Discrete Mathematics

Frank (Peng) Fu

1 Basic Set Theory

Why set theory?

e Set theory provides a common language to describe collections of things in both mathematics and
computer science. For example, we often talk about the set of natural numbers, a set of names/strings,
etc.

e The knowledge of set theory can also be very useful in practice. In all popular programming languages,
set is implemented as a kind of data structure, and the language provides libraries to manipulate sets.

1.1 Basic concepts and notations

First let us consider the following example of set using braces.
e Infinite set: natural numbertﬂ (N=1{0,1,2,3,...}), integers (Z = {...,—3,—-2,-1,0,1,2,3,...}).
e Finite set: {0,1,2,3}, {‘a’,*V’,...,*2’}, {0,1}, {}, {1}.
Remarks.

The emptyset {} is also written as 0.

The braces notation can be nested. For example, {{0, 1,2}, {3,4}} is a set contains two elements and
each element itself is a set.

Although very rarely used in practice, a set can be heterogeneous. For example, {‘a’, “hello”, 1,0, N}
is a set contains five elements.

A set with one element is also called singleton set.

Given a set A, one natural thing to ask is if a given thing e is in the set. We write e € A if e is in the set
A, otherwise we write e ¢ A. For example, 1 € N,‘a’ ¢ N, ‘a’ € {‘a’,‘V’, ..., ‘2" }.

Given two sets A, B, we can ask if they are equal. Two sets are equal if they have the same elements.
Questions, are the following equals?

o {0,1,2} ={2,1,0}
e {0,1,2,2} £ {2,1,0}

o {0,1,2} £ {2+1,1+2,0}

INote that 0 is a natural number.

e {0,1,2} = {3,2,0}
A more rigor definition of set equality is the following.

Definition 1. Let A, B be sets. A = B if for every e € A, we have e € B; and for every e € B, we have
e€ A.

Given two sets, we can also ask if one set contains the other.

Definition 2. Let A, B be sets. We write A C B if all the elements of A are in B.
?
e {0,1} C {0,1,2}

{0,1,2} C {0, 1}

{0,1,2} € {0,1,2}

(< {0.1,2}

?
{0,1,2} € {0,1,3}

?
{0,1,3} € {0,1,2}

Note that we write A C Bif A C B and A # B. In another word, B contains A, and it contains more
things than A.

Theorem 1. Let A be any set, we always have § C A.

Theorem 2. Let A, B be set, A= B if and only if AC B and B C A.

1.2 Set comprehension, basic operations and cartesian product

Set comprehension notation E| Informally, we often use ellipses to describe infinite set. For example,
{0,1,2,3,...}, {0,2,4,6,8,...}. But sometimes this can be ambiguous. For example, what does the set
A =1{2,3,...} mean? So it can means at least two things, i.e., a set of numbers larger than one, or the set
of prime numbers. So the better practice is to use set comprehension notation instead. For example, if we
want the set A to mean primes, then we just need to write {z | z € N,z is a prime}. If we want A to mean
a set of numbers larger than one, we just write {z | z € N,z > 1}.

The set comprehension notation in general has the form S = {x | x € A, statements about z}, where A
is a set. Note that there can be many statements about = in the set comprehension notation. To check
whether e € S, we just need to check: e € A and e satisfies all the statements. Sometimes the requirement
of x € A can be dropped when it is clear.

The following are some more examples.

e Even numbers: {z | x € N,z = 2k for some k € N}
e Odd numbers: {z | x € N,z = 2k + 1 for some k € N}

With set comprehension notation, we can define the following operations on sets.

21t is also called set builder notation.

o AUBdZEf{J:|sc€Aor:v€B}.

eg. {0,1,2YU{1,2,3} =7

o AﬁBd:Cf{m|x€Aandx€B}.

eg {0,1,2} n{1,2,3} =2

o A/BdZEf{x|xEAandx¢B}.
e.g. {0,1,2}/{1,2,3} =7

e Pow(A) ¥ {B| B C A}.

e.g. Pow({0,1,2}) =?

Cartesian products. Let a,b € A. We write (a,b) to mean a pair with left component a, and right
component b. We can compare pairs, (a,b) = (¢,d) if a = ¢ and b = d. Note that the order of the pair
matter, in general, (a,b) # (b,a) (unless a = b of course).

Let A, B be sets, we define A x B = {(a,b) | a € A,b € B}, and we say A x B is the Cartesian product
of A and B. For example, let A ={0,1,2}, B ={3,4}, what is A x B?

1.3 The size of a finite set

Why we care about the size of a set? Well, I often get asked how many students I have in this class. Let’s
consider some examples. #{‘a’,‘b’,‘c’} = 3, #0 = 0. But how do we calculate the size of a finite set in
general? Can we just count the listed elements?

Definition 3 (size of a finite set). Let A be a finite set. We write #A to mean the size of set A. If A is
an empty set, then we define #A = 0. If A is not an empty set, then it must be that A = B U {a} for some
a € A and a ¢ B for some set B, thus we define #A = #B + 1.
For example, #{0,1,1,2,2} = #{1,1,2,2} +1 = # {1, 1} +1+1=#0+ 1+ 1+1=3.
—_——— —_———— ——

{0}U{1,1,2,2} {1}u{2,2} {11u0
The following are some theorems about the size of finite sets, we will be able to prove them in our later
class.

Theorem 3. Let A, B be finite sets.
1. #(AUB) =#A+#B —#(ANB)
2. #Pow(A) = 274

Can we at least verify the above theorem by some examples?

Note that infinite sets have sizes too! There are different kind of infinite sizes, e.g. it can be shown that
the size of Pow(N) is strictly larger than the size of N. But we will have to defer this interesting topic to
later of the class.

1.4 Partitions of a set

What is a partition of a set? For example, let A = {0,1,2,3,4}, then B; = {0,1}, By = {2,3,4} is a
partition. Note that By U By = A and B; N By = (). We also call By, By a 2-partition of A. In general, there
can be n-partition of a set. Partition is useful for proving theorems about the sizes of finite sets.

Definition 4. Let A be a set, and Si,...,S, C A. We say Si,...,S, form a n-partition of A if A =
S1US85...US, (or A= S:i) and S;NS; =0 fori#jand1<i,j<n.

