

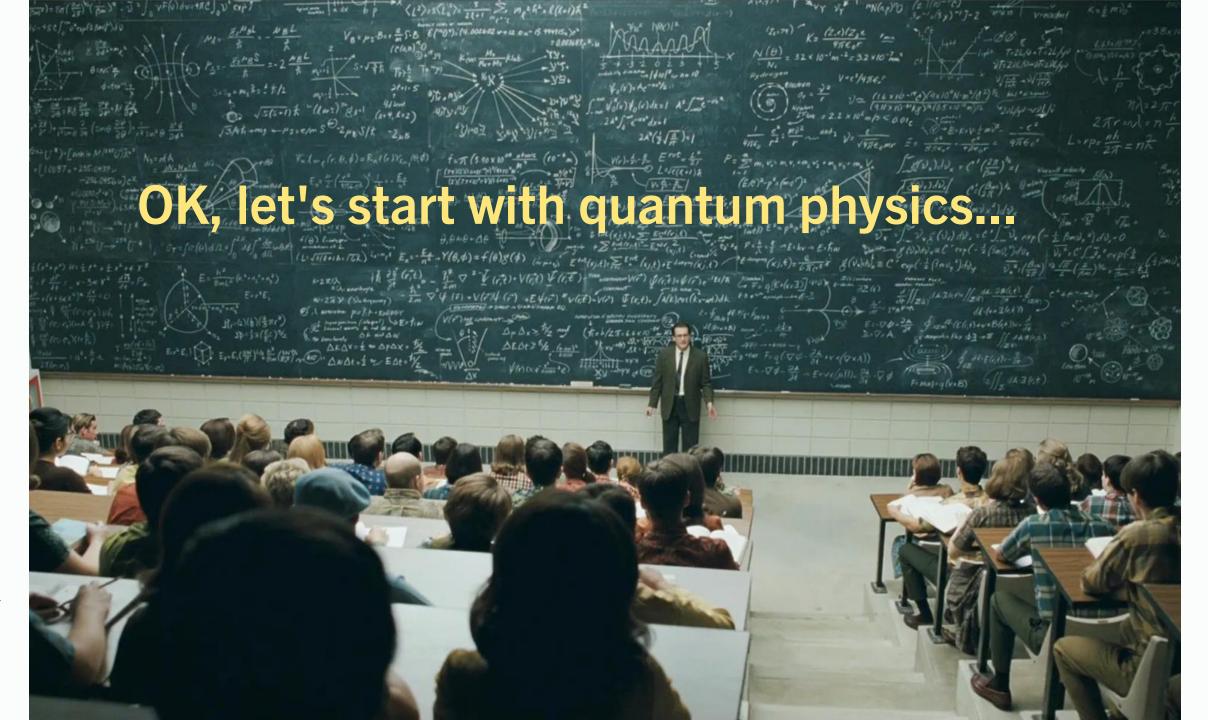
Introduction to Quantum Computing

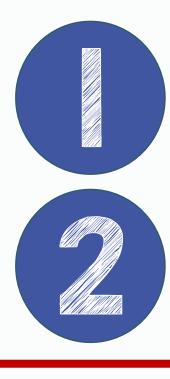
Greg Byrd, NC State

Quantum Machine Learning Workshop NC State, January 2023

Electrical & Computer Engineering

@NCStateECE





Qubits, Gates, and Circuits

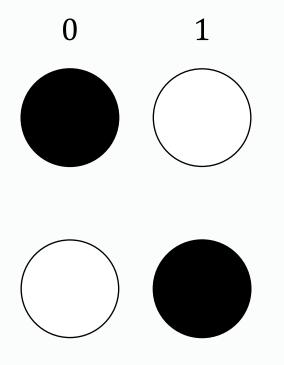
Break

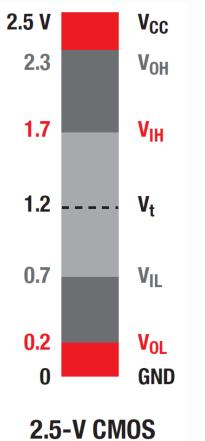
Quantum Computers

Introductory Algorithms

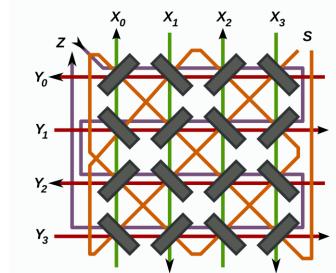
Variational Algorithms (VQA)

Classical Bit



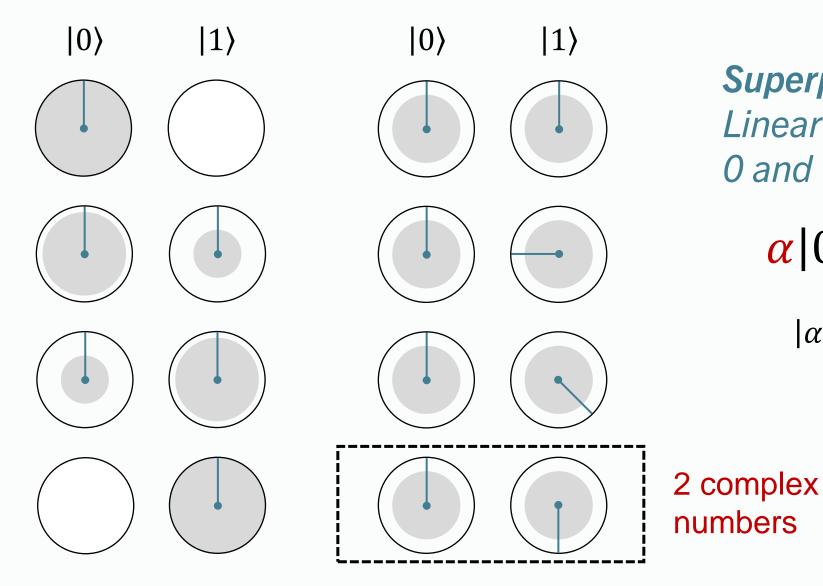


Physical implementations



https://www.ti.com/lit/pdf/sdyu001 https://en.wikipedia.org/wiki/Magnetic-core_memory https://shop.evilmadscientist.com/productsmenu/375

Quantum Bit (Qubit)

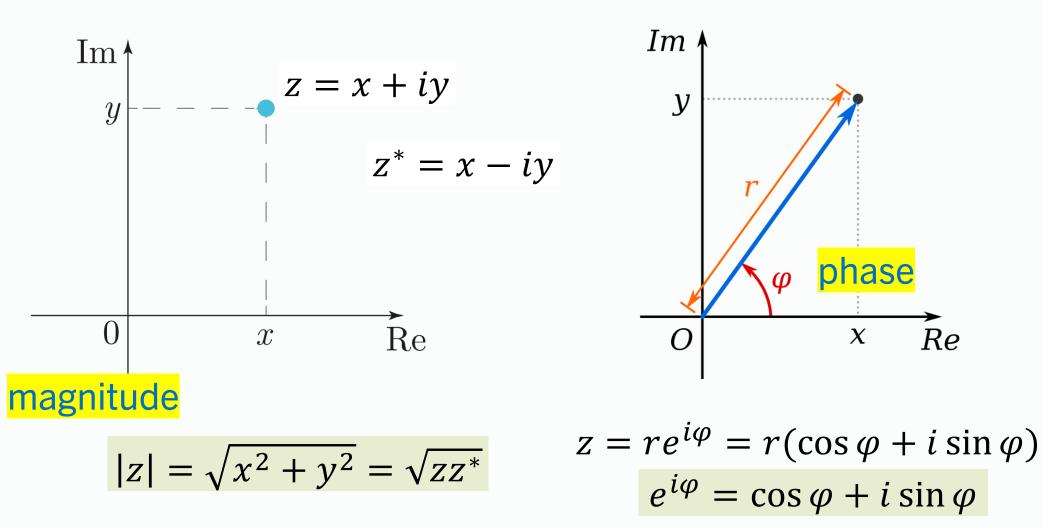


Superposition: Linear combination of 0 and 1 states

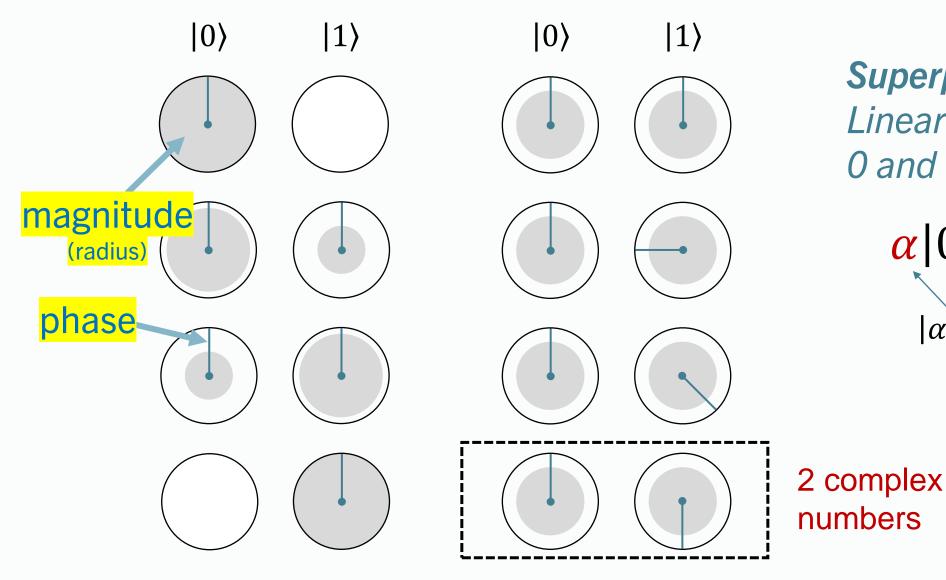
 $\alpha |0\rangle + \beta |1\rangle$

 $|\alpha|^2 + |\beta|^2 = 1$

Complex Numbers



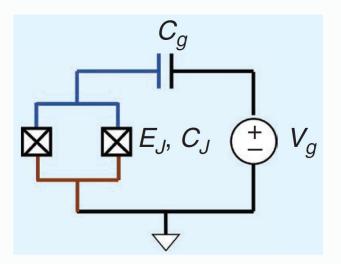
Quantum Bit (Qubit)

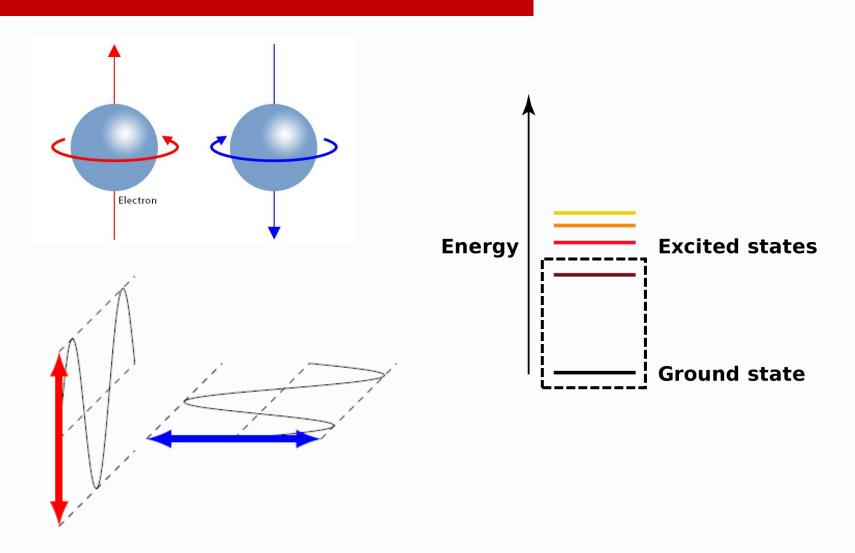


Superposition: Linear combination of 0 and 1 states

 $\frac{\alpha|0\rangle + \beta|1\rangle}{|\alpha|^2 + |\beta|^2 = 1}$ amplitude

Physical Qubits





Roth, et al. IEEE Antennas & Prop. 2022

https://www.chemistrylearner.com/spin-quantum-number.html

https://en.wikipedia.org/wiki/Energy_level

https://medium.com/@lindat/how-quantum-computers-and-machine-learning-will-revolutionize-big-data-571d5594e9b8

Ket Notation, Vector Space

A qubit state is a unit-length vector.

$$|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \qquad |\psi\rangle = \begin{bmatrix} \alpha\\ \beta \end{bmatrix} = \alpha \begin{bmatrix} 1\\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0\\ 1 \end{bmatrix} = \alpha |0\rangle + \beta |1\rangle$$
$$|||\psi\rangle||_2 = \sqrt{|\alpha|^2 + |\beta|^2} = 1$$
Any state can be expressed as a linear combination of |0\rangle and |1\rangle.

 $|0\rangle$

 $|1\rangle$

Vector space (Hilbert space) with $|0\rangle$ and $|1\rangle$ as **basis vectors**.

Bra-Ket Notation

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

A ket is a column vector.

$$\langle \psi | = |\psi
angle^{\dagger} = [lpha^{*} \ eta^{*}$$

A **bra** is a row vector, the conjugate transpose of a ket.

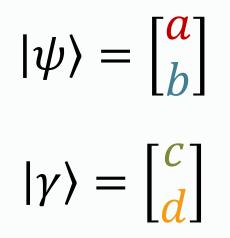
$\langle \psi | \gamma \rangle$ A **bra-ket** is an *inner product*.

Inner Product

$$|\psi\rangle = \begin{bmatrix} a \\ b \end{bmatrix} \qquad \langle \psi | \gamma \rangle = \begin{bmatrix} a^* & b^* \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$$
$$|\gamma\rangle = \begin{bmatrix} c \\ d \end{bmatrix} \qquad = a^*c + b^*d$$

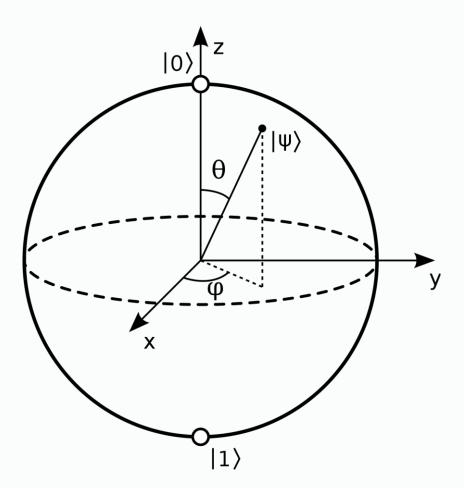
$$\begin{array}{l} \langle \psi | \psi \rangle = 1 \\ \langle 0 | 1 \rangle = 0 \end{array} \quad |\langle \psi | \gamma \rangle| = \begin{cases} 0, \mbox{if orthogonal} \\ 1, & \mbox{if equal} \\ < 1, \mbox{otherwise} \end{cases}$$

Outer Product



$$|\psi\rangle\langle\gamma| = \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} c^* & d^* \end{bmatrix} = \begin{bmatrix} ac^* & ad^* \\ bc^* & bd^* \end{bmatrix}$$

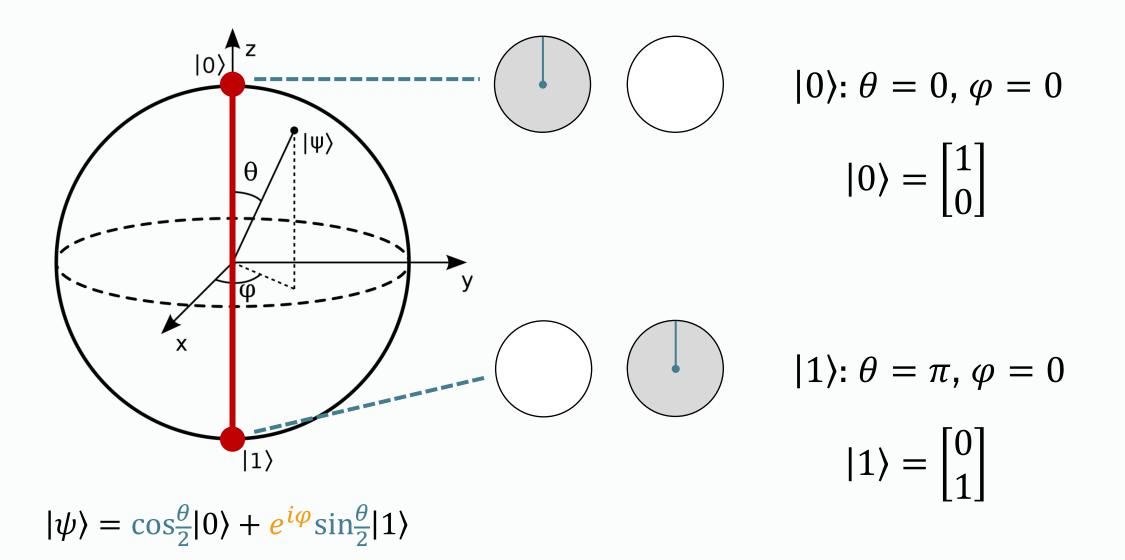
Can be viewed as "a matrix that transforms state $|\gamma\rangle$ into state $|\psi\rangle$."

