Devices.zip. Download the archive and then extract the files by right-clicking on
the file and selecting the "extract all…" option from the popup menu.

You should have extracted the following files:

Devices/Demo.jar
Devices/Makefile
Devices/Misc
Devices/OSP.jar
Devices/IORB.java
Devices/Device.java
Devices/DiskInterruptHandler.java
Devices/Misc/params.osp
Devices/Misc/wgui.rdl

As per the discussion in the OSP2 text, Makefile is for use in unix and linux systems. The
demo file Demo.jar is a compiled executable. The only files you should have to modify are

IORB.java, Device.java, and DiskInterruptHandler.java. Modifying the other files
will probably "break" OSP2.
Compile the program using the appropriate command for your environment
(unix/linux/windows).
(unix) javac –g –classpath .:OSP.jar: -d . *.java
(windows) javac –g –classpath .;OSP.jar; -d . *.java

This will create an executable called OSP. Run the simulator with the following command:
java –classpath .;OSP.jar osp.OSP

Disk Scheduling in OSP
There are three classes involved in disk scheduling that have methods that you are required to
implement:

IORB – (section 6.3 page 106-108) this is by far the easiest class. All you need to do is
implement the constructor. For the purposes of this project, all you need do is call super()with
the same 6 formal arguments that the constructor is invoked with.

Device– (section 6.4 pages109-114) this is a little more involved than the IORB class. You must
implement:

1. Device()– This is the class constructor. It should call super with the same two
arguments that it was invoked with. In addition, it should also create the iorbQueue. The
iorbQueue is the queue that is used to hold the disk I/O requests (IORBs). This variable is
already declared in the IflDevice class so you must use this variable with exactly this
spelling. Do not re-declare this variable. My advice is that you create an instance of the
GenericList() class and assign that to iorbQueue, i.e.,
iorbQueue = new GenericList();

2. init() –As in all OSP2 projects, the init() method is only called once, at the
beginning of the simulation to allow you to initialize any data structures or static
variables that you are using that require initialization. If you don’t have any extra data
structures then leave this blank.

3. do_enqueue()– This method is used to place an IORB on the queue that holds the

I/O requests for the disk. As the OSP manual indicates there are several things that you
must do before placing the IORB on the queue:

a) First, you must lock the page associated with the IORB. (Recall that the disk does
I/O directly to memory without going through the MMU so the page cannot be
moved until the I/O is finished). You can get the page associated with the IORB
using the IORB method getPage(). Then use the lock() method of the
PageTableEntry class to lock the page.

b) Second, you need to increment the IORB count of the file associated with the
iorb. You can access this file by invoking the getOpenFile() method of the
IORB. You increment the count using incrementIORBCount() method.

c) Third, you must set the IORB’s cylinder to the cylinder that contained the block
specified by the IORB using the method setCylinder() . This is not
straightforward, since you have to calculate which cylinder holds the bock in

question. So first we have to calculate the cylinder. First, read the description of
how to compute a cylinder from a block on page 111. Then follow my directions:

i. The cylinder = blocknumber/(blocksPerTrack * numberOfPlatters).
ii. You can get the blocknumber using the IORB method

getBlockNumber()

iii. You can get the numberOfPlatters using the Disk method
getPlatters(). Since Disk is a subclass of Device, you can access
this method in this do_enqueue by using
(Disk)this.getPlatters().

iv. Getting blocksPerTrack requires you to compute it: First you need to know
the size of a block: it is the same as the page size. The page size can be
determined by first computing the number of bits in the page offset
(getVirtualAddressBits() - getPageAddressBits()) and
raising 2 to the power indicated by this quantity. In other words if
getVirtualAddressBits() - getPageAddressBits() = x, then the page size is

2x. This is also the size of a block in bytes. Now you can compute the
blockPerTrack by computing the bytes per track and dividing by the bytes
per block. The bytes per track can be gotten by multiplying the sectors per
track by the bytes per sector. Sooooooo:

bytesPerBlock = 2^(getVirtualAddressBits() - getPageAddressBits())
bytesPerTrack = sectorsPerTrack * bytesPerSector
blocksPerTrack = bytesPerTrack/bytesPerBlock

Wasn’t that easy? ;-)

d) Now you can enqueue the IORB. However, before you get too excited, you must

check that the thread is still alive (compare thread status with ThreadKill). If the
thread is dead, then return FAILURE. If the thread is not dead then enqueue the
IORB on the iorbQueue using the append() method and return SUCCESS.