Another example of 2-partition would be natural numbers can be partitioned into even and odd numbers.
We will again left the proof of the following theorem for later.

Theorem 4. Let S be a finite set. If S1,59 is a 2-partition for S, then #S = #5171 + #52. This generalizes
to m-partition of S as well. So if S1,...,Sn is a n-partition for S, then #S = #S1 + #S2 + ... + #S,,.

Proof. By definition of 2-partition, S; NSy = (. So by Theorem [3] we have #S = #S51 +#S2 — #(S1 N Ss) =
#51 + #52. O

The following is another application of n-partition.
Theorem 5. Let A, B be finite sets, we have #(A x B) = #A x #B.

Proof. The following is a sketch of the proof.

Since A, B are finite sets, we have A = {a1,aq,...,a,} for some n € N and B = {by,bo, ..., b;} for some
1 eN. So #A =n and #B = 1. Our goal is to show #(A x B) =n x [.

Let S; = {z |be B,z = (a;,b)} for 1 < i < n. Note that #5; = [, because a; is fixed. We can verify
that Si,..., 5, form a n-partition for S. Now by Theorem [4) we have #S = #S51 + #S2 + ... + #S,, =
I+1l+...+l=nxl=#AXH#B.

—_———

n

O

2 Functions

Why do we care about functions? In computer science, function is a useful concept to describe the compu-
tational process, so functions can be represented by programs. For example, in programming, the program
that sorts a list is a function. A program that search information from a database can also be viewed as a
function.

Definition 5. A function f from input set A to output set B (we write f : A — B) is a mapping such that
every a € A is mapped to a unique b € B (we write f(a) for b in this case). The input set A is also called
domain, the output set is also called range/codomain.

Can you give me a simple concrete example of a function?

I can give you one: (+) : N x N — N, where (z,y) — « + y for any (z,y) € N x N. Here the notation —
means the mapping action (pronounced as maps to).

We can compose functions together to form new functions. For example, composing addition and multi-
plication give us polynomials. For example, say we have two functions f(z) = 1+ z, g(z) = 22, then we can
define a new function h(x) = f(g(x)) = 1 + 2.

Definition 6 (Function composition). If f : A — B and g : B — C are functions, then we define g - f :
A — C as the composition of f and g, so (g- f)(a) = g(f(a)) for every a € A.
2.1 Boolean functions

Most functions have infinite domain, but that is not to say function with finite domain are useless. In fact,
there are plenty of useful functions with domains constructed from a two-element set B = {T, F}.

Definition 7 (Some basic boolean functions).
e Boolean not function (=) : B — B is defined as ~ F=T and -~ T =F.

e Boolean and function (A) : B x B — B is defined as FAF=F,FAT=F,TAF=F,TAT=T.

e Boolean or function (V) : B x B — B is defined as FVF=F,FVT =T, TVF=T, TVT=T.

e Boolean implication function (=) : B x B — B is defined as F=b=T,T=T=T,T=F=F.
Theorem 6. Let a,b € B. We have the followings.

e —(-a) =a.

e ~(aAb)=(—a)V (—b).

e —(aVb)=(—a) A (—b).

ea=>b=(-a)Vd

Let us define a majority function majority : B x B x B — B by composing A, V. The majority function
outputs T only when at least two of the inputs are T, otherwise it ouputs F.
Solution: majority(a,b,c) = (aAb)V (aAec)V (bAc).

2.1.1 Intuition about the boolean implication function

While the meaning of boolean not, and, or functions are fairly intuitive, the boolean implication function
however seems a bit counter intuitive.

The following is my attempt to explain it. Given a condition a = b, and a situation about statements
a and b. We would like to check if this particular situation satisfies the condition a = b. If the statement
a does not holds, then we claim the situation satisfies the condition a = b. If the statement a holds, then
the condition a = b is satisfied only when the statement b holds. Note that this explanation does not talk
about the validity or truthfulness of the condition a = b, nor does it talk about the validity or truthfulness
of a and b, it only talk about whether a situation satisfies the condition a = b.

For example, consider the definition of subset relation A C B, it is the statement: “For every a, if a € A,
then a € B”. Now, Consider the situation A = (), B = {0,1,2}. In this case clearly a € A does not hold,
therefore this situation satisfies the statement: “For every a, if a € A, then a € B”. That is why §) C B.
Counsider the situation A = {1}, B = (). In this case 1 € A, but 1 ¢ B, so this situation does not satisfies
the statement “For every a, if a € A, then a € B”. Counsider the situation A = {1}, B = {1}. In this case
1€ A and 1 € B, so this situation satisfies the statement “For every a, if a € A, then a € B”.

Thus F = b = T means that in the situation a = F, b =T or b = F, it satisfies the condition a = b. And
T = T = T means that in the situation a = T and b = T, the situation satisfies the condition a = b. And
T = F = F means that in the situation a = T and b = F, the situation does not satisfy the condition a = b.

2.2 Injective, surjective and bijective functions

There are three properties of functions that you should know.

Definition 8. o A function f: A — B is called injective if the following holds. If f(a) = f(b) for some
a,b € A, then a =b. Alternatively, for every a,b € A, if a # b, then f(a) # f(b).

o A function f: A — B is called surjective if the following holds. For every b € B, there exists an a € A
such that f(a) =b.

o A function f: A — B is called bijective if it is both injective and surjective.

There are some examples at Figure
For an injective function, the inputs correspond to different outputs.
Questions: Is the addition function (+)/=/ A /V an injective/surjective/bijective function?

Definition 9. If f : A — B is a bijective function, we define its inverse f~' : B — A to be the function
such that f=1(f(a)) = a for every a € A.

Figure 1: Examples of injective, surjective and bijective functions

3 Relations

Relation is a concept that is useful to characterize the connections between different sets. Relation is widely
used in computer science for describing database (i.e., a collection of information about some entity) and for
describing state transitions.

Definition 10. A relation R on sets A, B is a subset R C A x B. For (a,b) € R, we often write aRb.

