Quantum Programming Languages
CSCE 790 Section 008 Homework 2

Recall that we have the following typing rules for Simply Typed Lambda Calculus with sums and products.

(x:A) el Le:A-FM:B 'M:A>»B I'EN:A
T'kFz:A 'FXeM:A—B I'FMN:B
'-M:A T'HFN:B 'M:AxB T'FM:AxB
TF(M,N):AxB T+ fst(M): A [Fsnd(M): B
T'EFM:A '-M:B
F'kleft(M): A+ B T tright(M): A+ B I'F () : Unit
TM: L 'EM:A+B T,2: ANy :C T y:BFNy:C

'k abort(M): A T | case(M)of{left(x) — Ny;right(y) — Na} : C

1. Consider the following closed lambda terms (i.e., they do not contain free variables). Determine if
they are typable under the empty typing context. If a term is typable, give it a type and its typing
derivation using the typing rules specified above. If not, explain why it is not typable. For example,
the closed lambda term Ax.x is typable with a type like A — A, and here is its typing derivation.

z:AFz: A
Flxax:A— A
(a) (2 points) Az.z(Ay.y)
(b) (2 points) A\z.zz
(c) (2 points) fst(left(()))
(d) (2 points) abort(Az.x)
(e) (2 points) \x.case(x)of{left(y) — y(Az.x);right(z) — z}

2. Type inhabitation problem is the problem of finding a term for a given type under the empty typing
context. For example, there is a term that inhabits the type A — A, e.g, we have - Az.x : A — A.
Whereas there is no term that inhabits the empty type L, i.e., we can not find a term M such that
EM: 1.

Consider the following types, determine if there is a term that inhabits the type. If a type is inhabitable,
then provide the term and the typing derivation; if a type is not inhabitable, explain why.

a) (2 points) A - B — (A x B)

b) (2 points) (A — B) - (B—C) —» (A — C)

(c) (A—->0C)—C

(d) (A—-1)+B)—(A— B)

(e) (A— B) — ((A— 1)+ B)

()
(b) ()
(2 points)
(2 points)
(2 points)