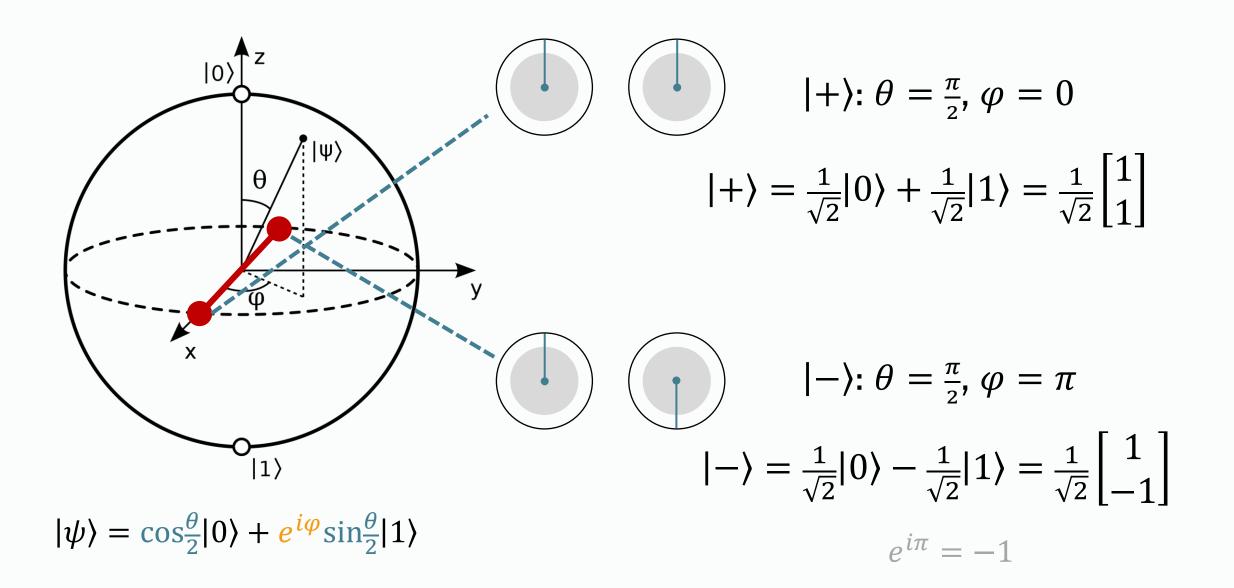


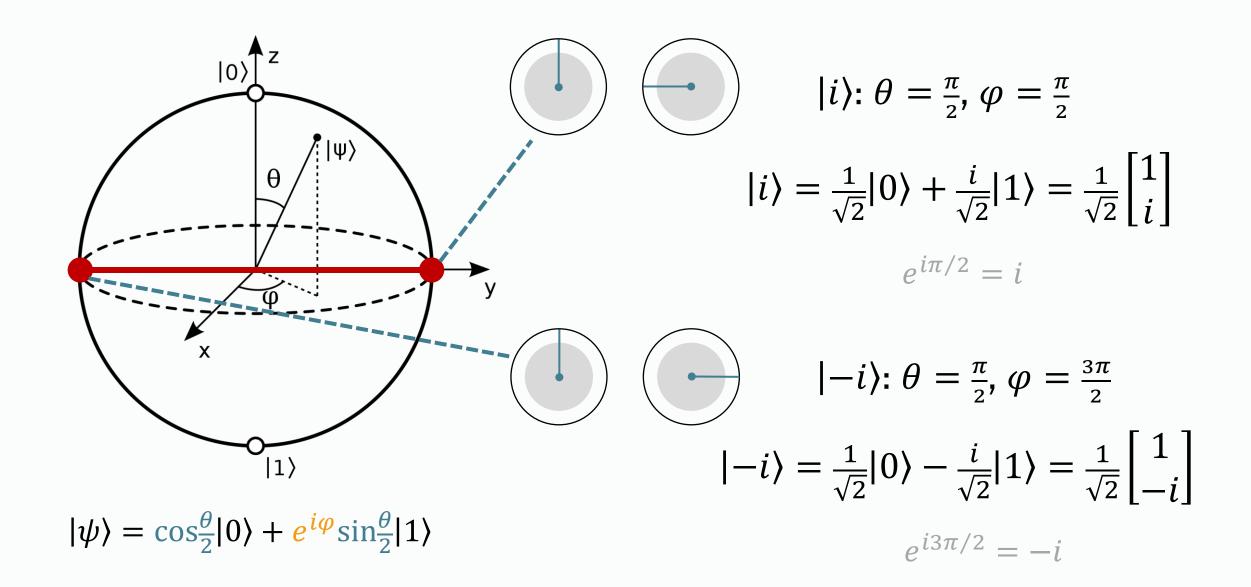
 $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \cos\frac{\theta}{2} \\ e^{i\varphi}\sin\frac{\theta}{2} \end{bmatrix}$$

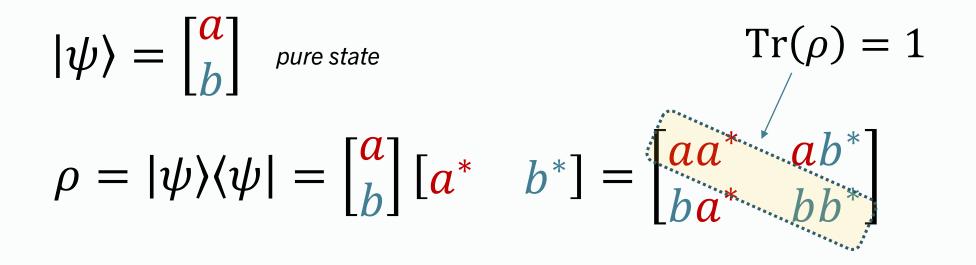
Quantum state is a vector that ends on the **surface** (norm = 1).







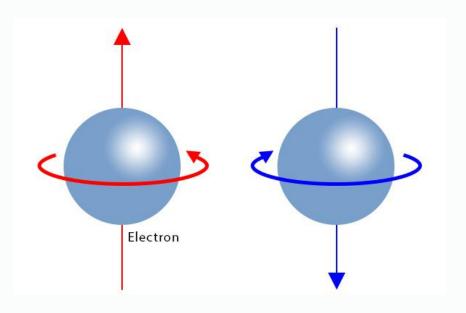
Density Matrix



The density matrix ρ is a more general representation of a quantum state. States on the Bloch sphere surface are pure states. Can also represent mixed states, useful for other purposes.

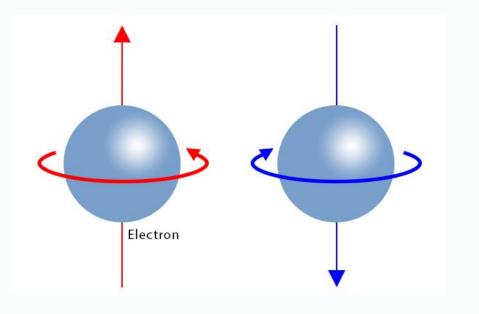
A one-qubit quantum state is a two-dimensional vector in a Hilbert space.

$$\begin{split} |\psi\rangle &= \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \alpha |0\rangle + \beta |1\rangle \\ &|\alpha|^2 + |\beta|^2 = 1 \end{split}$$



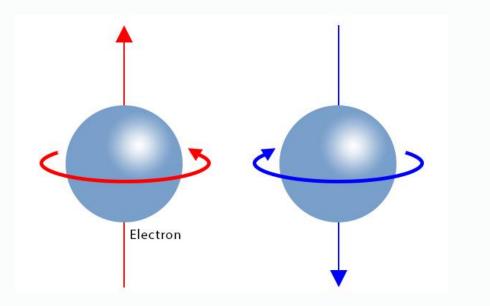
To learn the state of a physical qubit, we **measure** it.

Measurement



When we measure the spin of an electron, we get a binary result: spin up or spin down

Measurement



When we measure the spin of an electron, we get a binary result: spin up or spin down

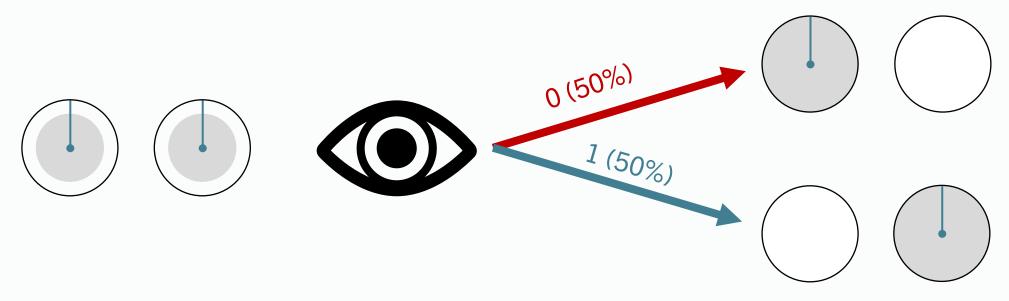
What if qubit is in superposition? $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle$

We get up with probability $|\alpha|^2$ and down with probability $|\beta|^2$.

Measurement is Destructive

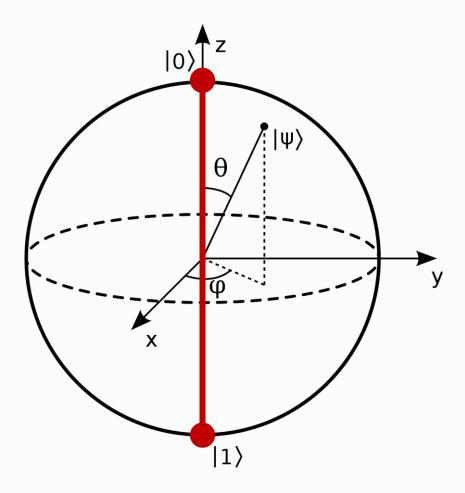
We get 0 with probability $|\alpha|^2$ and 1 with probability $|\beta|^2$.

In addition, the state of the qubit **changes** to match the result of the measurement.



Subsequent measurements will all be identical.

Z-Measurement



Measuring in the Z basis gives us information about magnitude (θ).

If θ is close to 0, more likely to measure $|0\rangle$.

$$\cos^2 rac{ heta}{2}
ightarrow 1$$
 , $\sin^2 rac{ heta}{2}
ightarrow 0$

If θ is close to π , more likely to measure $|1\rangle$.

$$\cos^2 rac{ heta}{2}
ightarrow 0$$
 , $\sin^2 rac{ heta}{2}
ightarrow 1$

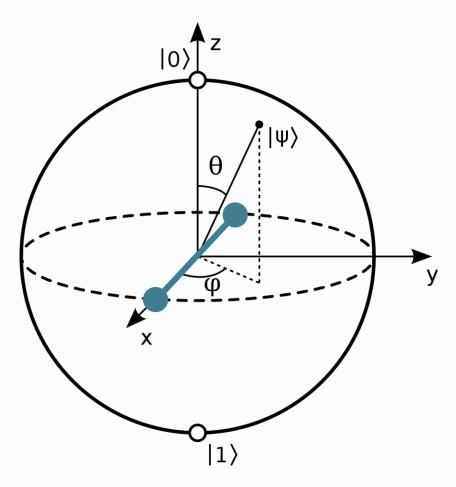
Estimating Quantum State

We can't measure α and β . Can we estimate?

Measure N times and calculate probability. Measurement is destructive. Get the same measurement N times...

Prepare and measure N times and calculate probability. But this still only gives us $|\alpha|^2$ and $|\beta|^2$. No information about phase!

X-Measurement



Measuring in the X basis gives us information about phase (φ).

If φ is close to 0 or 2π , more likely to measure $|+\rangle$.

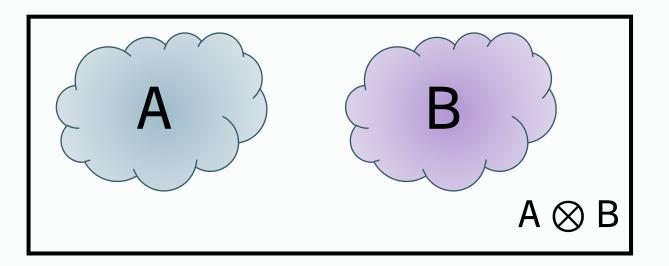
If φ is close to π , more likely to measure $|-\rangle$.

Can't do X-measurement and Z-measurement at the same time.

Measuring a qubit gives us one classical bit of information.

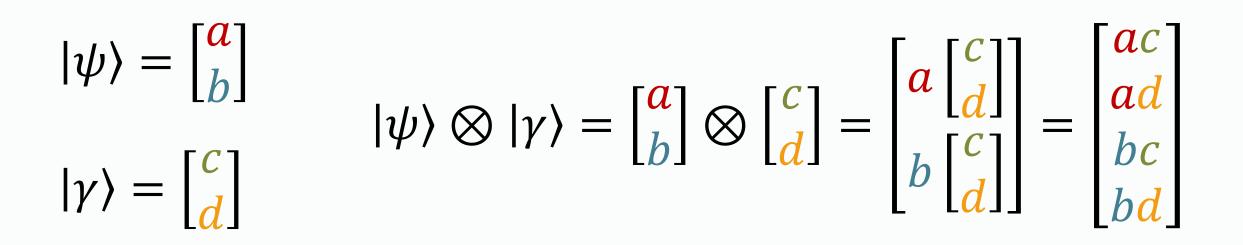
And it destroys any superposition.

Suppose we have two quantum systems, one in state A and the other in state B.



The state of the two systems combined is $A \otimes B$, where is \otimes is the **tensor product**.

Tensor Product



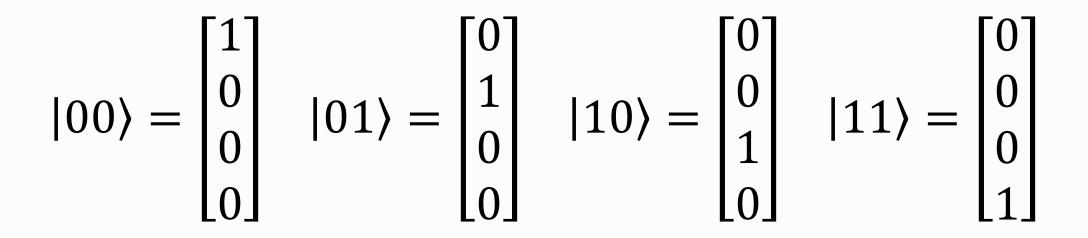
$|\psi\rangle\otimes|\gamma\rangle=|\psi\rangle|\gamma\rangle=|\psi,\gamma\rangle$

Multi-Qubit State

$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{bmatrix}1\\0\end{bmatrix} \otimes \begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}1\\0\\0\\0\end{bmatrix}$$

When we combine 2 qubits, we get a 4-element vector.