4. do_dequeue()– Fortunately, this method is very simple:

a) Check if the iorbQueue is empty

i. If empty return NULL.

ii. If not empty, return the IORB at the head of the queue. Since you are a
smart person and you took my advice to initialize iorbQueue to be a
GenericList, you will use the method removeHead() to return the head of
the queue while at the same time removing that IORB from the queue.

5. do_cancelPendingIO()– This method removes pending IORBs from the

iorbQueue. It also undoes the page locking and IORB count increment that took place in
do_enqueue().

a) Check if the iorbQueue is empty. If empty return.
b) Otherwise you will need to iterate through the queue removing only those IORBs

that belong to the ThreadCB specified as the argument to this method.
i. Set up your iterator for the iorbQueue.

ii. For each IORB: compare the IORB thread (accessed via the iorb method
getThread()) with the ThreadCB argument to this method.

iii. If they are the same then

1. unlock the page associated with the IORB. (Recall in do_enqueue() you
locked the page associated with the IORB.)

2. Decrement the IORB count of the file associated with the iorb. (Recall in
do_enqueue() you incremented the IORB count of the file associated with
the IORB.)You can access this file by invoking the getOpenFile()
method of the IORB. You decrement the count using
decrementIORBCount() method.

3.Check the IORB count of the file. If it is zero, then close the file using the
OpenFile method close().

DiskInterruptHandler()– (section 6.5 pages114-117) The only method in this class is
do_handleInterrupt(). However, it is a doozy.

1. Start by getting the information about the interrupt from the interrupt vector (section 1.4
page 10). you will want to get: 1) the iorb, and 2) the thread:

a) As stated on page 114, the IORB is the “event” that caused the interrupt.
Therefore you will use the InterruptVector method getEvent() to return
the IORB. Be sure to cast it as an IORB when assigning to your iorb variable.

b) Next use InterruptVector method getThread() to return the associated
ThreadCB.

c) Get the page using the IORB method getPage().
d) From the page get the associated frame using the PageTableEntry method

getFrame().
e) Get the open-file handle from the IORB using the getOpenFile() method of

the IORB.
f) Continuing from step 2 on page 115 of the OPS2 manual: decrement the IORB

count of the open-file handle.
g) If the IORB count is now zero and the closePending flag of the open-file

handle is set then you should close the file.
h) Unlock the page.
i) Continuing from step 5 on page 115 of the OSP2 manual: check if the thread

associated with the IORB is still alive.

i. If the thread is not dead AND the frame is null then return.

ii. (Set frame reference bit?) If the thread is alive and the I/O is not a
swap-in/swap-out you will need to set the reference bit of the frame
associated with the IORB page.

1. You can check if it is a swap I/O by checking if the IORB device ID is
the SwapDeviceID.

2. You can set the frame reference bit using the FrameTableEntry method
setReferenced(true).

iii. (Set frame dirty bit?) If the I/O is a FileRead and not a swap I/O and
the task status is not TaskTerm (dying/dead task) then you will also need
to set the frame’s dirty bit using the FrameTableEntry method

setDirty(true). Note: you can tell if it is a FileRead by using the
IORB method getIOType().

iv. (Clear frame dirty bit?) If it is a swap I/O and the task is not dead/dying
then you will need to clear the frame’s dirty bit using the FrameTableEntry
method setDirty(false).

j) Continuing with step 7 on page 115: If the task is dead/dying then you will need
to unreserve the frame. As the text suggests, start by verifying that the task that
reserved the frame is the same as the dying/dead task. Use getReserved() to
find out which task reserved the frame.

k) Step 8, notify the threads waiting the IORB using notifyThreads().
l) Step 9, use setBusy(false) to idle the device. You can get the device by

getting the deviceID from the IORB and using that as the argument to the
Device.get() method.

m) Step 10, get the next IORB using the dequeueIORB() method. Assuming it
isn’t null, initiate the next I/O using this as the argument to the method
StartIO().

n) Step 11, invoke dispatch() .

Standard Tips

 This is assignment is more difficult than thread scheduling. It is advisable that you start
as soon as possible.
 Seek help from me if you need it. You may discuss the project with others but you may
not share code.
 Minimize the amount of code you write. It will not affect your grade (unless poorly
commented), but will reduce the complexity of your solution and make it easier to debug.