It is common to talk about relation on set A, i.e., subsets of A x A. And what is nice about relation on
A is that it also admits diagram representation. Consider A = {Red, Green, Yellow}.

So the above diagram describes a transition relation of traffic lights,

i.e., R = {(Green, Yellow), (Yellow, Red), (Red, Green)}.

Similarly, we can also describe an elevator moving relation on the set {L1,1L2, L3}.

There are relation on infinite set as well, e.g. less = {(a,b) | a,b € N,a < b} is a relation on N.

3.1 Properties of relations
Definition 11. Let R is a relation on A.
o R is reflexive: for every a € A, we have a R a.
o R is symmetry: for every a,b € A, ifa R b, thenb R a.
e R is transitive: for a,b,c € A, ifa Rb andb R ¢, then a R c.

Questions: Is the traffic lights/elevator/less relation reflexive/symmetry /transitive?
Consider another example, an automatic door that has two states {open,closed}. The following is a
relation that characterizes the behavior of the door.

Is this relation reflexive/symmetry/transitive?

3.2 Closure operations on relations
Like functions, we can compose relations to obtain new relations.

Definition 12.
Let R, S be relations on set A, we define the composition of R and S as the following.
Ro S ={(a,c) | there exists b € A, (a,b) € R, (b,c) € S}.

Consider the elevator relation E on set {L0,L1,L2, L3} (Let’s say the basement does not have access to

elevator).

‘What is the relation £ o E7?

ONNOGQROIB O,

What is the relation (E o E) o E?
Definition 13 (N-fold composition). Let R be a relation on A. We define the n-fold composition of R.
o RV ={(a,a) | a € A}.
o R""1 = R"oR.
Definition 14 (Inverse relation). Let R be a relation on A, we define the inverse of R as R=1 = {(b,a) | (a,b) € R}.

Often the relation does not have the desirable property(such as reflexive, symmetry and transitive), so
we can use the following closure operations to obtain a larger relation with such property.

Definition 15 (Closure operations). Let R be a relation on A.
o The reflexive closure of R is defined as {(a,a) | a € A} UR.
o The symmetric closure of R is defined as R~ U R.

e The transitive closure of R is defined as RT =], cy R™ (notation for R®UR'UR?U ...). In another
word, the transitive closure of R is the smallest transitive relation on A that contains R.

What is the relation EU (E o E)?

=
OWR OO

What is the relation E+?

3.3 Equivalence relation

Definition 16. A relation R is called equivalence relation if it is reflexive, symmetry and transitive. We
write a ~ b if a R b.

Definition 17. Let a,b € Z. We define alb if there exists a k such that ka = b.

Example 1 (Congruence modulo n). Let n € Z and n > 0. We define a = b (mod n) if n|(a —b). Let
(=n) ={(a,b) | (a,b) €Z xZ,a=b (mod n)} CZ x Z.

Theorem 7. =, is an equivalence relation.

Definition 18. Let R be an equivalence relation and a € A. We define [a] = {z | z € A,x ~ a}. We call
[a] the equivalence class of a.

Theorem 8. Let R be an equivalence relation on A, and a,b € A. Fither [a] = [b], or [a] N [b] = 0.

The above theorem implies that if there is an equivalence relation ~ on the set A, then there is a partition
on the set A.

Definition 19. Let A be a set and ~ be an equivalence relation on A. We define A/ ={[a] | a € A}.

4 Basic Logic and Proof Methods

Logic and deduction are important for both mathematics and computer science. In mathematics, they
provide means to formulate and prove theorems. In computer science, they allow us to reason about the
correctness of the programs, to program automated reasoning systems, to build intelligent systems.

4.1 Basic concepts in logic

The following concepts are essential in logic: proposition, predicate, implication, negation, conjunction, dis-
junction, the forall and ezists quantifiers.

Proposition. A proposition is a statement. E.g. “Today is Monday”, “It is sunny today”. We use
capital letters P, @, S to denote a proposition, they are called propositional variables.

Predicate. A predicate is an incomplete statement. E.g. “_is even” is an incomplete statement (which
can be written as P(-)). We can fill in 3, then we get a statement “3 is even”. In general, we fill in a variable
x get a complete statement and use substitution to talk about specific instances of x. For example, we write
P(z) to mean “x is even”, then P(3) gives the statement “3 is even”.

The most basic forms of statements are coming from propositions and predicates. We can compose these
basic statements to obtain more statements using the followings.

Implication. “If z and y are even, then x + y is even.”, “x is an odd number implies that it is not
divisible by 2”. We write A = B to denote the statement A implies the statement B.

Negation. “ z is not even.”, We write = A to denote the negation of the statement A.

Conjunction. “ z is an even number and x is a prime number.”, We write A A B to denote the
conjunction of A, B.

Disjunction. “ z is an even number or x is a prime number.”, We write AV B to denote the disjunction
of A, B.

Forall. “For every x € N, if z is even , then x is not odd.” We write Vz.(z € NAEven(z)) = —-0dd(z).
If A is a statement, then Vz.A is a statement.

Exists. “There exists x € N such that = is even and x is prime.”, it can be translated to 3z.z € N =
Even(z) APrime(x). Even(z) is defined as 3k.k € N = x = 2k. Odd(z) is defined as Ik.k € N= 2 =2k + 1.
If A is a statement, then Jz.A is also a statement.

As an exercise, try to translate a theorem into a statement that consists of V,3,=, -, A, V.

4.2 Deduction

An aziom is a statement that is assumed to be true. Deduction (or proof) is a process to establish the
validity of a statement based on existing axioms. For example, let “Socrates is a human” and “all men
must die” be axioms. Then by rule of deduction, we can establish that “Socrates must die”. All this sounds
plausible, but on what basis can we conclude “Socrates must die” ?

The followings are some deduction rules that we commonly use.

e Modus ponens: From statements A and A = B, we conclude B.

o Instantiation: We write Afz] to mean A is a statement contains the variable x. From a statement
Va.Alz], we conclude A[t] for any individual .

e And-elimination-1: From statement A A B, we can conclude A.
e And-elimination-2: From statement A A B, we can conclude B.
e Or-introduction-1: From statement A, we can conclude A V B.
e Or-introduction-2: From statement B, we can conclude AV B.
e Exist-introduction: From statement A[t], we can conclude Jx.A[z].

e Principle of explosion(L-elimination): Contradiction (denoted by L) are usually of the forms
—“ANA, or (A= -A)A (A= —A), or it can also be not obeying basic facts of arithmetic (e.g. 0 =1,
a|l for a > 1.). From a contradiction, we can conclude any statement B, i.e., L = B.