Multi-Qubit Vector Space

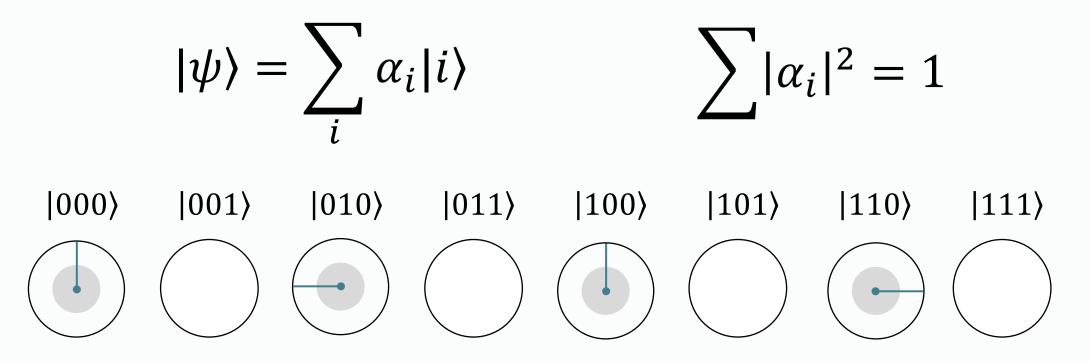


Superposition: Two-qubit state is linear combination of basis vectors.

$$\begin{aligned} |\psi\rangle &= \alpha_0 |00\rangle + \alpha_1 |01\rangle + \alpha_2 |10\rangle + \alpha_3 |11\rangle \\ &= \alpha_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle + \alpha_3 |3\rangle \end{aligned}$$

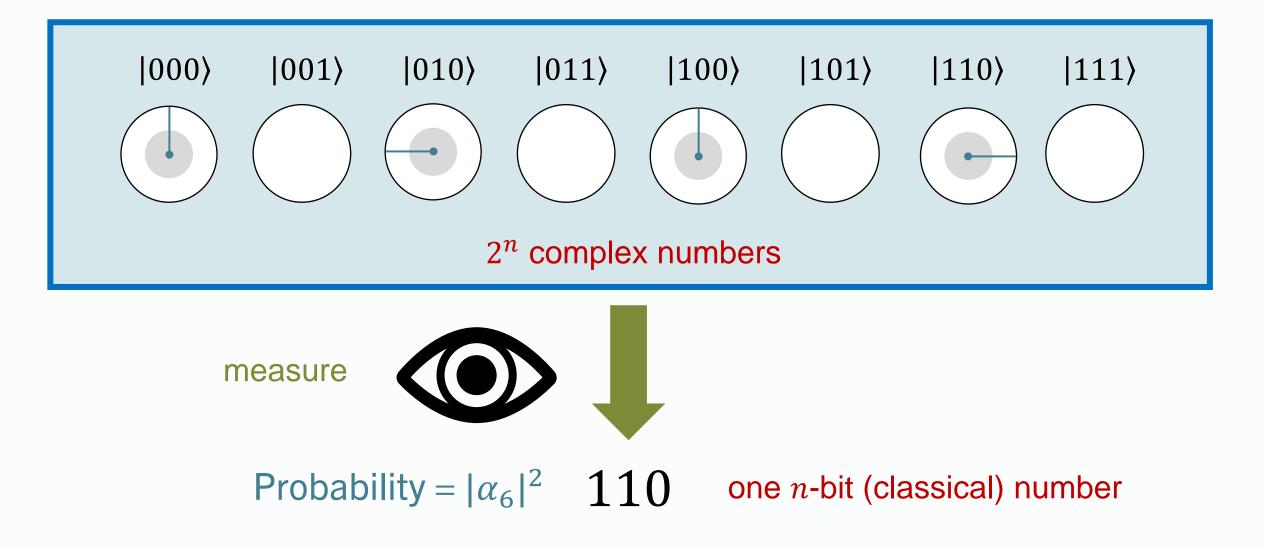
Multi-Qubit Vector Space

An *n*-qubit space is a 2^n -dimensional vector space. Two-qubit state is linear combination of 2^n **basis** vectors.

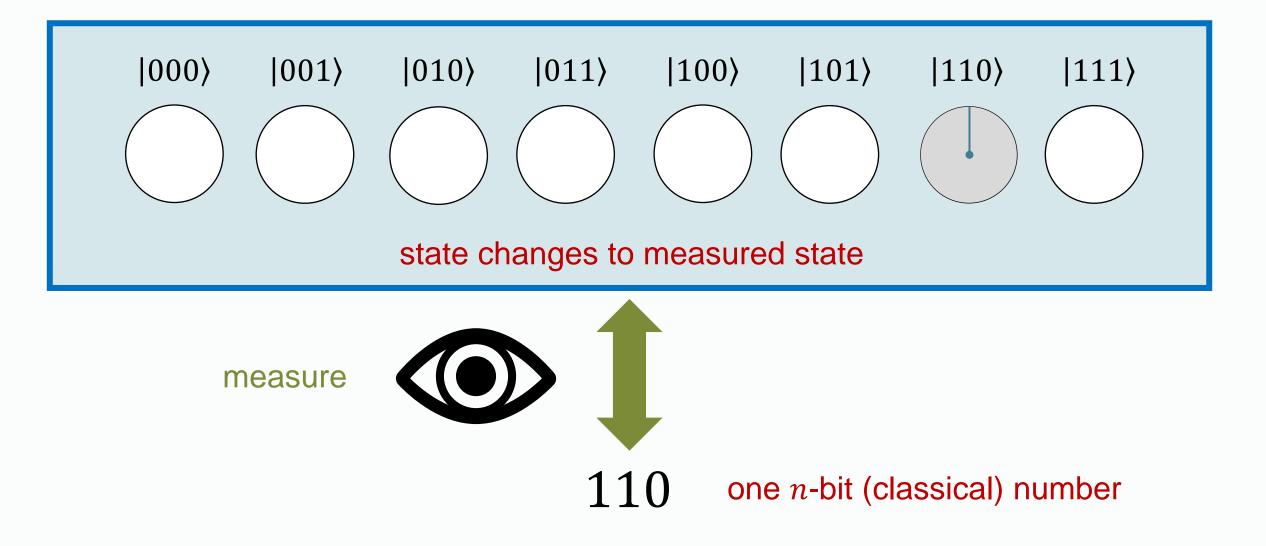


 2^n complex numbers

Measurement

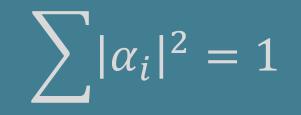


Measurement changes the state



An *n*-qubit quantum state is a 2^n -dimensional vector in a Hilbert space.

 $|\psi\rangle = \sum_{i} \alpha_{i} |i\rangle$

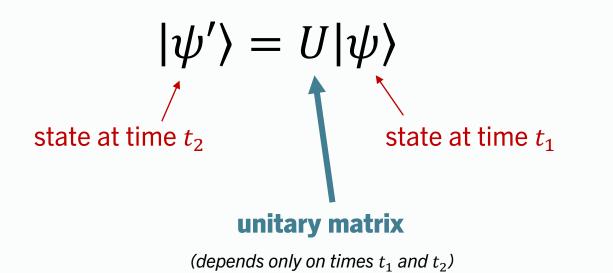


How do we create / manipulate quantum states?

hoto by Louis Hansel on Unsplash

Unitary Evolution

The evolution of a closed quantum system is described by a unitary transformation.



Unitary:

 $U^{\dagger}U = I$

The matrix does not change the length of the vector.

Always reversible.

Quantum Mechanics

The time evolution of a closed quantum system is described by the Schrödinger equation.

$$i\hbar \frac{d|\psi\rangle}{dt} = \mathcal{H}|\psi\rangle$$

 \mathcal{H} is a *Hermitian* matrix, known as the **time-independent Hamiltonian**, which describes the energy of a system.

 $\mathcal{H} = \mathcal{H}^{\dagger}$

$$|\psi(t_2)\rangle = \exp\left[\frac{i\mathcal{H}(t_2 - t_1)}{\hbar}\right] |\psi(t_1)\rangle = U(t_2, t_1)|\psi(t_1)\rangle$$
This is unitary.

Quantum Gate

A quantum **gate** is a controlled evolution of the qubit state to accomplish a specific transformation.

$$\boldsymbol{U}|\psi\rangle = \boldsymbol{U}(\alpha|0\rangle + \beta|1\rangle) = \alpha \boldsymbol{U}|0\rangle + \beta \boldsymbol{U}|1\rangle$$

Matrix is **unitary**. It preserves the length (norm) of the vector. Operation is **linear**, applied to each basis vector. Matrix has an inverse $U^{-1} = U^{\dagger}$. Operation is **reversible**.

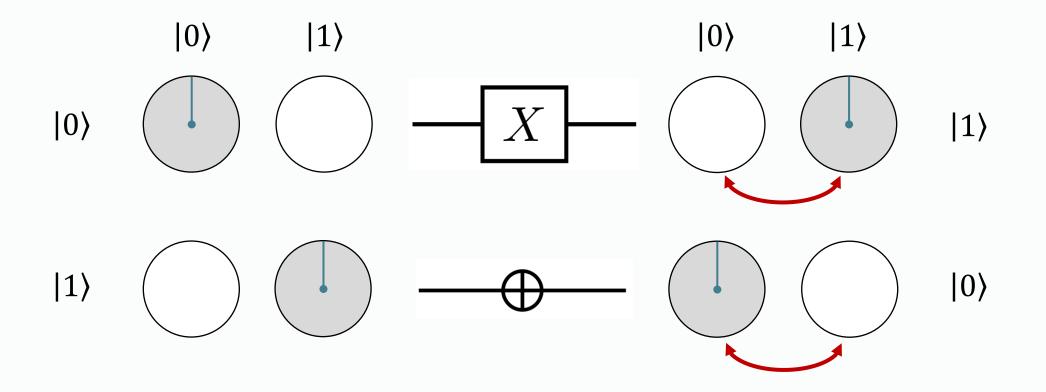
Quantum Circuit

A quantum **circuit** shows the **time evolution** of a qubit's state through a sequence of gates.

$$|\psi\rangle - U - |\psi'\rangle \quad |\psi'\rangle = U|\psi\rangle$$

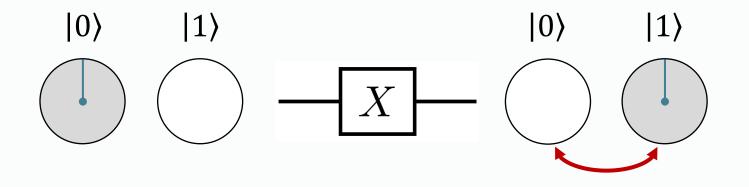
$$|\psi\rangle - U_1 - U_2 - U_3 - |\psi'\rangle$$
$$|\psi'\rangle = U_3 U_2 U_1 |\psi\rangle$$

X Gate (NOT)



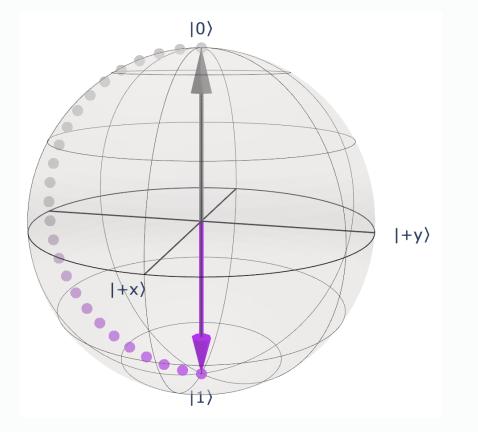
An X gate is analogous to a classical NOT gate.

$\begin{array}{l} X|\psi\rangle = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha\\ \beta \end{bmatrix} = \begin{bmatrix} \beta\\ \alpha \end{bmatrix} = \beta |0\rangle + \alpha |1\rangle \end{array}$



Gate = Rotation on Bloch Sphere

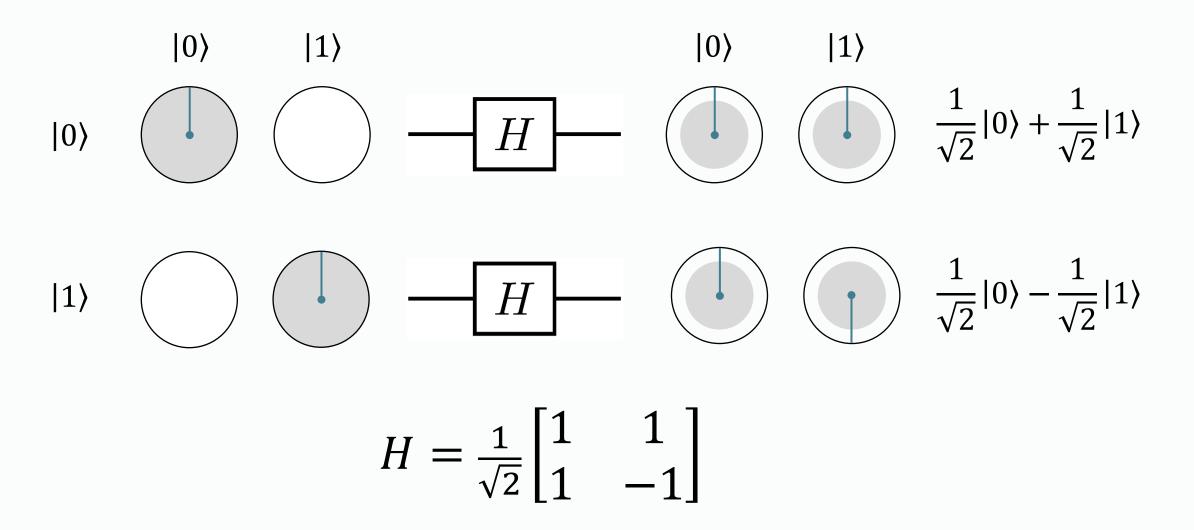
A quantum gate can be viewed as a **rotation** on the Bloch Sphere. The X gate is a counter-clockwise rotation of π around the X axis.



Similarly, π rotation around Z (Y) axis is known as Z (Y) gate.

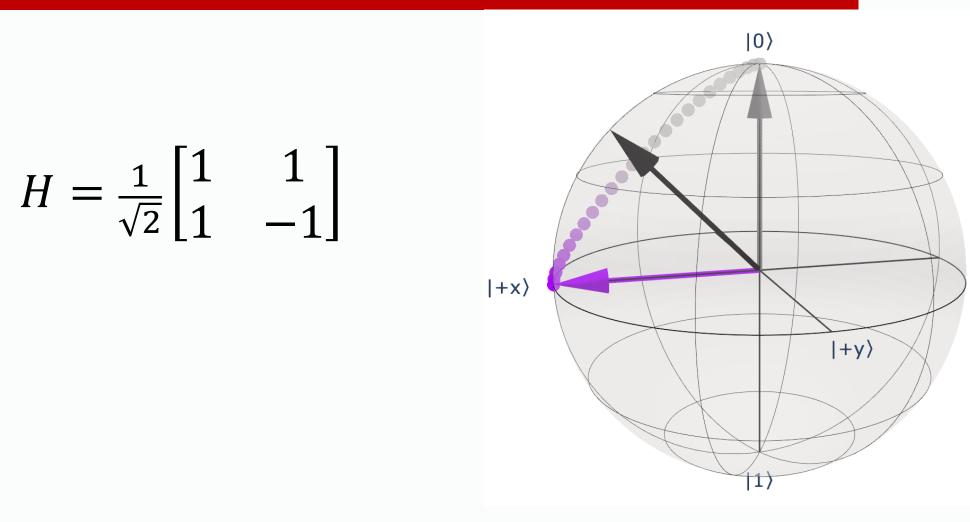
X, Y, and Z are **Pauli gates**.

Hadamard Gate



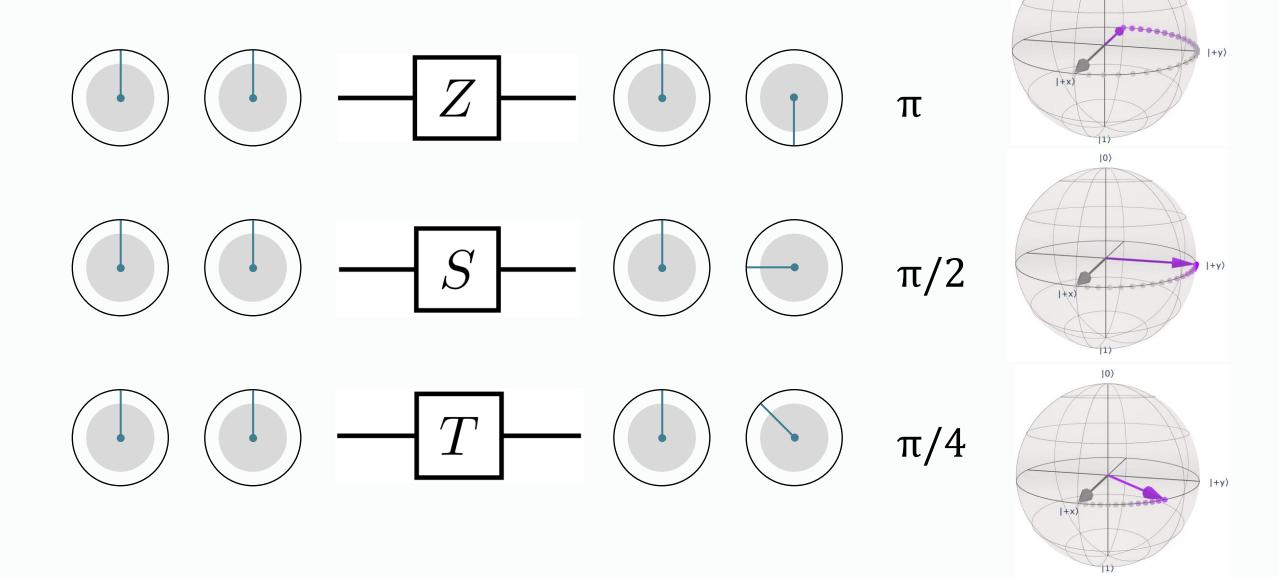
NOTE: This is not the Hamiltonian \mathcal{H} from a few slides back.

