3 4

total

Name Key

1.	[20 points]	Consider the Following set of processes	:

Process	Burst Time	Arrival Time
P0	22	9
P1	26	6
P2	14	3
P3	18	0

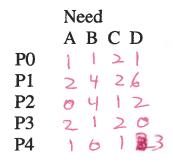
a. Draw a Gantt chart to show the SJF scheduling for these processes.

1 P3		P2		po	PIT	
0	18		32	5	1 80	

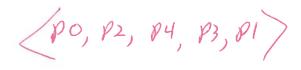
b. Draw a Gantt chart to show the SRTF scheduling for these processes.

c. Draw a chart to show the RR scheduling for these processes if the quantum is 5.

d. Assuming process priority P0:1, P1:3, P2:0, P3:2, draw a chart to show the preemptive priority scheduling for these processes.


2. [10 points] What is the average waiting time for each of the scheduling algorithms in question 1?

3. [25 points] Consider the following snapshot of a system:


	Allocation	Max	Available
	ABCD	A B C D	A B C D
PO	0 2 0 1	1 3 2 2	1 2 2 1
P1	0 0 1 1	2 4 3 7	
P2	0 1 1 1	0 5 2 3	
P3	0 0 0 4	2 1 2 4	
P4	2 1 1 0	3 1 2 3	

Answer the following questions using the banker's algorithm:

a. Show the content of the matrix Need below.

b. Show that the system in a safe state by *listing the order in which processes can be executed without producing a deadlock*.

c. Starting with the need matrix from (a), if a request from process P₄ arrives for (0, 0, 1, 0), can the request be granted immediately? Show the updated NEED and Allocation matrices as well as Available. If yes, show the safe sequence. If no, list the processes that are possibly in a deadlock.

	NEED A BCD 1121 3426 6412 2126	ALWC ABCD 0201 0011 0111	AVAIL ABCD 1221 -0010 1211	No All processes in deadlock	are possibly
84	1003	2120			

d. Starting with the need matrix from (a), if a request from process P₂ arrives for (1, 0, 1, 1), can the request be granted immediately? Show the updated NEED and Allocation matrices as well as

NEED ALLOC AVAIL No! the request exceeds Mis

PO 1121 0201 1221 Need for type "A" resourcer,

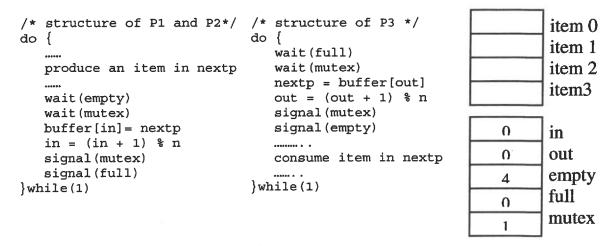
PI 2426 0011 0211 This invalid request must be

05 2120 0004

04 1013 2110

4. [15 points] Consider two counting semaphores S and T. The semaphore variable for S is initialized to 1 and the semaphore variable for T is initialized to 0 in a system that uses FCFS scheduling. Suppose that these two semaphores appear in two sections of code, A and B, but do not appear in any other sections of code.

/* section A */ /* section B */ wait(S); signal(T); wait(T); signal(S); <calculate the secret of life> <calculate the joy in life> wait(S); signal(T); return; return;


a) Assume process P₁ wants to execute section A and process P₂ wants to execute section B, and that no other processes want to execute section A or B. Are there any circumstances in which either or both these two processes can become deadlocked? If yes, show the order of execution that causes deadlock. If no, show that no order of execution causes deadlock.

P1: 5:0, T:-1 = P1 blacks PL: T:1, 5:2, T:2 PL: T:0, unblacks P1, 5:1, T:1
P1: 5:0 82 701 no deadlock no deadlock

b) If instead of there only being two processes wanting to execute these sections, imagine we start with P₁, P₂, P₃, P₄, P₅ in which P₁ is at the head of the ready queue and P₅ is at tail. The processes P₂, P₃ and P₅ want to execute section B, while processes P₁ and P₄ want to execute section A. What is the state of the semaphores and semaphore queues after all processes have been dispatched exactly once, i.e., what is the value of the semaphore variables and what if any processes are blocked on the semaphore queues?

T.value = 4S.value = | T.head > nall S.head > Nul

5. [30 points] Consider a version of the bounded buffer problem in which there are two producer processes (P₁ and P₂) and one consumer process (P₃) all sharing the same buffer. Assume that the size of the buffer is n=4, and that we start with a completely empty buffer. The structure of P₁, P₂, and P₃ as well as the semaphores and buffer is shown below:

Assume a FCFS scheduler and that all processes start in the ready queue at the same time in the order from head to tail, P_3 , P_2 , and P_1 (P_3 at the head of the queue). Assume that the semaphore queues use a priority scheme in which P_1 (highest priority) $> P_2 > P_3$ (lowest priority).

P3; F411:-1 → P3 blocks	61.4		<u>- 11.</u>	= Zunblock	6 P3
P3: Full:-1 => P3 blocks P2: producer iter, MT:3, mux:0, rte P3: producer iter, MT:2, mux:0, rte	ent: 12, 1	11, mil	exil, Full	1	, , ,
P): produceribn, Mil, Mux:0 Henz: P2, in13, mux:1, Fulli2	DX P3	item U			
itenzi projetti provi D	0)	item 1 item 2			
P2: productiten, mT:0, mux:0	87	item3			
Hem3: PZ, in:0, mux:1, Full:3	0	' :	0		
DS: produces it MT: -1 P2 blocks	2	in out			
DI: podeox it Mi' 2 11 blocks	0	empty			
mux'o Hent; B, out!	2	full mutex			
mux:1, MI:-1 (unders 11)	l				
consume item	4.5	212/21	mt:0	Curblock	P2)
Consume item 3: Full: 2, mux:0, item 1: 13,	out : 2)	MUNIT	,		
Consumes Her					
Done!					