Now let H(z) be the statement “ x is a human” and D(z) means “x must die”. Then “Socrates is human”
corresponds to H(Socrates), and “all men must die” corresponds to Va.H (z) = D(x). By instantiation, we
have H(Socrates) = D(Socrates). By modus ponens, we have D(Socrates).

4.3 Constructive proof methods

To prove a statement of the form Vx.A[z], we prove Aly], where y is a fresh variable. To prove a statement
of the form Vz.P(x) = Q(x), we assume P(y) and try to prove Q(y).

Theorem 9. For every x € N, if x is odd, then x? is odd.

Proof.
Suppose = € N is odd.
By definition of odd numbers, we know that x = 2a + 1 for some a € N.
By basic arithmetic, we have 22 = (2a + 1)(2a + 1) = 4a® + 4a + 1 = 2(2a> + 2a) + 1.
Thus 2?2 is odd.

To prove a statement of the form A Vv B = C, we have to prove both A = C and B = C.
Theorem 10. Let A, B,C be sets. fCNA=0 and CNB =0, then (AUC)N(BUC)=(ANB)UC.
Proof. Assume CNA=0and CNB=40.

e We first prove that (AUC)N(BUC) C (ANB)UC. Let x € (AUC) N (BUC). By definition of set
union and intersection, we have z € AUC and x € BUC. Thus (zx € Aor z € C) and (z € B or
x € C). This implies four possibilities: © € A,z € Bjorz € A,z € C,orz € C,z € B,orz € C.

Since z € A,z € C and C N A = () give us a contradiction, by principle of explosion, we conclude
x € (AN B)UC. Similarly for x € C,z € B.

Consider the case € A,z € B, by definition of set union, we z € (AN B)UC.
Consider the case z € C, we also have x € (AN B)UC.
Thus (AUC)N(BUC) C(ANB)UC.

e Let x € (AN B)UC. This implies that x € AN B or z € C.
Suppose z € C. This implies that (z € Corx € A) and (zr € Corz € B). Soxz € (AUC)N(BUC).

Suppose x € A and x € B. This implies that (zx € C or x € A) and (x € C or x € B). So
ze(AUC)N(BUC).

O
To prove a negation =P, we assume P and try to derive a contradiction.
Theorem 11. There is no smallest rational number greater than 0.

Proof. Suppose there is a smallest rational number r.
But we have 0 < r/2 < r, this implies that r is not the smallest rational number.
Contradiction. So there is no smallest rational number greater than 0.

Theorem 12. There is no natural number that can be both even and odd.

Proof. Suppose there is a number r that is even and odd.
Then there exists k1, ko € N such that r = 2k; = 2ky + 1.
This implies 2(k; — ko) = 1, where ky — ks € N.
This implies 2|1, contradiction. O

Theorem 13 (Cantor’s theorem). There does not exists a surjective function from N to Pow(N).

Proof. Suppose there is a surjective function f : N — Pow(N).

By definition of surjective function, for every A € Pow(N), there exist a number n € N such that
f(n) = A.

Define S ={z |z € N,z ¢ f(x)}.

Since S C N, we have S € Pow(N).

Since f is surjective, there exist a n such that f(n) = S.

Now suppose n € S, this means n ¢ f(n) = S.

Suppose n ¢ S, this means n € S. Hence contradiction. O

Cantor’s theorem has a fundamental impact in mathematics. It implies that the size of power set of
natural numbers is in a sense strictly larger than the size of natural numbers, even though both are infinite
sets. It means some infinite set are strictly larger than the other!

10

4.3.1 Proof by induction

Definition 20 (Induction). To prove a statement A[n] holds for any natural number n: We first prove that
A[0] holds. Then let n € N, we assume A[n] holds (this assumption is called inductive hypothesis), we prove
that Aln + 1] holds.

Why does induction make sense? Well, say our goal is to prove A[n] holds for any natural number n.
One way to prove it is to make sure all of A[0], A[1], A[2],... hold. Say we manage to prove A[0], and we
manage to prove A[n] = A[n + 1] hold for any n € N. Then by modus ponens, we can show that A[1] holds,
A[2] holds, and so on. Therefore we conclude that A[n] holds for any n.

Theorem 14. Every natural number is either even or odd. (Vx.x € N = (Even(x) Vv Odd(x)))

Proof. Suppose x € N. We need to show Even(z) vV Odd(z). By induction on z, we consider the following
cases.

Base case. = 0. Since Even(0) holds. We have Even(0) vV Odd(0).

Step case. Assume Even(z) vV Odd(z) holds.

Suppose Even(z) holds, then we have Odd(x + 1), hence Odd(z + 1) V Even(z + 1).

Suppose Odd(z) holds, then we have Even(x + 1), hence Odd(z + 1) V Even(z + 1).

Thus Odd(xz + 1) V Even(z + 1). O

Theorem 15. 1+2+3+...+n:%

Proof. By induction on n.
Base case. n =0, we have 0 = 0.
Step case. Assume 1+2+3+...4+n = w, we need to show 1+24+3+...+n+(n+1) = M;"H)

(1+2+3+...+n)+(n+1)I:H%_i_(n_i_l):(n-s-léﬂ_ -
Theorem 16. 1+2+22 + .. 42" =27+l 1

Proof. By induction on n.
Base case. n =0, we have 1 = 1.
Step case. Assume 1424224 ... 427 =271 _ 1 we need to show 142422 .. 4270420+l = gn+l+l_ 1

1+2+22+m+2n+2n+1I£2n+171+2n+1:2n+271. 0

4.4 Indirect proof methods
To prove P = @, we prove =) = =P instead.
Theorem 17. For every n € N, if n? is even, then n is even.