Hadamard Gate



The H gate is a CCW rotation of π around the X=Z axis.

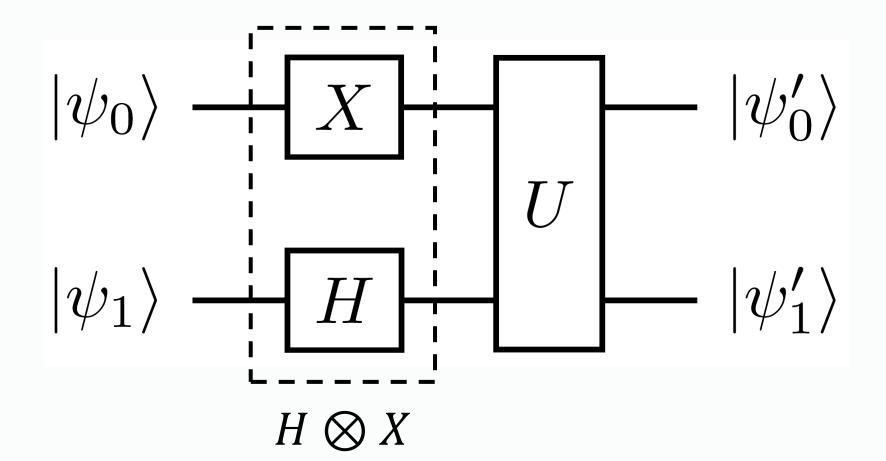
Phase Gates



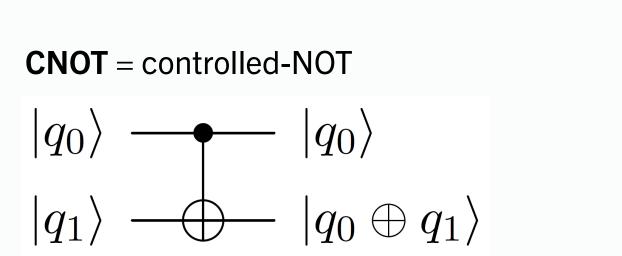
10>

Multi-Qubit Gates

An *n*-qubit gate is described by a $2^n \times 2^n$ matrix.



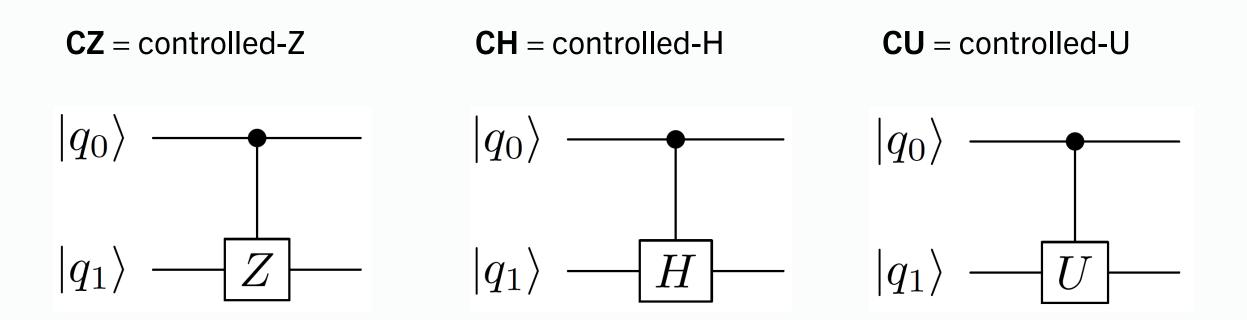
CNOT Gate



Start	End
00>	00>
<mark>0</mark> 1>	<mark>1</mark> 1>
10>	10>
<mark>1</mark> 1>	<mark>0</mark> 1>

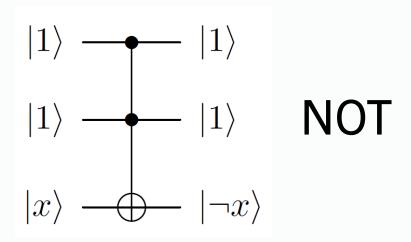
Qubit 0 is **control.** Qubit 1 is **target.** Flip the target bit if the control bit is 1.

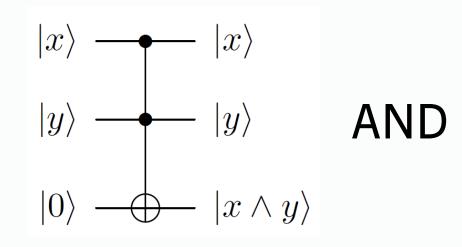
General Controlled Gates

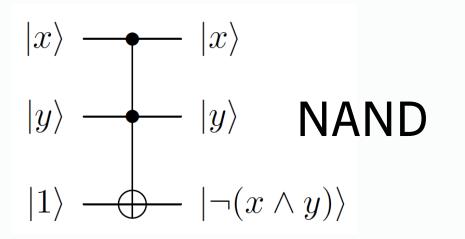


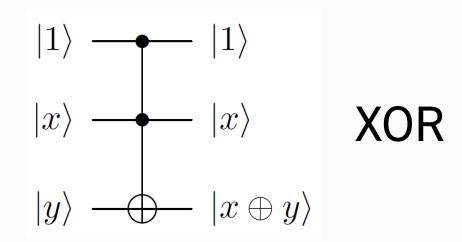
Gate is performed if the control bit is 1.

Toffoli: Reversible Classic Gates

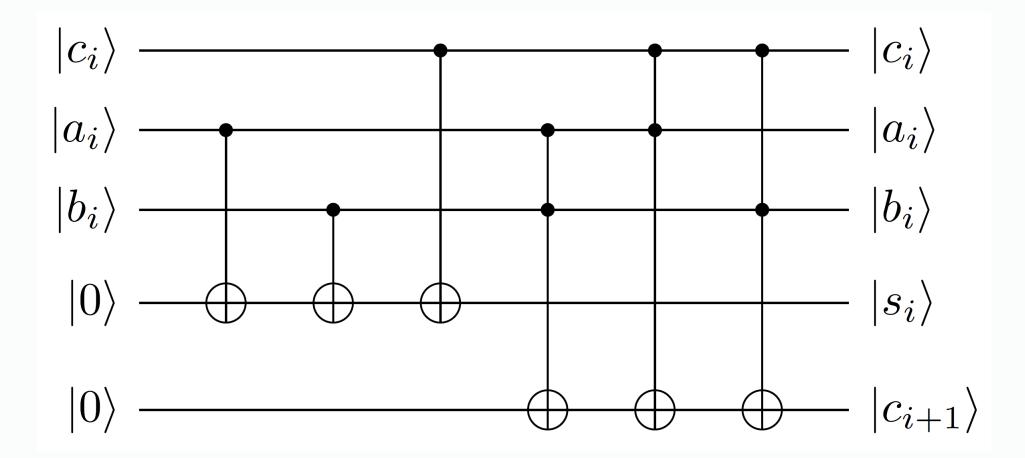








Circuit: 1-qubit adder



Any reversible classical computation can be done on a quantum computer.

Universal Quantum Computation

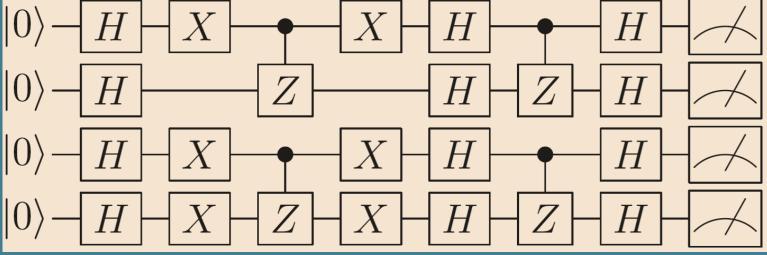
Any *n*-qubit circuit can be decomposed into 1- and 2-qubit gates.

A universal gate set allows any unitary to be approximated within an error bounds ε .

One such universal gate set is known as Clifford + T: CNOT, H, S, T

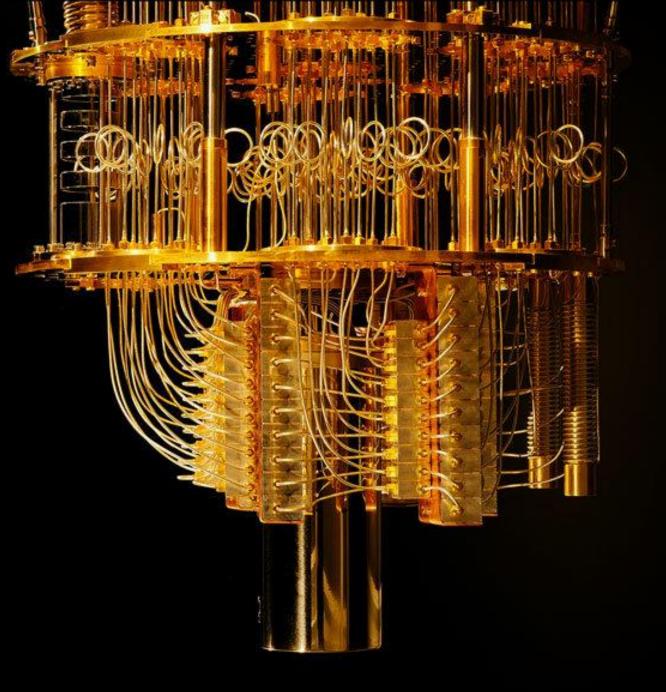
IBM Qiskit tutorial on Sunday

Quantum Circuit:1. Prepare2. Apply gates3. Measure

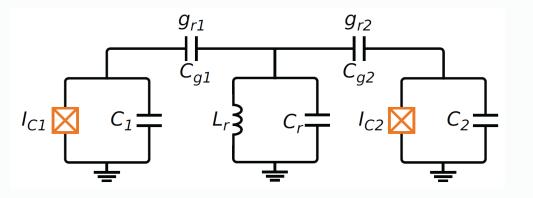


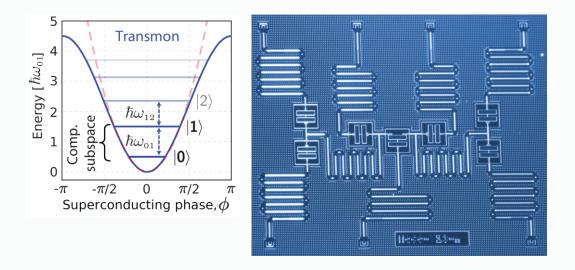
Example from Linke, et al. PNAS, 2017.

Quantum Computers



Example: Superconducting





Qubits: energy level of nonharmonic oscillator, physical coupling

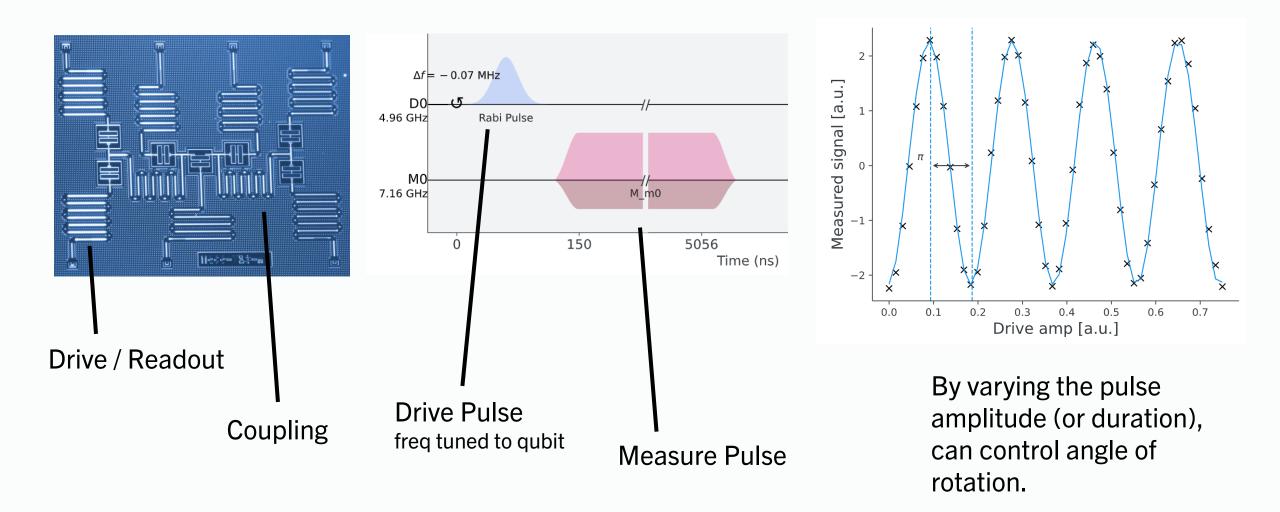
Control: microwave pulses

Current scale: 100s of qubits

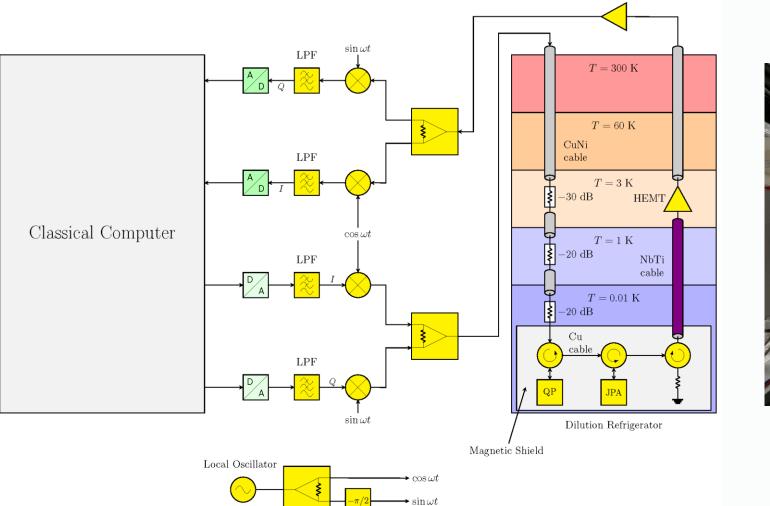
Advantages: fast gates, mature manufacturing

Vendors: IBM, Google, Rigetti

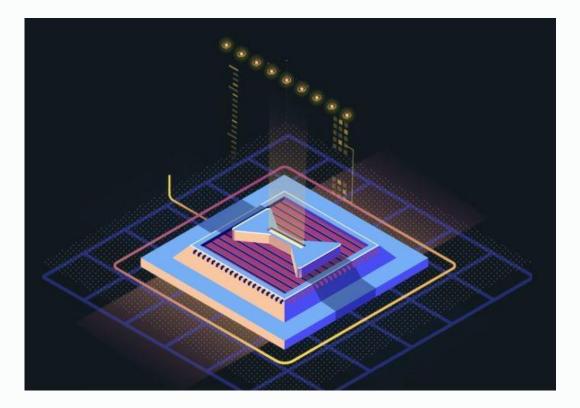
Pulses and Gates



https://learn.qiskit.org/course/quantum-hardware-pulses/calibrating-qubits-using-qiskit-pulse



Example: Ion Trap



Qubits: electron energy level of single ions **Control:** lasers

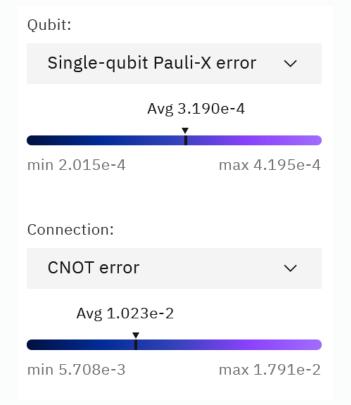
Current scale: 10s of qubits

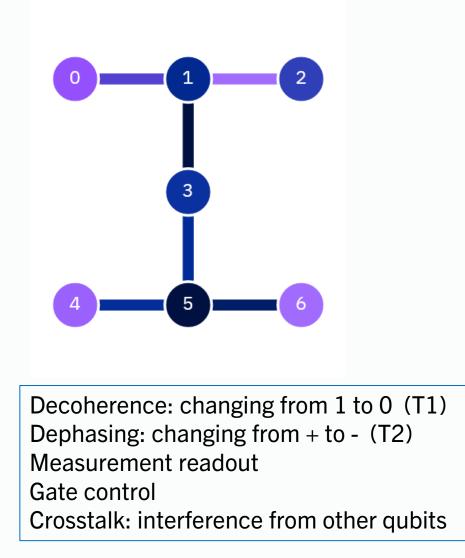
Advantages: lower error rates, high connectivity, identical qubits

Vendors: IonQ, Quantinuum

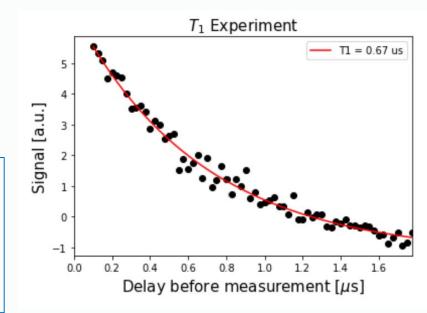
IonQ tutorial on Sunday

NISQ = Noise





Avg. CNOT Error:	1.023e-2
Avg. Readout Error:	2.189e-2
Avg. T1:	91.42 us
Avg. T2:	108.53 us



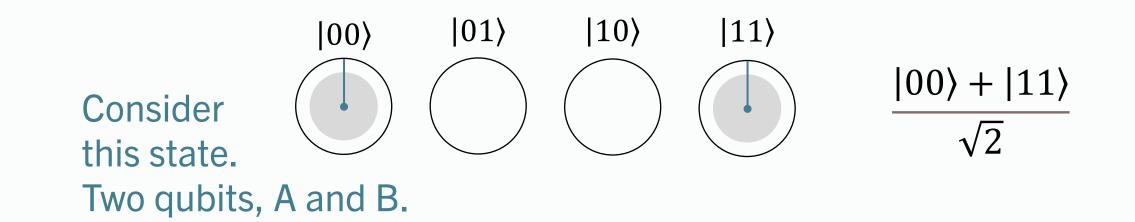
Challenges

Noise / Errors

- Error mitigation: techniques to recover useful data from noisy circuits This is current focus for near-term devices. Can we get useful results from noisy systems? Can we achieve quantum advantage?
- Error correction: redundancy in physical qubits to detect and correct, may require 1000:1 overhead
 This is **requirement** for future large-scale devices.
 Long-lasting logical qubits, deep circuits.
 Known potential for quantum advantage.

