* Pauli gates - Pauli gate
ZX = i Y, are pairwise anti-commute. e. $x = 1$
g. $XY = -$ X, Y
YX * Pauli group : G(n) . is a set of n-qubit unitaries that are generated from $\{x^1, y, y^2, z^3\}$ by tensor product and composition. e. . g. G(A) : <17 , li] , IX , liX , IE, liE, -
1 iY, IY } . $(S_{b}[(ln)] = 4^{n+1})$ $\pm i\gamma, \pm \gamma \zeta$ (solded) = 4
 $G(z) = \left\{ \begin{array}{c} \text{a} P_{1} \otimes P_{2} \text{a} \in \{\pm 1, \pm i\}, P_{1}, P_{2} \in GL \cup \right\}. \end{array} \right.$ $G(z) = \begin{cases} a P_1 \otimes P_2 \big[a \in \{\pm 1, \pm i\}, P_1, P_2 \] a \in \{\pm 1, \pm i\}, P_2 \leq a \text{ set} \end{cases}$ $PR^{\alpha}P_2$ action, ruizend.

is a group if G is a set

ed with $C \in G$, \ast : $G \times G \rightarrow G$. $+$ hatis equipe $inv: G \rightarrow G$ site $e*g = g$, $VgEC$ $e*g = g$, $VgEC$
 $iww(g)*g = g*inv(g)$:e, $VgeG$, $(g_{1} * g_{2}) * g_{3} = g_{1}$ $*$ (g₂* 0
(
33). We write $S \trianglelefteq G$ if S is a subgroup of G .

* Stabilizer states and stabilizers.
\nLet
$$
5\Delta Q(n)
$$
, the stabilizer states of S,
\ndenoted by V_5 , is Hvo-sab
\n $V_5 = \{ \phi \mid \phi \in \mathbb{Q}^n \lor P \in S, P(\phi) = \phi \}$.
\n $V_5 = \{ \phi \mid \phi \in \mathbb{Q}^n \lor P \in S, P(\phi) = \phi \}$.
\n 1 Inm: V_5 is a vector space of d in 2.
\n e_{\emptyset} if a, b eV₅, a t b eV₅. (p(a+t)
\ne.g. if a, b eV₅, a t b eV₅. (p(a+t)
\n \forall ccd, a eV₅, ca eV₅. etc. = art)
\n S is call "stabilizer" of V₅,
\n $\#$ Example: $0 S = \{\underline{I}, \underline{Z} \underline{Z} \underline{I}, \underline{I} \underline{Z} \underline{Z}, \underline{Z} \underline{I} \underline{Z} \}$
\n $W_5 = \{ \text{loop} \}, [000], [100], [110] \}$
\n $V_{\overline{Z} \underline{Z} \underline{I}} = \{ \text{loop} \}, [011], [100], [100], [101] \}$
\n $V_{\overline{L} \underline{Z} \underline{Z} \underline{I}} = \{ \text{two} \}, [011], [100], [101] \}$

 Q $S = \langle XX, ZZ \rangle$ V_{XX} = < | +>>, |->|->.> V_{z} = < $|00\rangle, |11\rangle$ $V_5 = V_{xx} \cap V_{22} = \left\langle \frac{|00\rangle + |11\rangle}{\sqrt{2}} \right\rangle = \left\langle \frac{|++2|+|-2}{\sqrt{2}} \right\rangle$ * We write $S = \frac{1}{2} P_1$, P_2
to means is generated from $P_1 \cdots P_L \in G(n)$
and $P_1 \cdot P_2$ ore independent. We assame Pilj countes and Pif-I Vi. Thm: Let $S = \langle P_1, \dots P_L \rangle$ satisfying Then we have the assumption. $dim(V_5) = 2^{n-1}$

* Modeling Clifford Computation. rather than working with state explicitly,
We work with the stabilizer instead. $s \circ \angle Z$ > instead of (0) $\langle ZZ, IZ \rangle$ instead of $|00\rangle$ then: Applying a Clifford gate on to a state can be described as.
I group action', j.e. conjugation. e.g. $\langle z \rangle \stackrel{H}{\longrightarrow} \langle HzH \rangle = \langle \chi \rangle$

stablizes

(0) $|00\rangle$ $|\longrightarrow$ $|t\rangle|0\rangle$

This is because $\forall q \in S, \psi \in V_5$, $(U|\phi\rangle) = Uq|\phi\rangle = UqU(U|\phi\rangle)$ if g stabilizes $|\phi>$ 50 Mg W^+ stabizes $M|\phi\rangle$. * Side note. This is an example of a group G'acting' on a set X. $e \bullet x = x$ $g_1 \cdot (g_2 \cdot x) = (g_1 * g_2) \cdot x$ $\begin{array}{ccc}\n\text{if } & \text{if } & \text$ $U \cdot g = U g U^{\dagger}$. * Since g'E G[a], it would be nice if MgM⁺ EGLa). Mufortunately, this is not true in general, Only the so-call 'Clifford

From the image and identities:

\n
$$
H \cdot X = \begin{cases} S \cdot X = Y \\ S \cdot Z = Z \\ (S \cdot X - SZ) \end{cases}
$$
\n
$$
= (S \cdot X - SZ) \cdot (S \cdot (S \cdot Z) = Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot Z) - Z \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot (S \cdot Z)) - Z \cdot (S \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot (S \cdot Z)) - Z \cdot (S \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot (S \cdot Z)) - Z \cdot (S \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot (S \cdot Z)) - Z \cdot (S \cdot (S \cdot (S \cdot Z)) = Z \cdot (S \cdot (S \cdot (S \cdot Z)) -
$$