Proof. Suppose n is not even.
By Theorem [12] and Theorem we conclude that n is odd.
By Theorem |9 we have n? is odd.
By Theorem [12] and Theorem [14} we conclude n? is not even.
Thus For every n € N, if n? is even, then n is even. O

Using law of excluded middle A Vv —A.

Theorem 18. Let ~ be an equivalence relation on A, and a,b € A. FEither [a] = [b], or [a] N [b] = 0.

11

Proof. By law of excluded middle, a ~ bV a o b. Suppose a ~ b. Then for every x € [a], we have x ~ a ~ b.
So x € [b]. Similarly, for every y € [b], we have y € [a]. So we prove that [a] = [b].
Suppose a 7% b. We need to show [a] N [b] = (. By contrapositive, we can assume [a] N [b] =) and prove
that a ~ b. Suppose [a] N [b] # 0. This implies there exists ¢ € A such that ¢ € [a] and ¢ € [b]. So a ~ ¢ ~ b.
Thus either [a] = [b], or [a] N [b] = 0. O

Theorem 19. Recall that the definition of exponentiation can be extended to allow any real exponent. There
exists irrational numbers a and b such that a® is rational.

Proof. We know that /2 is an irrational number.
By law of excluded middle, either ﬂﬁ is rational or it is not.
Suppose \/iﬁ is rational, then in this case a = b = /2.

Suppose \/5\/5 is not rational. Let a = \/5\/5 and b = /2. By property of exponentiation, we have
(22 = 3V 2\ 22 Soa=v2 b= o 0

Note that any proofs using law of excluded middle (LEM) is consider indirect proof. One side effect of
proving an existential statement using LEM is that it does not give us the exact witnesses. In the above

theorem, we do not know whether a, b should be \/57 \/ﬁ, or \/5\/57 V2.

Why contrapositive proof is also a kind of indirect proof? The correctness of positive proof is based on
LEM as well. To show =@ = —P implies P = @, we assume P and =) = —P, and try to conclude @). By
LEM, @V —Q. Suppose @, we are done. Suppose —(), by modus ponens, we have =P, which contradicts
our assumption P. So by law of explosion, we can conclude Q.

Proof by contradiction: to prove F', we assume —F and try to derive L.

5 A brief introduction to propositional logic and satisfiability

Definition 21 (Formulas of propositional logic). The formulas of propositional logic are of the following
forms.
F :Z:p|F1:>F2 ‘ -F | Fi VvV Fy | Fi N Fy

The truth tables for the propositional formulas are exactly the same as the description of boolean func-
tions.

Definition 22 (Satisfiable). An assignment or valuation is a mapping from a set of propositional variables
to their corresponding truth values. The formula G is satisfiable by p (written as p = G) if G is evaluated
to T by the assignment p.

Definition 23. A formula G is semantically valid (written as = G) if for every possible assignment p, we
have p = G. The formula G is also called tautology.

Definition 24 (Semantic entailment). We say F entails G (written as F = G) if for every assignment p,
p = F implies p = G.

Definition 25. We say F' and G are semantically equivalent if F = G and G = F.
Theorem 20 (Deduction theorem). If G = F, then = G = F.
Theorem 21. F' is satisfiable iff =F is not valid.

Definition 26 (Conjunctive normal form). Let a literal be L = —p | p. A conjunctive normal form is of the
form C1 ACoy A ... NCyy, where C; = L1V LoV ...V L,,,. We often call each C; a disjunctive clause.

12

Given a CNF, how to determine its validity?

Theorem 22. A disjunction of literals L1V Lo V ..V Ly, is valid iff there are 1 < 4,5 < m and i # j such
that Ll = _|Lj.

Proof. Exercise. O

So to determine if a CNF C; A Cy A ... A C,, is valid, we need to check C; is valid for 1 <1¢ < n. To check
if C;=LiV LyV..V Ly is valid, we just find a L;, L; such that L; = =L;.

For example, determine the validity of (g VpVr)A(-pVr)Ag.

How to convert a formula into CNF? We can use the following process to convert a formula into CNF.

1. Remove implications: F = G =-FVG.
2. Propagate negations: —(—F) = F, =(Fy A Fy) = —=F1 V = F; and —(Fy V Fy) = —~F; A —Fs.
3. Or distributions: (Fy AF2) VG =(F1VG)A(FaVGE), GV (FL ANFy) =(GV Fi)AN(GV Fy).

For example, convert -p A ¢ = p A (r = ¢) to CNF.

Other use of CNF, we can synthesize a boolean formula from a truth table.

The key application of CNF is in solving satisfiability (SAT problem). As we know, SAT is trivial if the
formula is in DNF (disjunctive normal form), but most problem are given in CNF, and converting CNF to
DNF is impractical since it increases the number of clauses exponentially.

Algorithm for solving SAT problem for CNF does exist, a lot of modern SAT solvers are based DPLL
(Davis-Putnam-Logemann-Loveland) algorithm. The basic DPLL algorithm assume a formula is in CNF,
and try to reduce the number of guesses via the notion of unit clause. A unit clause is a disjunctive clause
where only one variable’s truth value are unknown. For example, p is a unit clause since p’s truth value is
unknown. If p; = po = F, then p; V p2 V —p3 is a unit clause because p3’s truth value is unknown. In DPLL,
since we aim to find a satisfiable assignment, so we set the truth value of the variable in a unit clause to
make the unit clause truth.

Definition 27 (A basic DPLL algorithm).
1. Guess a truth value of a propositional variable.
2. Deduce the truth value of a propositional variable from a unit clause.

3. Backtrack if a contradiction is reached, flip the truth value of the previous guess and resume.

Example 2. We will use comma to denote the conjunction, consider the CNF: xoNV —x3Vxy, 21V -Ze, 7x1V
—x3 V Ly, 2.

1. | Deduce 1 =T TV —x3 V g, 227V X9, 22TV X3 V 04,0
2. | Deduce 1 =T,20=F ZxV x3 V xy,~Lg, T3 V Ty

3. | Guess r1=T, 2o =F, 23 =T | 223V 24,2235V 14

4. | Backtrack 3 | x1 =T,z =F, 23 =F | =rs-May, w3Vl

5. | Success! z1=T,20=F,z3=F | ()

13

6 Brief introduction to recursive definitions and functions

Recursive functions are important because they are essentially descriptions of algorithms. We have already
encounter a recursive function, the size function for finite sets is a recursive function from set of finite sets
to the set of natural numbers.