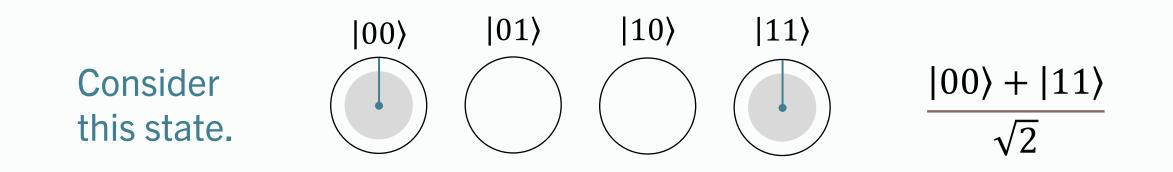
Superposition and Entanglement

https://www.piqsels.com/en/public-domain-photo-ffsis/



Both A and B have an equal chance of being 0 or 1, so is this $|+\rangle \otimes |+\rangle$? No.

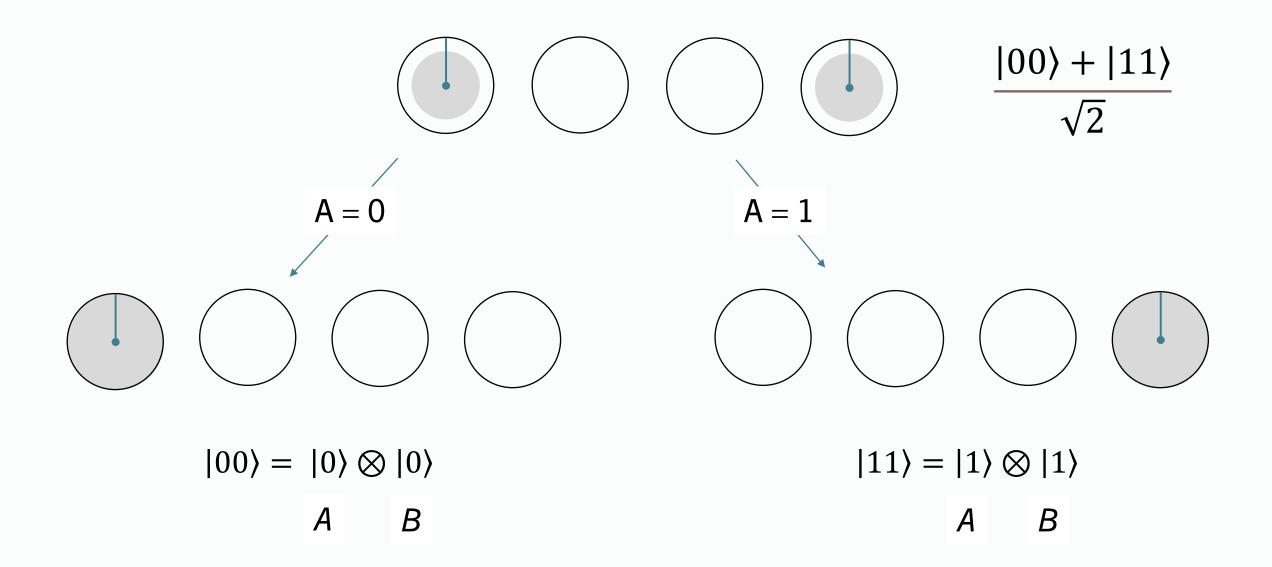
$$|+\rangle \otimes |+\rangle = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$



State is entangled.

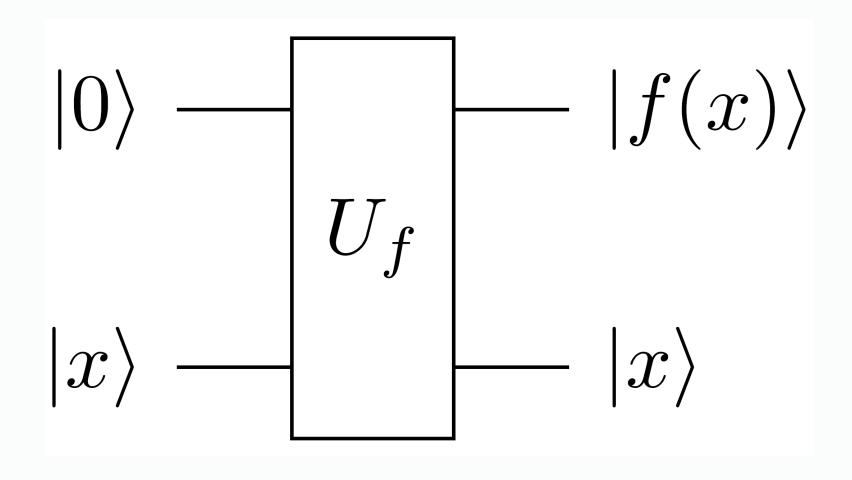
It cannot be represented as the product of two single-qubit states.

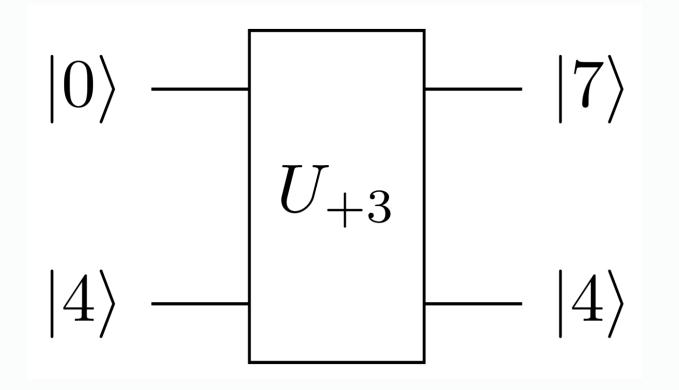
If we measure both qubits, we will get either $|00\rangle$ or $|11\rangle$. What happens if we measure only A?



Measurements of A and B are correlated.

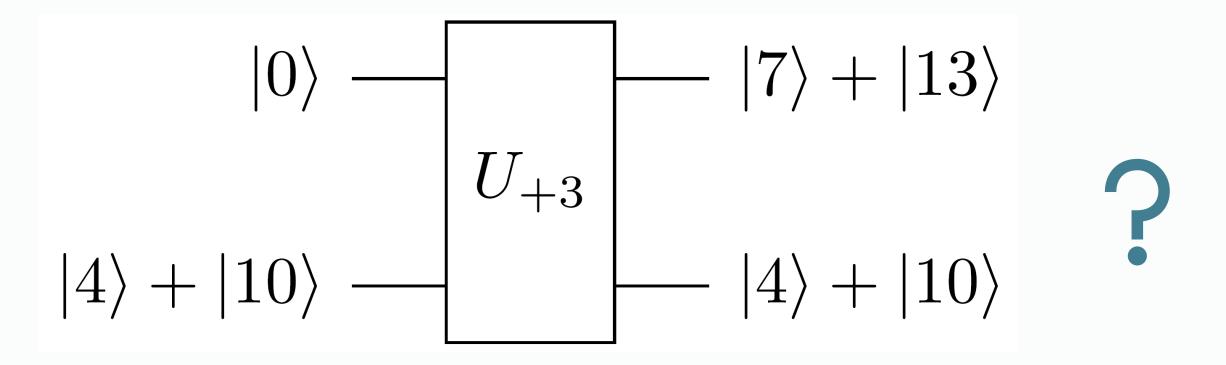
Quantum Functional Block



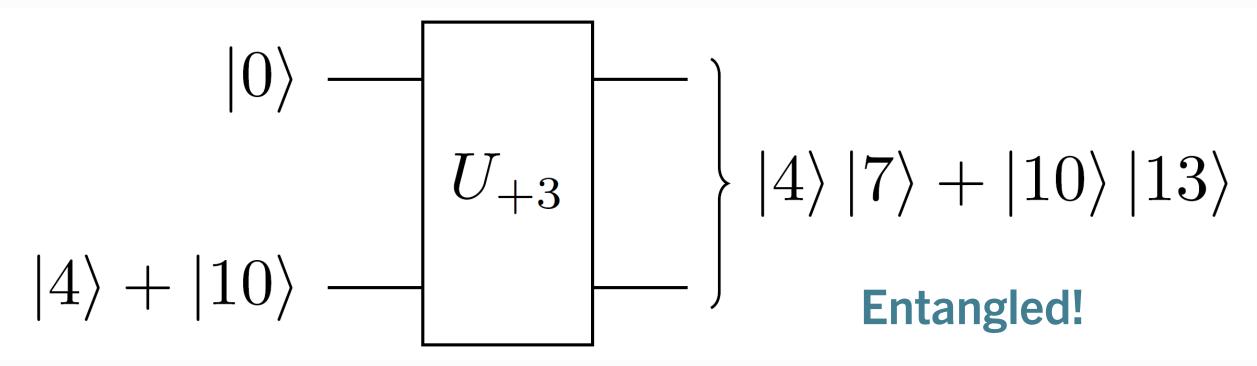


Example: f(x) = x + 3

What happens if input is a superposition?



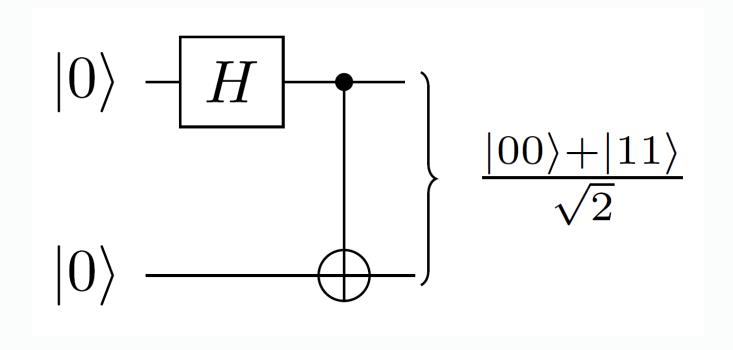
Note: Leaving off normalizing coefficient for convenience.



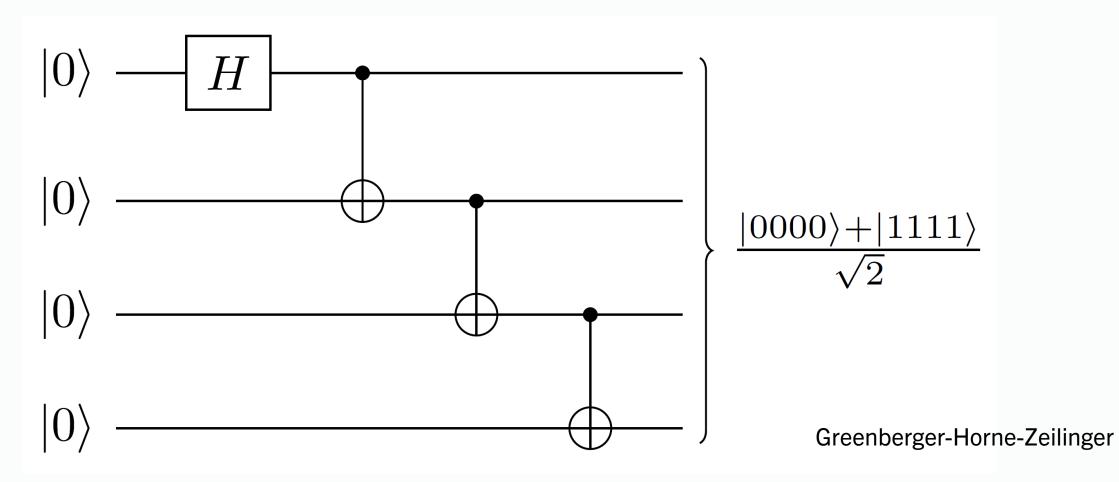
If we measure x = 4, must measure f(x) = 7.

Bell State (EPR Pair)

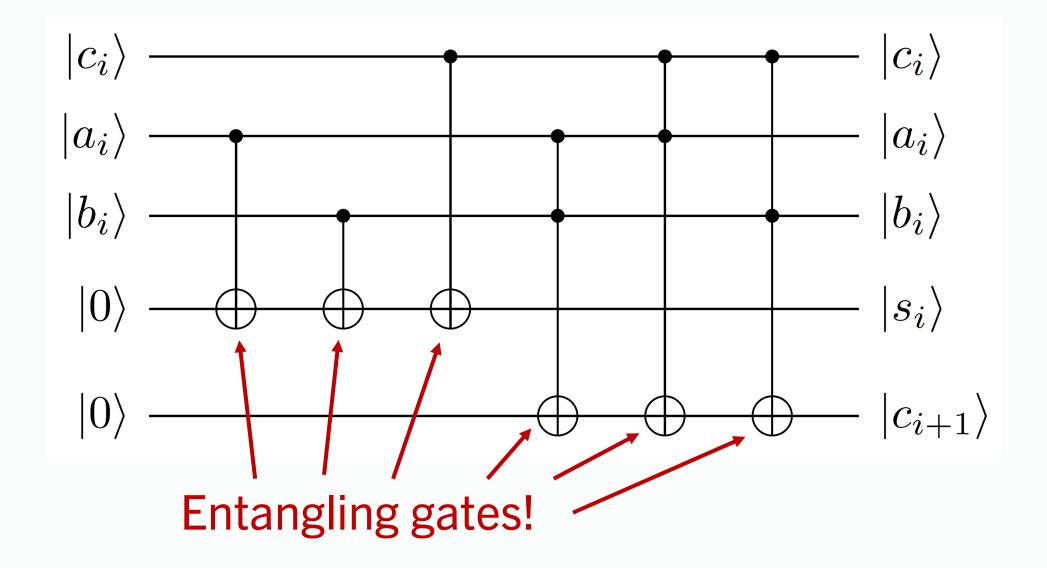
It's easy to create an entangled state.



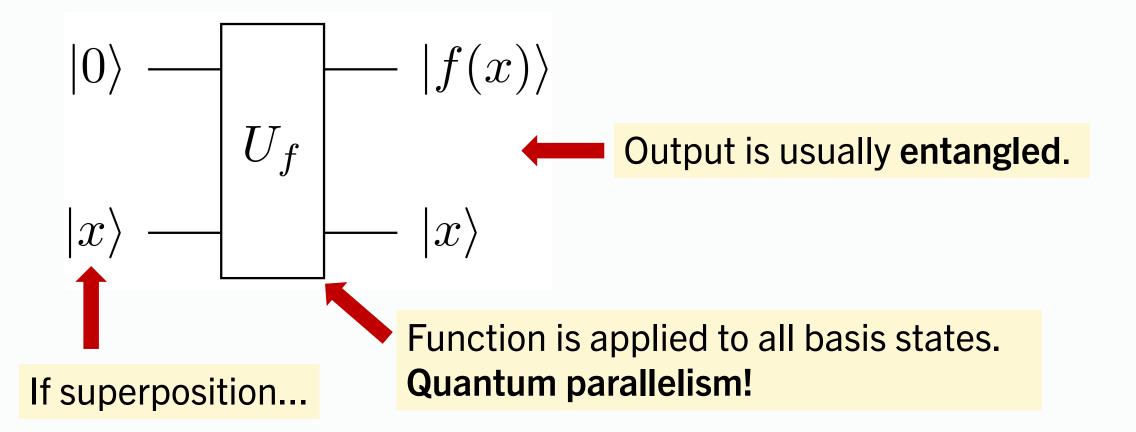
Entanglement is not limited to two qubits...