* Measurement
* Measurement
Projective measurem * Measurement.
Projective measurement. Let ^M be hermitian . he he
 $M = \sum_{i}$ m_1 $\qquad \qquad$ where $M(P_i(\phi)) = m_i P_i(\phi)$ If $M = \sum_{i=0}^{m} m_i Y_i$, $M = \sum_{i=1}^{m} m_i Y_i$, $M = \sum_{i=1}^{m} m_i Y_i$ $P_i P_j = 0$ if it j

then
\n¹measure
$$
\phi
$$
 in M-basis," means.
\napplying one of the Pi to P:
\nthe probability of getting the result
\n m_i is p(m) = $\angle \phi | P_i | \phi$.
\nThe average value of the measurement is:
\n $E(M) = \frac{1}{2} P^{(m)} \cdot M$
\n $= \frac{1}{2} \angle \phi | P_i | \phi$ and
\n $= \frac{1}{2} \angle \phi | P_i | \phi$.
\n $= \frac{1}{2} \angle \phi | P_i | \phi$.
\n $= \frac{1}{2} \angle \phi | P_i | \phi$.
\n $= \frac{1}{2} \angle \phi | P_i | \phi$.
\nHuy mean people say 'means we of $3 \angle G(\phi)$.
\nfkey mean 3 is hermitian and they do
\nprojective measurement of 3.

 \mathcal{L}

$$
x \t{F}_{\text{run}} = \begin{cases} \frac{1}{2} & \text{if } g \in G(n) \\ \text{with } \frac{1}{2} & \text{if } g \in G(n) \end{cases}
$$
\n
$$
x \t{F}_{\text{start}} = 1 \text{ or } \frac{1}{2} \text{ if } \frac{1}{2} \text{ then}
$$
\n
$$
y \leq 2 \text{ if } \frac{1}{2} \text{ and } \frac{1}{2} \text
$$

Note that $(\frac{Itq}{q})\cdot(\frac{I\cdot q}{q})$ $= \frac{1-9+9-9.9}{2} = \frac{1-9+9-1}{2} = 0.$ $SO\left(\frac{I+e}{2}\right)$ and $\frac{I-g}{2}$ are orthogonal.

 $*$ If the stabilizer S of $(\varphi y)^{1}$ $\langle g_1, \cdots g_n \rangle$ and g is hermitian, then measure on q basis. will result in the following two cases. O Suppose 3 commute vitre 9, 9, In this case either gor-ge S $Besselure \quad V | \varphi \rangle \in V_5 = 2 | \varphi \rangle$ $g_{i}(g|\varphi\rangle)=(g\varphi|\varphi\rangle - ig\varphi\psi\rho)$ = $g(g_i|\varphi\rangle) = g|\varphi\rangle$. $\forall g_i$ 50 glu >6 $\sqrt{5}$. \Rightarrow glu>= a lu> a El $|\psi\rangle$ = $gg|\psi\rangle = g(a|\psi\rangle) = \alpha g|\psi\rangle = a^2|\psi\rangle$ \Rightarrow $\alpha^2 = 1$ \Rightarrow $\alpha = \pm 1$. So either g or $-g \in S$

If
$$
q \in S
$$
, i.e. $g(0) = 10$
\nthen $\frac{1+q}{2} |q\rangle = |q\rangle$
\n $\frac{1-q}{2} |p\rangle = 0$
\nSo q -measurement always
\nreturn + 1 result and
\nthe state $|q\rangle$ is unchanged
\nafter the measurement?
\n $\Gamma f - q \in S$, i.e. $q |q\rangle = -10$
\nthen $\frac{1+q}{2} |q\rangle = 0$
\n $\frac{1-q}{2} |q\rangle = 0$
\n $\frac{1-q}{2} |q\rangle = |q\rangle$
\nso q -measure meet always

^② if ^g anti-commutes with f ganti-commutes with
In Note that if galso enti-commutes with g2. We can set $W1$ $W1$ 12 ,
 $5 = 19$, 9 , 9 , 9 , 9 : $9p > 29, 9259$ and $g_{l}g_{2}$ commutes with g So Without loss of generality , we can assume of only anti-commutes with g_{\perp} $p(f|) = 2\varphi|\frac{1+9}{2}(\varphi)$ $2 < \varphi | \frac{1+9}{2} | \varphi \rangle$
= $\frac{1+2\varphi|g| \varphi \rangle}{2}$ $1 - 291919$ PC-1) = = $\frac{1+241914}{2}$
= $2\sqrt{9} \left(\frac{1-9}{2}\right)49$ = $\frac{1-21}{2}$ $<\!\!\phi|_{q}|\psi\rangle$ = $<\!\!\phi|_{q}q_{l}|\psi\rangle$ = - Kr[9)914> $(g_{i}=g_{i}^{+})$ = $-\langle \psi[g|\psi\rangle$ \Rightarrow $<\varphi|g|\varphi>=0$.

 50 with $\frac{1}{2}$, we get +1 and the resulting State $\frac{I+g}{2}|\varphi\rangle$ $14i f (9i (\frac{1+9}{7i})|\varphi>=\frac{9i+9i9}{2}|\varphi>$ $=\frac{44+991}{2}102$ $= 1 + 9$
3. $|\varphi\rangle$ = $I + G | \varphi \rangle$ and $g(\frac{Hf}{2}l(\varrho))=\frac{I+g}{2}l(\varrho).$ $50 \frac{I+g}{2}log$ is stabilized by $29,92,782$ $Similarly, with $\frac{1}{2}$, the resulting state$ is stabilised by $\langle -g, g_{2}, \cdot \cdot \cdot g_{R}\rangle$