Definition 28 (Peano numbers). A Peano number(PN) is defined (generated) by the followings.
e Z is a Peano number.
o Ifn is a Peano number, then S(n) is a Peano number.

Informally, Z corresponds to 0, and S(n) corresponds to the successor of the number n. We also call Z
and S the constructors of natural numbers. We say Z is a non-recursive constructor and S is a recursive
constructor.

Once we identify the constructors of the natural numbers, we can define function by pattern matching
on the argument.

Definition 29. The predecessor function pred : PN — PN can be defined as the following.
pred(Z) = Z
pred(S(n)) =n

In the above definition, we pattern match on the input and decide what to do in each case.
Another example of recursive definition.

Definition 30 (Binary tree). A binary tree of number is defined (generated) by the followings.
o Leaf(n) is a binary tree, where n € N.
e [ft1 and ty are binary trees, then Node(n,t1,t2) is a binary tree, where n € N.

Here we say Leaf and Node are the constructors of binary tree.

6.1 Recursive functions for Peano Numbers

Addition is usually thought of a primitive operation (taken as given) for natural numbers, but we can define
addition as a recursive function for Peano numbers.

Definition 31 (General scheme to define recursive function).

e Basis definition: define the function for all the non-recursive constructors.

e Recursive definition: define the function for all the recursive constructors. In the definition, we can
use the results of the function on the components of the recursive constructor.

Definition 32 (Addition).
add : PN x PN — PN
add(Z,n) =n
add(S(m),n) = S(add(m, n))

Definition 33 (Mulitiplication).
multiply : PN x PN — PN
multiply(Z,n) = Z
multiply(S(m),n) = add((multiply(m, n)),n)

14

One way to make sure the addition function is correct is to prove it behaves like addition. For Peano
numbers, we have the following induction principle.

Definition 34 (Induction Principle for Peano Numbers). Let A[n] be a statement about the Peano number
n. We have the following induction principle for Peano number.

A[Z] A (Vn.n € PN A A[n] = A[S(n)]) = Yn.n € PN = A[n]
Theorem 23. Vn.n € PN = add(n,Z) =n.

Proof. We prove this theorem by induction.

Base case. n = Z. By definition of add, we have add(Z,Z) = Z.

Step case. Let n € PN, we assume add(n,Z) = n as induction hypothesis (IH). We have add(S(n),Z) =
S(add(n,Z)) £ S(n).

By induction, we conclude. O

Theorem 24. Vn.n € PN = Vm.m € PN = add(n,m) = add(m,n).
Proof. Exercise. O

6.2 Recursive function for Natural numbers

A lot of concept we encounter can be described using recursive function as well. For example, the informal
summation 0 + 1+ 24 3 4 ... + n can be formally described by the following recursive function.

Definition 35.
sum: N — N
sum(0) =0
sum(n+1) = (n+ 1) 4+ sum(n)

The summation function we define above can also be written as the following piecewise function.

i —
sum(n):{o ifn=0

n+sum(n—1) ifn>0

We will stick with the format in Definition B5]in this note.

Another use of recursive function is to describe infinite sequences. Consider the well-known Fibonacci
sequence: 0,1,1,2,3,5,8,13,21,.... The first two number of the sequence is 0,1, and from then on, every
number in the sequence is the addition of previous two numbers. We can describe such sequence formally
as a recursive function N — N, where the input is the position of the sequence and the output is number at
that position.

Definition 36 (Fibonacci function).

fib:N— N
fib(0) = 0
fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n)

We can verify the above definition by looking at fib(0), fib(1), fib(2), fib(3),

Consdier the sequence 0,1, 3,6,10,15,.... It can be described by the following recursive function.
Definition 37.

f:N—=N

f(0)=0

fn+1)=(n+1)+ f(n)

Note that 0,1, 3,6, 10,15, ... can be generated by f(0), (1), f(2),....

15

7 Counting: applied finite sets

Definition 38 (Product rule/multiplication principle). Let A1, ..., A, be finite sets. Since #(A1 X...x Ay,) =
H#AL X ... X #A,, there all #A, x ... Xx #A,, possible ways to obtain a n-tuple.

Example 3.

1. How many functions are there from a set with m elements to a set with n elements?
2. How many injective functions are there from a set with m elements to one with n elements?

3. A standard postal code in Canada has 6 position, the first, third and fifth position must be a letter, the
second, fourth, sixth position must be a number. For example, BSH 4J1. How many different postal
codes are possible?

Answer: 26 x 10 x 26 x 10 x 26 x 10

Definition 39 (Addition principle). Let Ay, ..., Ay, be finite sets and A;NA; =0 for alli # j and1 < i,j < n.
Then #(A1 U ...UA,) =#A1 + ...+ #A,.

Example 4. How many length-4 non-repetitive lists can be made from the symbols A, B, C, D, E, F, G, if
the list must contain an E?

Definition 40 (Subtraction principle). If S C A, then #(A/S) = #A — #S.

Example 5. How many length-4 lists can be made from the symbols A, B, C, D, E, F, G if the list has at
least one E, and repetition is allowed?

Definition 41 (Principle of inclusion—exclusion). Let A, B be finite sets. #(AUB) = #A+#B—#(ANDB).

Example 6.

1. A computer company receives 350 applications from computer graduates for a job planning a line of
new Web servers. Suppose that 220 of these applicants majored in computer science, 147 majored in
business, and 51 majored both in computer science and in business. How many of these applicants
majored neither in computer science nor in business?

7.1 Permutations: listings of a finite set

We can define recursive function on N as well, we can identify a natural number as either 0 or of the form
n + 1 for some n € N.

Definition 42. Let A be a finite set such that #A =n and r € N such that 0 < r < n. We write P(n,r)
to mean the possible listings of r elements of A. We define P(n,r) recursively as a function N x N = N the
following:

P(n,0)=1.

P(n,m+1) = P(n,m) x (n—m).