Adder Revisited



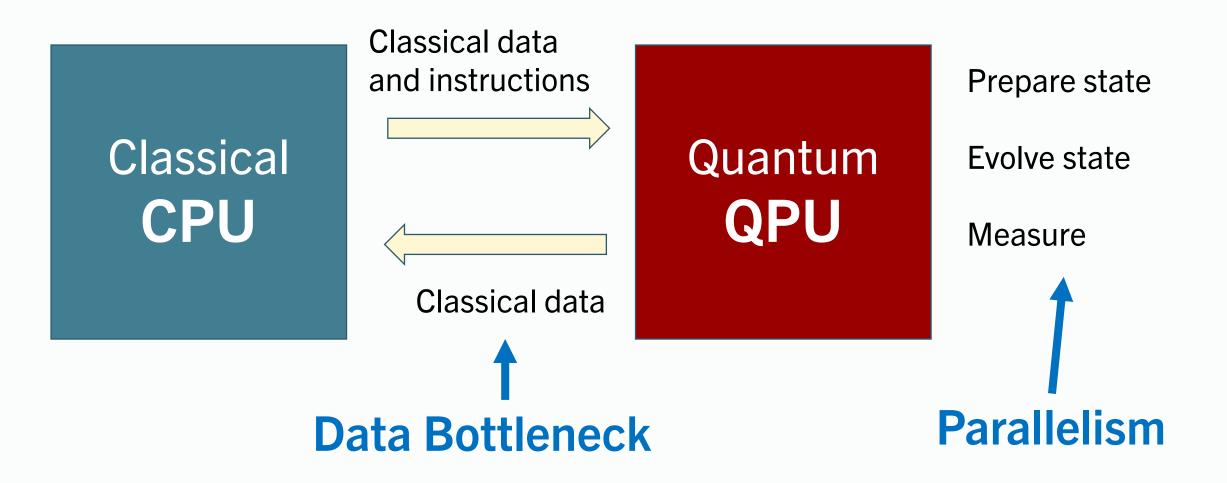
Quantum Logic: Summary



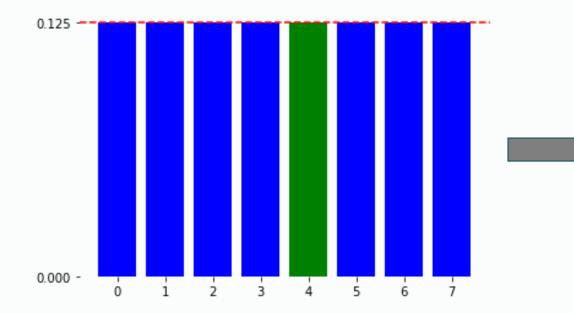
Introductory Algorithms

Photo by Conny Schneider on Unsplash

Quantum Processor as Accelerator

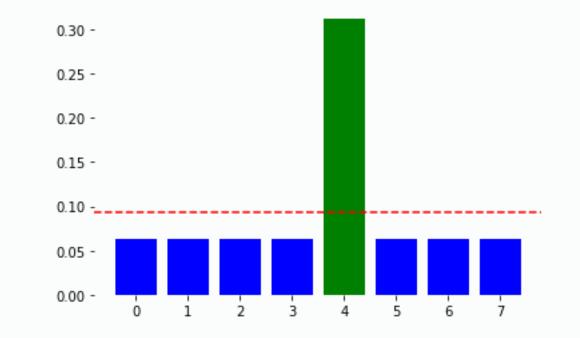


Main Idea

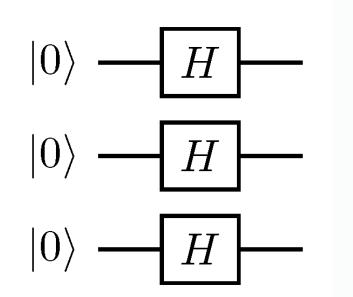


Superposition allows computation on many states at once.

Use **entanglement** and **phase** (interference) to amplify "good" states and suppress "bad" states.



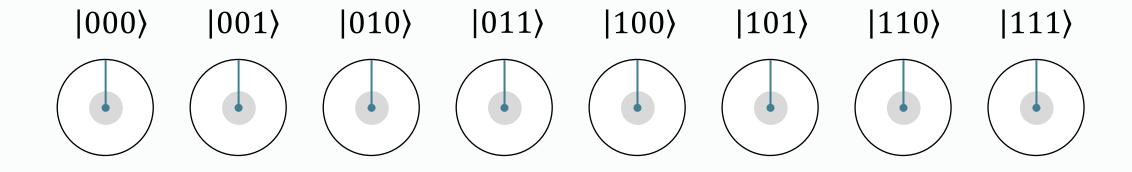
Walsh-Hadamard Transform

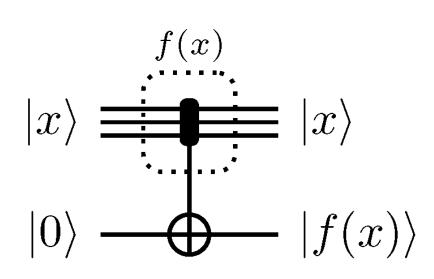


Create an equal superposition of all binary values.

-n

$$H^{\otimes n}|0\rangle = \frac{1}{\sqrt{2^n}} \sum_{i=0}^{2^n-1} |i\rangle$$



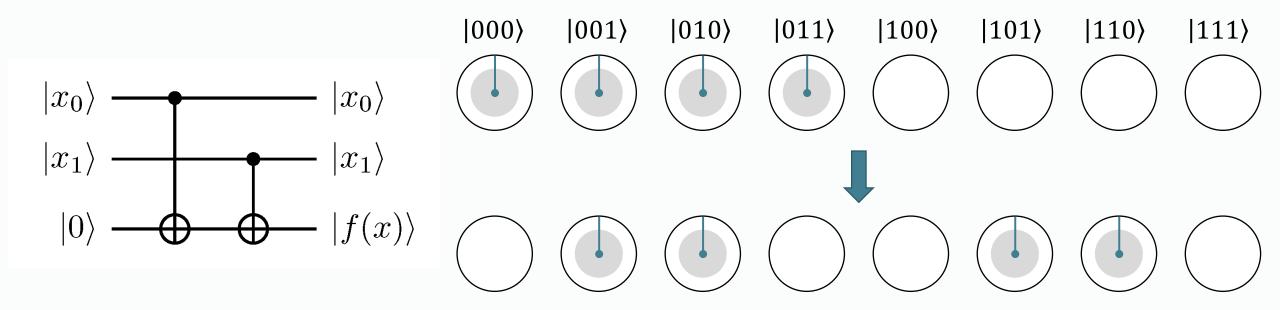


Control bits are set whenever f(x) is true.

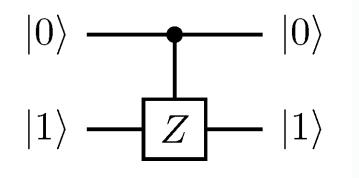
Output bit is 1 whenever f(x) is true.

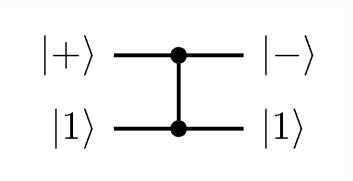
Logic Oracle

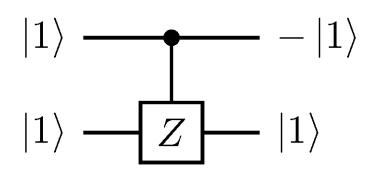
Example: f(x) is true when the two input qubits are not equal.



Control-Z Gate





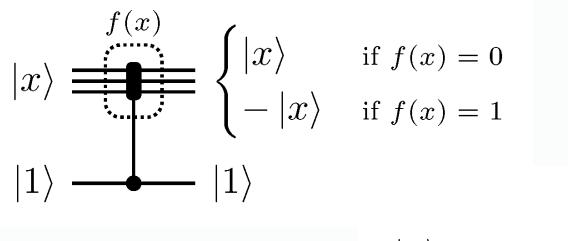


$$\begin{array}{c} |+\rangle \\ |+\rangle \end{array} \right\} \frac{|00\rangle + |01\rangle + |10\rangle - |11\rangle}{2}$$

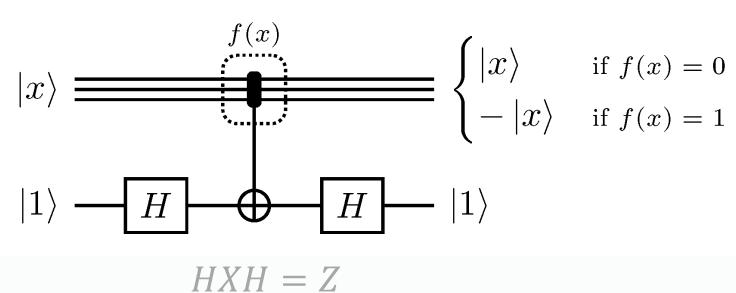
Phase changes when both inputs = 1.

 $-|11\rangle = -|1\rangle \otimes |1\rangle = |1\rangle \otimes -|1\rangle$

Phase Oracle

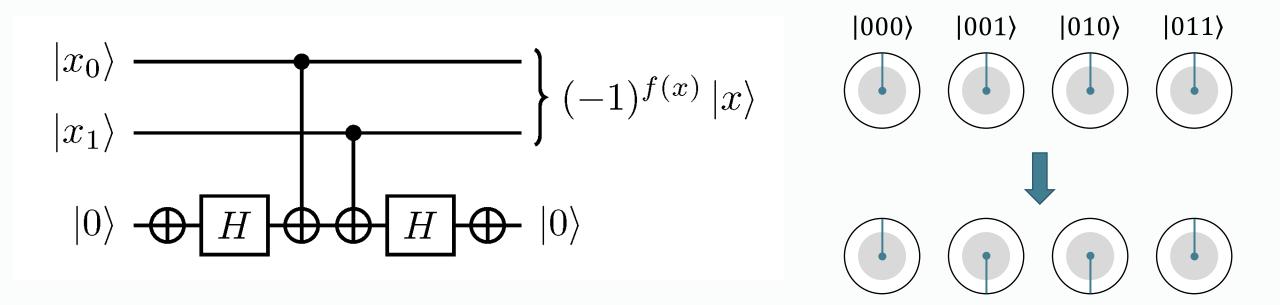


Also known as "phase kickback"



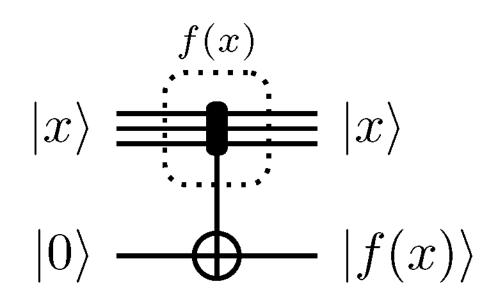
Phase Oracle

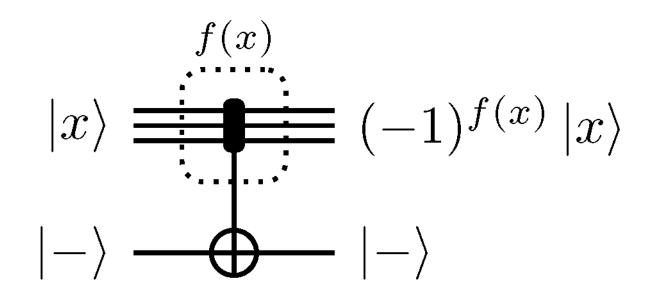
Example: f(x) is true when the two input qubits are not equal.



If phase isn't measured, what good is a phase oracle?

Summary: Oracles





Oracle

Phase Oracle

Photo by NICO BHLR on Unsplash

Grover's Search Algorithm

Problem: Given $f(x): \{0,1\}^n \rightarrow \{0,1\}$, where f(w) = 1 for one input w, and f(x) = 0 for all other inputs, find w.

Classical Solution: Requires $2^{n-1} = N/2$ queries, on average.

With no additional information, have to try every input until we find the solution.

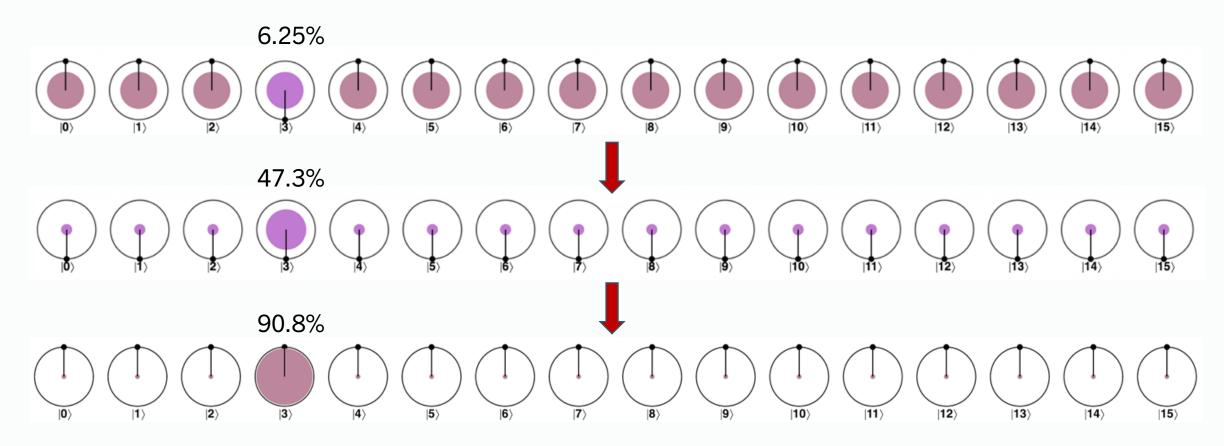
Quantum Solution:

Requires $O(2^{n/2}) = O(\sqrt{N})$ queries, to find solution with high probability.

Quadratic advantage

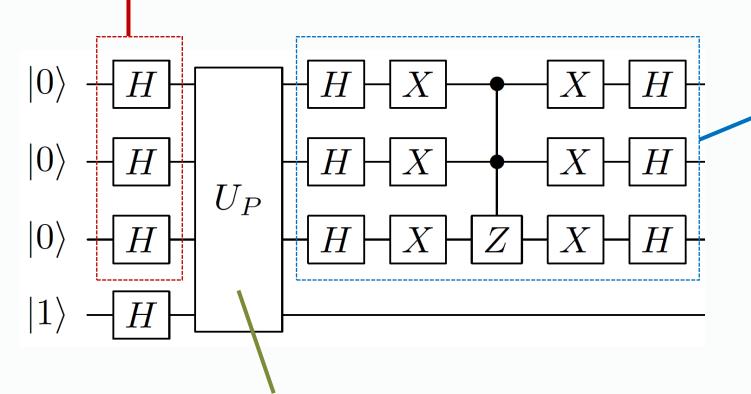
Amplitude Amplification

Converts a phase difference into a magnitude difference.



Johnston, et al. Programming Quantum Computers, 2019.