Note that the condition m < n has to be met for P(n,m) to be a well-defined function.
The justification of the definition of P(n,m) is by product rule. We write [¢] to mean there are i possible
choices to fill in a position. If we have m places, then [n], [n — 1], ..., [n — m].

To extend m to m + 1, we have [n],[n — 1], ...,[n — m],[n — (m + 1)].

m

16

Definition 43 (Factorial function). We give a recursive definition of the factorial function!: N — N below
(using postfix notation).

ol=1

(n+1)!=(n+1)xn!

Observation: Let A be a finite set and #A = n. There are n! possible permutations (arrangements) for

listing all the elements non-repeatedly in A.
Definition [42{is often informally written using ellipsis: P(n,m) =n x (n —1) X ... X (n —m + 1) assum-

m

ing 0 <m < n.

Theorem 25. If n,m € N and 0 < m < n, then P(n,m) n!

= (n—';n)! .

Proof. By induction on m.
Base case: m = 0. We have 1 = 1.

Step case: Assume P(n,m) = #;n)' for any n such that 0 < m < n (Induction hypothesis).

Let n” € Nand 0 < m+1 <n'. We have P(n/,m +1) = P(n’,m) x (n' —m) & (n,":in)! x (' —m) =
Tzt =
Example 7.

1. How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize winner
from 100 different people who have entered a contest?

7.2 Combinations: subsets of a finite set

Definition 44. Let A be a finite set such that #A = n and r € N such that 0 < r < n. We write
C(n,r)(sometimes ()) to mean all the possible r-element subsets of A. We define C(n,r) recursively as a
function N x N — N the following:

C(n,m)=1ifm=mn orm=0.

Cn+1,m+1)=C(n,m)+ C(n,m+ 1) otherwise.

The justification for C(n + 1,m + 1) = C(n,m) + C(n,m + 1) (also called Pascal’s identity, where
m+ 1< mn+1)is by addition principle: since in this case #4 =n+ 1, A = BU{a} where a ¢ B. A subset
E of A such that #E = m + 1 either contain a, in which case there are C'(n,m) possibilities; Or doesn’t, in
which case there are C'(n,m + 1) possibilities.

Example 8. 1. How many ways are there to select five players from a 10-member tennis team to make
a trip to a match at another school?

Since there are 2#4 all possible subsets for A, on the other hand, we can add C(#A4,0) (emptyset),
C(#A,1) (all the subsets of size 1),..., C(#A,#A) (all the subsets of size #A) together. This allows us to
discover the following theore

Theorem 26. For every n € N, we have C(n,0) + C(n,1) + ... + C(n,n) = 2".

Proof. We prove this theorem by induction on n.

Base case: n = 0. In this case C'(0,0) =1 =2°

Step case: Let n € N, we assume C(n,0) +C(n,1) + ...+ C(n,n) = 2™ as induction hypothesis (IH). We
want to prove C(n+1,0)+C(n+1,1)+...+C(n+1,n+1) = 2" Since C(n+1,0) = C(n+1,n+1) =1,
we have the following

3This kind of discovery is also called combinatorial proof in some textbook.

17

Cn+1,00+Cn+1,1)+...+C(n+1,n+1)=14+1+C(n+1,1)+ C(n+1,2)+..+C(n+1,n) =
1+1+C(n,0)+C(n,1)+C(n,1)+C(n,2) + ... +C(n,n—1)+ C(n,n) =
(Cn,0)+Cn,1)+...+C(ny,n—1)+1)+(1+C(n,1) + C(n,2) + ... + C(n,n)) Won 4 gn = o1,

O

Another way of constructing C(n,r) is by considering its relation to r-permutations P(n,r). We know
that P(n,r) can be constructed by the following: first we obtain C(n,r) r-subsets. Then for each r-subset,
we do a permutation, so P(n,r) = C(n,r) x rl.

Theorem 27. Forn € N and 0 < r < n, we have P(n,r) = C(n,r) x rl. By Theorem [25, we have

n! n!

P(n,r) = Ty S0 we just need to prove C(n,r)

! = (n—r)Ixr!”
Proof. We prove by induction on n.
Base case: n=0=r. C(n,r)=1= 0!%!.
Step case: Let n € N, assume for any 0 < r < n, we have C(n,r) = (n+)',w, as inductive hypothesis(IH).
We need to prove that for any 0 < 7' < n+ 1, we have C(n+ 1,r') = (n_k(l"%r,l)),'w,,
Suppose ' =n+ 1 or v/ = 0. In this case C(n+ 1,r") = % =1.
Suppose 0 < 7 < n + 1. In this case we have the following:
IH n: n:
Cn+1,r") = Cln, 1) + Cn,r' = 1) = =i + =ty =
n!x (n—r'+1) + nlxr’ o (n+1)!
(n—r'4+1)x(n—r")xr’! (n—(r'—1)Ix(r'=1)!xr’ = (n+l—r")Ixr’!
O
Theorem 28. If0 <r <mn, then C(n,r) = C(n,n—r).
Proof. Exercise. O

A well-known theorem in counting is the following binomial theorem.

Theorem 29 (Binomial theorem). Let x,y be variables and n € N. We have (z + y)" = C(n,0) - ™ +
C(n,1)-2" 'y + ..+ C(n,n—1)-2y"~ ! + C(n,n) - y".

Intuitively, the binomial theorem makes sense because for example when we calculate (x + y)* = (v +
y)(x +y)(x+y)(x+y), we must have the following terms x4, 23y, 2%y?, xy3, y*. To determine the coefficient
of 2%, the z must be coming from each of the sum, so it should be C(4,4) = C(4,0). To determine the
coefficient of 23y, we can see x must coming from three of the four sums, so there are C'(4, 3) ways to obtain
it so the coefficient of 3y is C'(4,3) = C(4,1).

Now let us prove the binomial theorem by induction.

Theorem 30. Let x,y be variables and n € N. We have (z + y)" = C(n,0) - 2™ + C(n,1) - 2" 1y + ... +
C(n,n—1)-ay" L+ C(n,n) - y".

Proof. Base case. n = 0. We have (z + y)° = 1. Note that when n = 0, the right hand side is 1.