1. prepare equal superposition



- 3. Grover diffusion
- -- **mirrors** amplitudes around the mean
- -- converts phase difference to amplitude difference

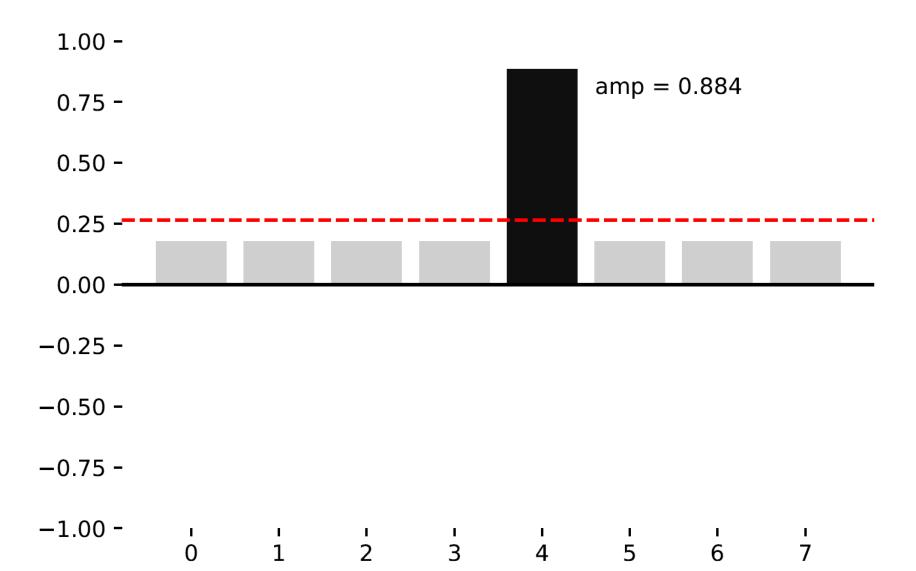
2. phase oracle **flips** phase of matching value

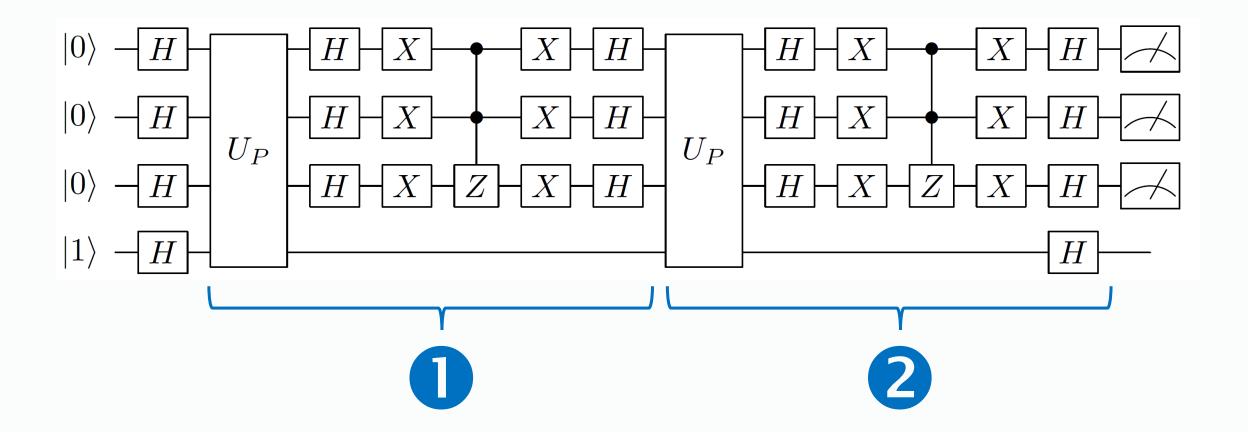
Initial State

1.00 -0.75 -0.50 mean = 0.3540.25 -0.00 -0.25 --0.50 --0.75 --1.00 -1 2 3 4 5 6 і 0 י 7

1.00 -0.75 -0.50 mean = 0.2650.25 -0.00 -0.25 --0.50 --0.75 --1.00 -י 5 1 2 3 4 и 0 י 6 י 7

Mirror: reflect around the mean

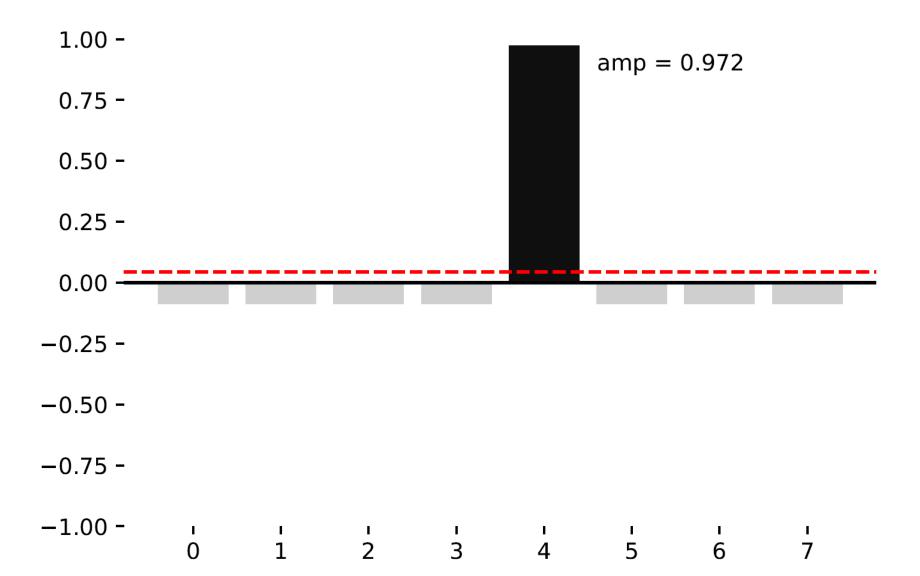


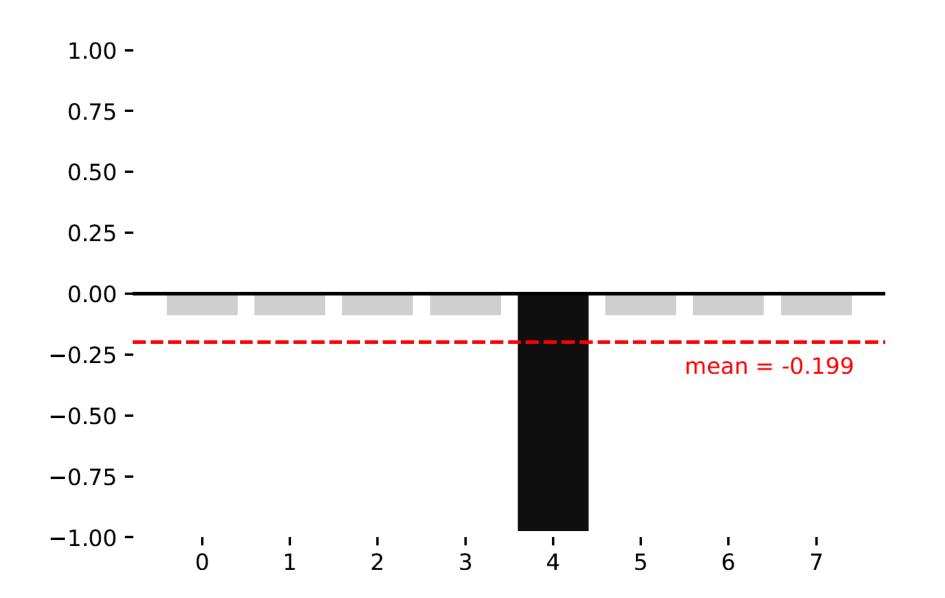


How many iterations?

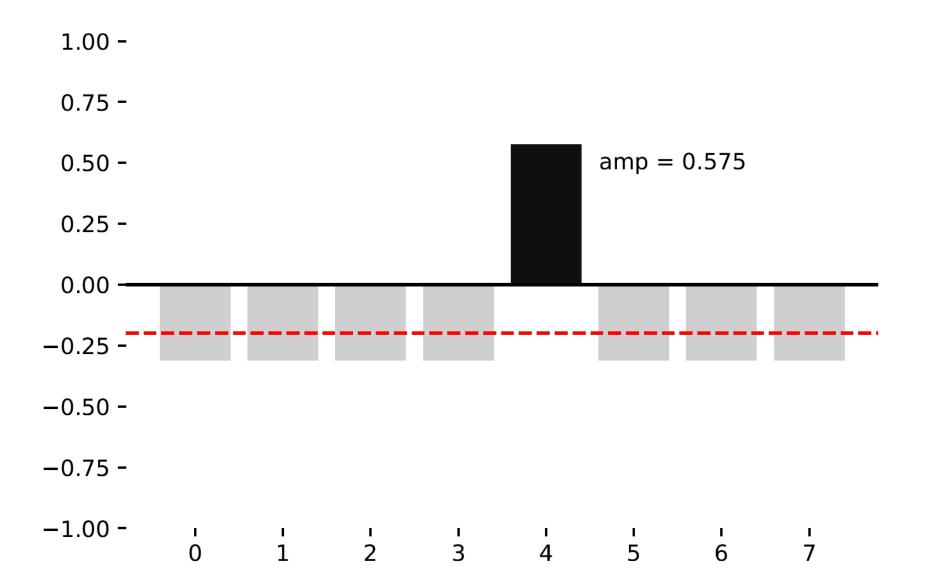
1.00 -0.75 -0.50 mean = 0.0440.25 -0.00 --0.25 --0.50 --0.75 --1.00 -1 2 3 и 0 4 י 5 і 6 י 7

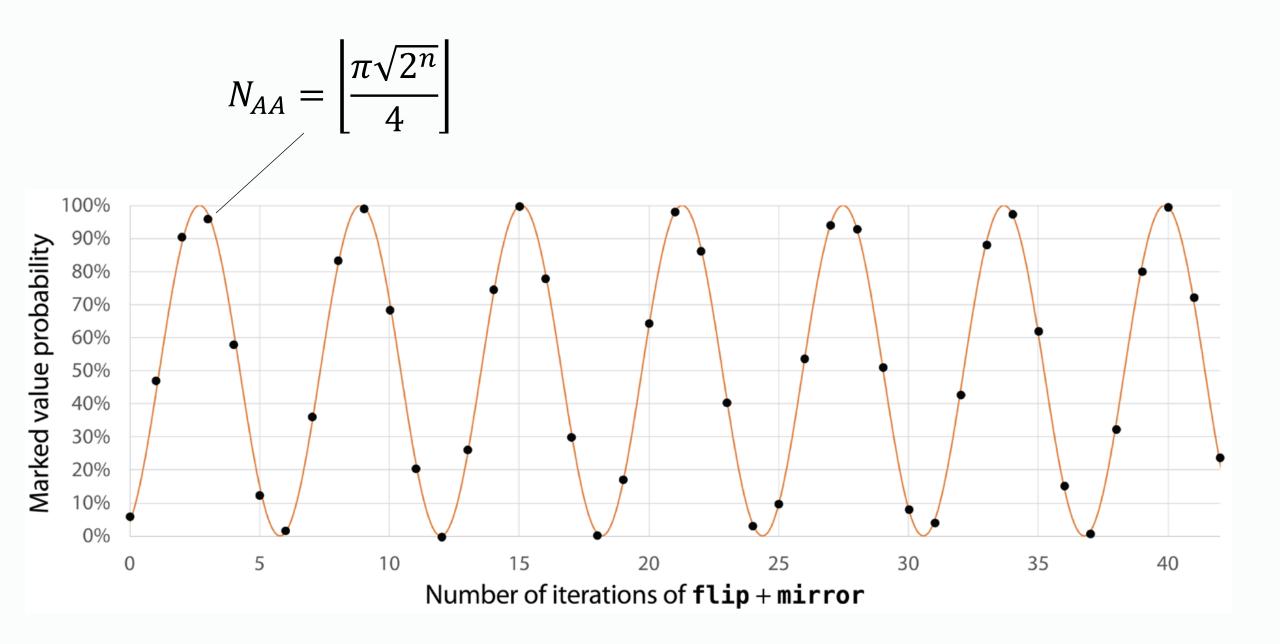
Mirror





Mirror





Some Quantum Algorithms

Algorithm	Description	Quantum	Classical
Quantum Fourier Transform	Frequency analysis	$O(\log^2 N)$	$O(N \log N)$
Grover's Search	Satisfiability (etc.)	$O(\sqrt{N})$	O (<i>N</i>)
HHL	Linear Systems	$O(\log(N)s^2 \kappa^2/\varepsilon)$	$O(Ns\kappa \log(1/\varepsilon))$
Shor's	Factoring	$O(n^2 \log n)$	$O(\exp n^{1/3})$

$$N = 2^n$$
 = problem size, $n = \#$ qubits/bits

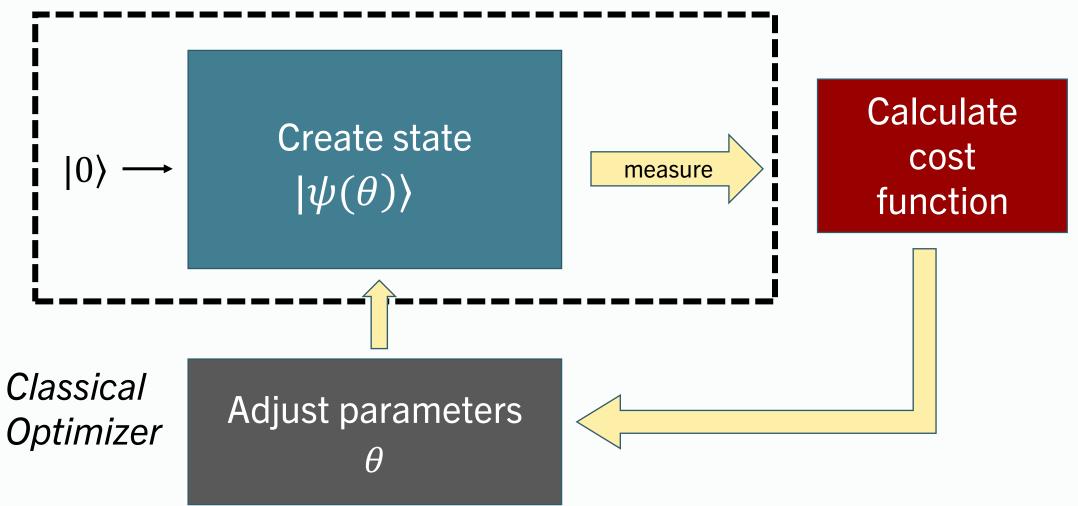
Quantum Algorithm Challenges

- **1. Large number of qubits**
 - Binary representation of data
- **2. Deep circuits**
 - Lots of gates
 - Decoherence (and other noise) becomes a problem

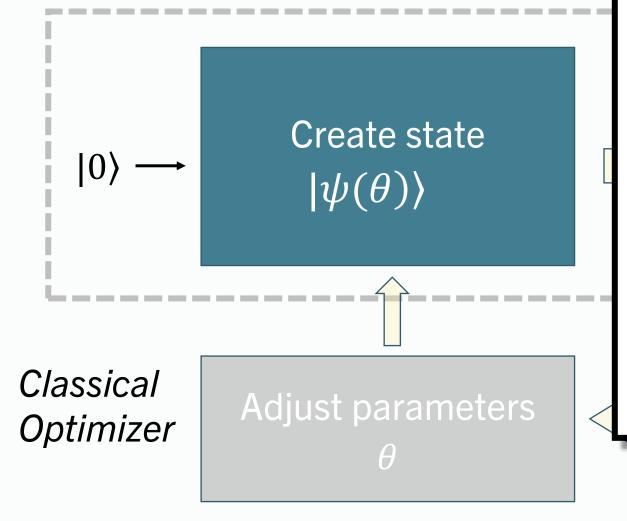
Variational Quantum Algorithms

Photo by Conny Schneider on Unsplash

Quantum



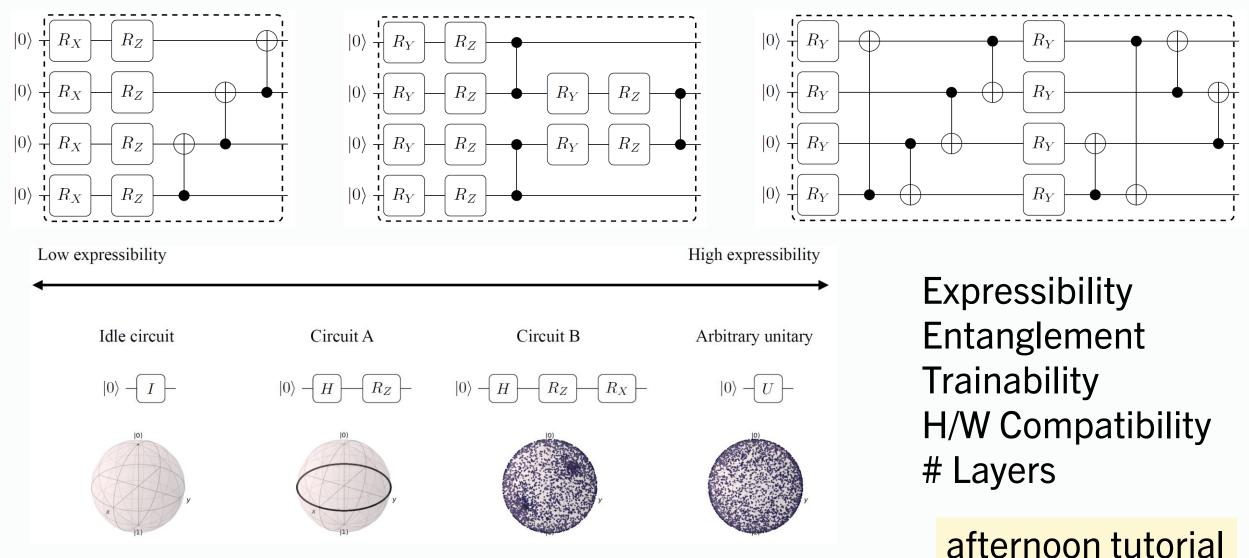
Quantum



Parameterized Quantum Circuit

- Rx/Ry/Rz gate with angle of rotation specified as a parameter
- Entangling gates: CNOT, CZ
- Vector of parameters (θ) for different gates
- Allows controlled exploration of state space
- Also known as an "ansatz"

Parameterized Quantum Circuit



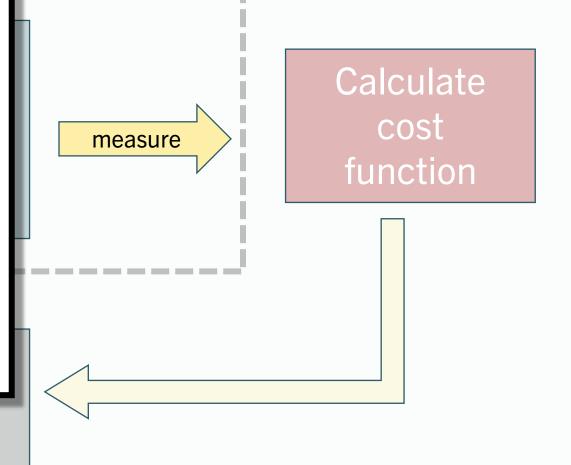
S. Sim, et al. https://doi.org/10.1002/qute.201900070

Measurements

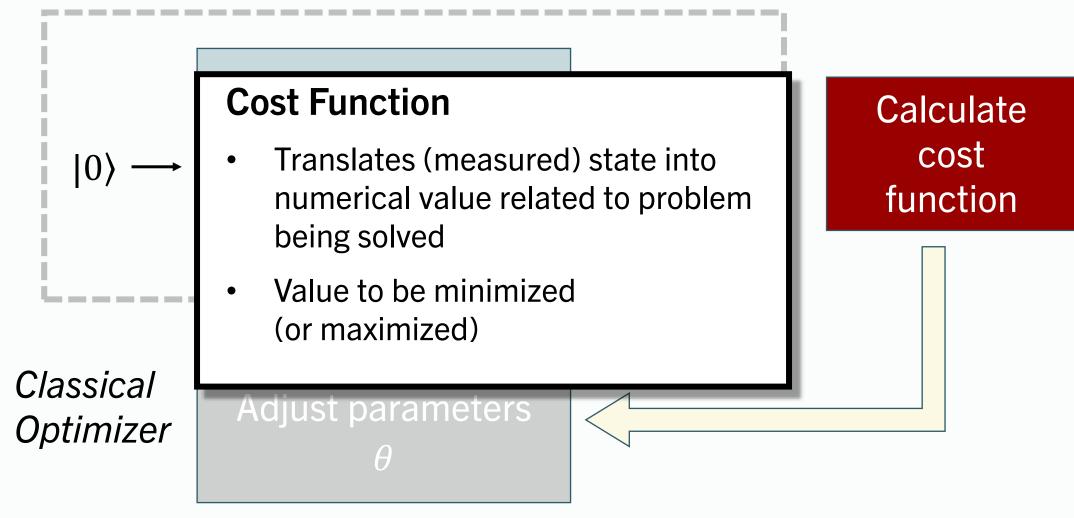
iizei

- Lots of measurements to extract / estimate statistics of quantum state
- Could be different kinds of measurements
- Related to the cost function, based on the problem to be solved

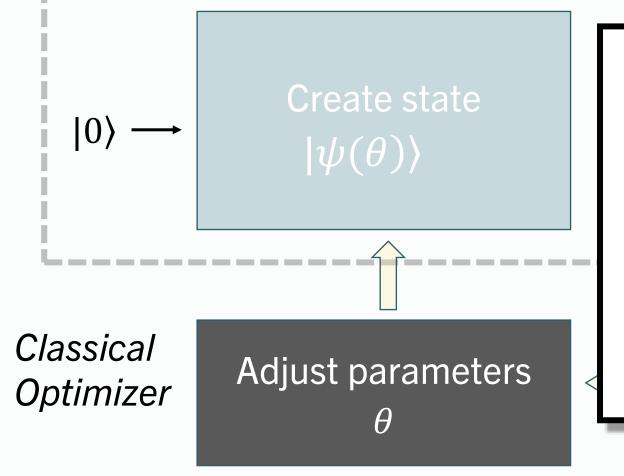
θ



Quantum



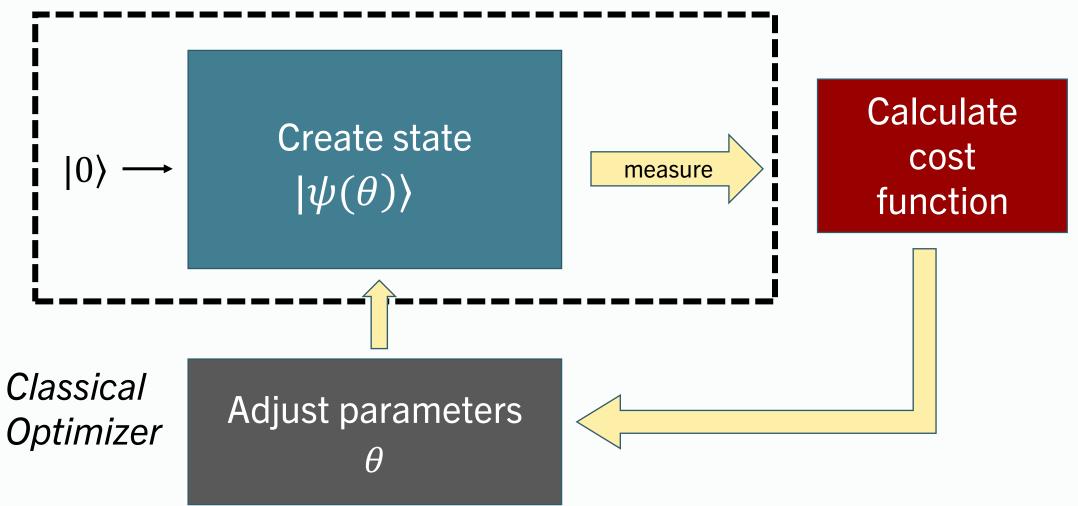
Quantum



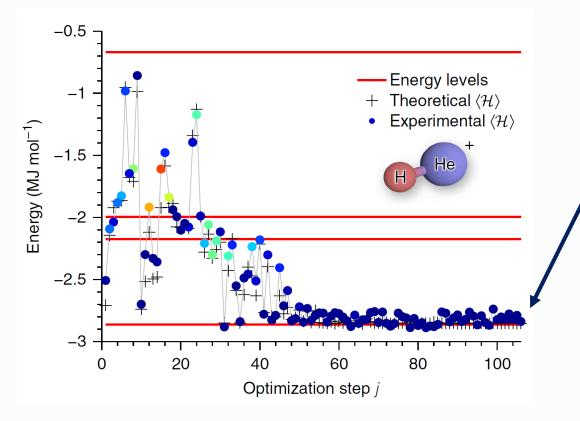
Optimizer

- Adjust parameters to minimize cost function
- Lots of options: Gradient descent, COBYLA, SQSLP, SPSA, CMA-ES, hyperparameters, ...
- Influenced by our understanding of cost function properties

Quantum



VQE: Variational Quantum Eigensolver



Goal: Find ground state (lowest) energy level of a particular molecule.

2014

Energy described by Hamiltonian \mathcal{H} .

Ground state is eigenstate of ${\mathcal H}$ with the lowest eigenvalue.

Use PQC to create state that minimizes expectation $\langle \mathcal{H} \rangle$.

Eigenstates, Eigenvalues

For matrix A, state $|\psi\rangle$ is an **eigenstate** if:

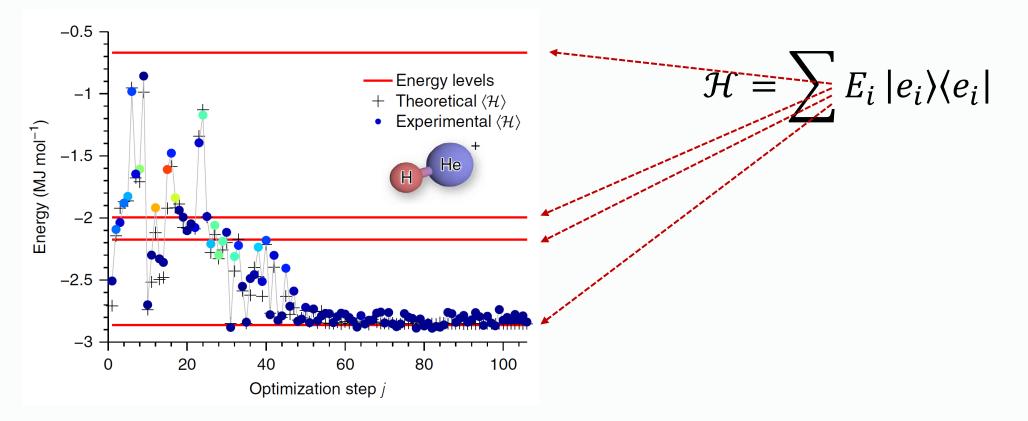
$$\begin{array}{l} A |\psi\rangle = \lambda |\psi\rangle \\ \uparrow \\ scalar, known as the eigenvalue of |\psi\rangle \end{array}$$

Energy level is a (real) eigenvalue of Hamiltonian \mathcal{H} , and the ground state has the lowest energy level.

$$\mathcal{H}|e_0\rangle = E_0|e_0\rangle$$

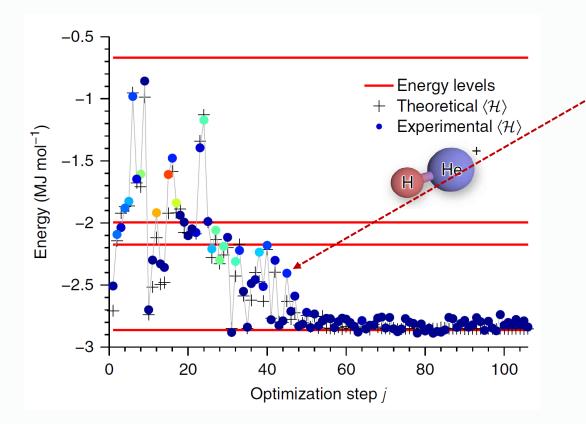
Measurement and Eigenvalues

For any observable (measurable) quantity, there is an associated Hermitian matrix, and the result of any measurement is an eigenvalue of that matrix.



Expectation of Measurement

Expectation is average of all possible measurements, weighted by their likelihood.



 $\langle \mathcal{H} \rangle_{\psi} = \langle \psi | \mathcal{H} | \psi \rangle$

Since we don't know $|\psi\rangle$, make lots of measurements to estimate probability of each result.

$$E_{\exp} = \sum p(E_i) \cdot E_i$$

In a quantum computer, we can generally only measure Z. Any Hamiltonian \mathcal{H} can be written as a sum of X, Y, Z components.

$$\mathcal{H} = g_0 I + g_1 Z_0 + g_2 Z_1 + g_3 Z_0 Z_1 + g_4 Y_0 Y_1 + g_5 X_0 X_1$$

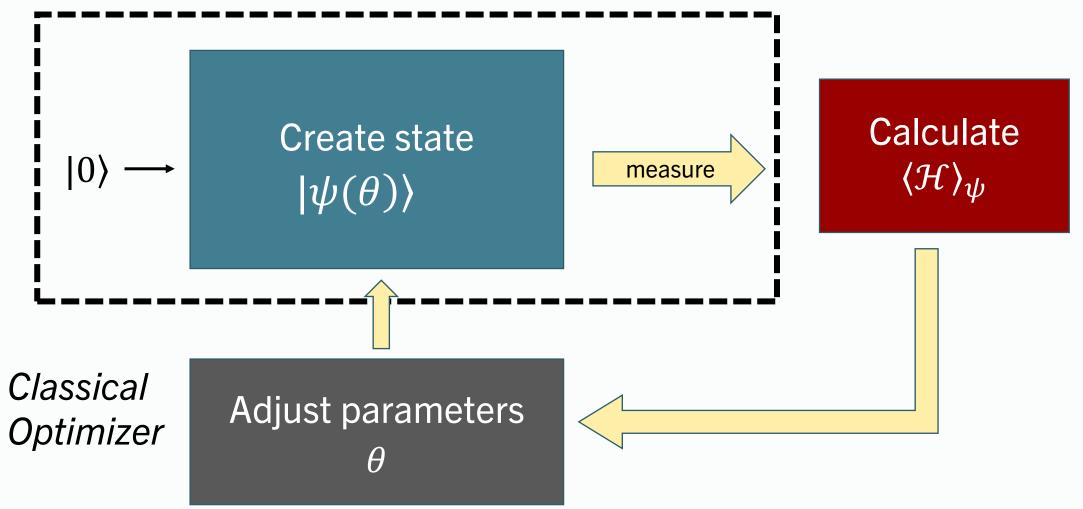
 $\langle \mathcal{H} \rangle = g_0 + g_1 \langle Z_0 \rangle + g_2 \langle Z_1 \rangle + g_3 \langle Z_0 Z_1 \rangle + g_4 \langle Y_0 Y_1 \rangle + g_5 \langle X_0 X_1 \rangle$

single-qubit measurements

two-qubit measurements

Example Hamiltonian for H2 molecule O'Malley, et al. PRX, 2016.

Quantum



Applications of VQE

Quantum Simulation

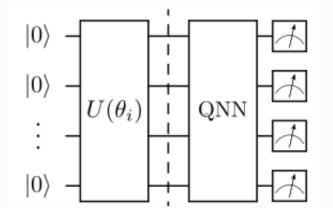
• chemistry, physics, materials, ...

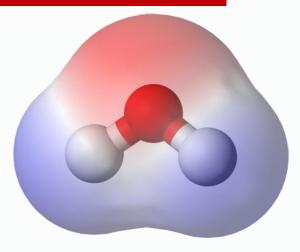
Optimization

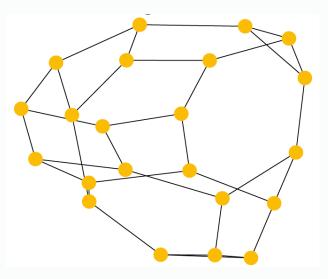
- express problem as a Hamiltonian
- MaxCut, Traveling Salesman, Min Vertex Cover...

Quantum Machine Learning

• creating quantum datasets (M. Cerezo tutorial)







QAOA

Quantum Approximate Optimization Algorithm

 $= e^{-i\beta B}$

Designed to find approximate solutions to combinational optimization problems.

Ansatz is based on cost function

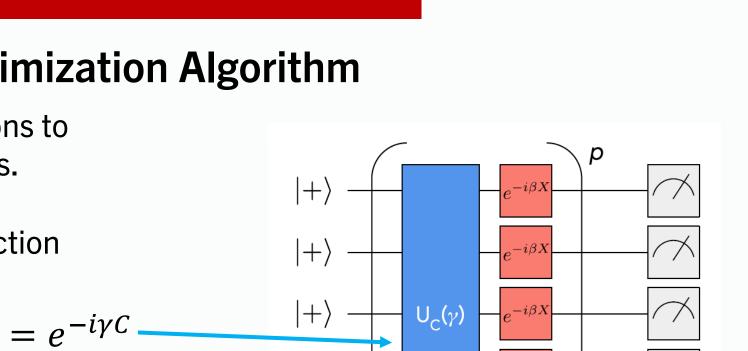
$$C = \sum_{j \le k} w_{jk} Z_j Z_k \qquad U_C(\gamma)$$

and mixer

$$B = \sum_{j} X_{j} \qquad U_{B}(\beta)$$

Farhi, Goldstone. arXiv: 1411.4028, 2014. Google AI, et al. arXiv: 2004.04197, 2020.

 $-i\beta\lambda$



+

+

2014

VQE: Variational Quantum Eigensolver Quantum chemistry, quantum physics, optimization

QAOA: Quantum Approximate Optimization Algorithm Combinatorial optimization

VQF: Variational Quantum Factoring Integer factorization

Variational Algorithms
1. Reasonably shallow circuits
2. More noise-tolerant (perhaps)
3. Broad range of applications