Step case. Let n € N, assume (z+y)" = C(n,0)-2"+C(n,1)-2" ty+..+C(n,n—1)-2y" " +C(n,n) - y"
as inductive hypothesis (IH). We need to show (z + y)"*! = C(n + 1,0) - 2" + C(n + 1,1) - 2™y + ... +
C(n+1,n) -2y" +C(n+1,n+ 1) - y™* L. One the left hand side, we have the following:

(z+y)"* = (@ +y)" (@ +y) E (C(n,0) 2" +C(n,1) 2" Y+ ...+ Cln,n—1)-2y" '+ C(n,n) - y") (x+y) =

(C(n,0) 2" +C(n,1) - 2"y + ...+ C(n,n —1) - 22y" L + C(n,n) - 2y™) + (C(n,0) - 2"y + C(n, 1) -
" 2+ L+ C(nyn—1)-ay™ + C(n,n) -yt

18

On the right hand side, we have the following.

Cn+1,0)- 2"t +C(n+1,1)- 2"y +..+Cn+1,n) -2y + Cn+1,n+ 1) -yl =
C(n,0) - 2"t +C(n,0) - 2"y + C(n,1) - 2"y + ... + C(n,n — 1) - xy™ + C(n,n) - xy"™ + C(n,n) - y"*1 =
(C(n,0) - 2"t +C(n,1) - 2"y + ... + C(n,n — 1) - 22y" =1 + C(n,n) - 2y") + (C(n,0) - 2"y + C(n, 1) -
2" 2+ L+ Cnyn —1) - a2y™ + C(n,n) - y™+1)

So we prove the step case. O

8 Basic number theory

8.1 Primes and divisibility
Definition 45 (Divisibility). Let p,n € N. We write n|p if there exist k € N such that p = kn.

Definition 46. We say p is prime if there does not exist 1 < n < p such that n|p. If there exists 1 <n <p
such that n|p, we say p is composite.

Theorem 31. Let n,a,b € N.
1. If n|a and n|b, then nla + b.
2. If nla+b and n|a, then n|b.

Theorem 32. Every natural number greater than 1 can be written uniquely as a prime or as the product of
two or more primes.

Currently, there are no known efficient algorithm to factor large number into products of primes.

Definition 47. Let a,b,n € N.
e We say n is a common divisor of a,b if n|a and nlb.

o We say n is the greatest common divisor of a,b if nla and nlb. And if m is also a common divisor,
then m|n. We write gcd(a,b) to denote the greatest common divisor.

e We say a,b are coprime/relatively prime if gcd(a,b) = 1.

e We say n is the least common multiple of a,b if a|n and bln. And if there exists m such that alm
and blm, then nlm. We write lcm(a,b) to denote the least common multiple.

Theorem 33. Suppose a,b € N. We have ab = lem(a,b) x ged(a, b).
Note that we have lem(0,0) = ged(0,0) = 0.

8.2 Basic number theoretic algorithms

Definition 48 (Euclidean division algorithm). We define the following division function that return a pair
of quotient and remainder divMod : N x (N/{0}) — N x N.

divMod(n, m) = (0,n) if n < m.

divMod(n,m) = (¢ + 1,7) otherwise, where (q,r) = divMod(n — m, m).

Note that since divMod is a function, this means for any (a,b) € N x (N/{0}), there exists a unique
output divMod(a, b).

The natural number division can be extended to define integer division (making divMod a function
Z x (Z/{0}) — Z x Z), we leave this as an exercise.

19

Definition 49 (Strong Induction). To prove a statement A[n] about the natural number n: We first prove
that A[0] holds. Then we assume A[i] holds for any 0 < i < n € N (this assumption is also called inductive
hypotheses), we prove that Aln| holds.

Strong induction is strong in the sense that the inductive hypothesis we get to assume more, i.e., Ali]
holds for all 0 < ¢ < n. We are going to use strong induction to prove the following Fuclidean division
theorem.

Theorem 34 (Euclidean division theorem). Let a,d € N and d > 0. If divMod(a,d) = (¢,7), then a = dg+r
and 0 <r <d.

Proof. We prove this by strong induction on a.

Base case: a = 0. In this case divMod(0,d) = (0,0). Therefore 0 =d x 0+ 0 and 0 < d.

Step case: Let a € N. We assume (as inductive hypothesis) for any 0 < k < a, if divMod(k,d) = (p, s) ,
then k =dp+sand 0 < s <d.

We need to show: If divMod(a,d) = (¢,7), then a = dg+r and 0 < r < d.

Suppose a < d. Then divMod(a, d) = (0,a). Therefore a = d x 0+ a and a < d.

Suppose a = d. We have divMod(a — d,d) = divMod(0,d) = (0,0). Thus divMod(a,d) = (1,0). So
a=dx14+0and0<d.

Suppose a > d. Since d > 0, s0 0 < a —d < a. In this case divMod(a,d) = (u + 1,v) and (u,v) =
divMod(a — d,d). By induction hypothesis, if divMod(a — d,d) = (u,v), then a —d = du+ v and 0 < v < d.
Thus we have a =d(u+ 1) +v and 0 < v < d.

So by strong induction, we conclude. O

We can calculate the greatest common divisor via the following recursive function.

Definition 50.

gcd :Nx N— N

ged(a,0) = a.

ged(a,b) = ged(b,), if b > 0, where (¢,r) = divMod(a, b).
Theorem 35 (Bézout’s Identity). Let a,b € N. There exists s,t € Z such that s-a+t-b = gcd(a,b). We
call s,t Bézout coefficients.

Note that Bézout coefficients are not unique. We can extend the gcd function in Definition [50] to also
return Bézout coefficients.

Definition 51.

extGCD: Nx N = NXZ x Z

extGCD(a, 0) = (a, 1,0).

extGCD(a,b) = (g,t,s — ¢ X t), if b > 0, where (¢,r) = divMod(a, b) and (g, s,t) = extGCD(b, r).
Theorem 36. Let a,b € N. If (g,s,t) = extGCD(a,b), then g =s-a+t-b and gcd(a,b) = g.
Proof. We prove this by strong induction on b.

e Base case. b=0. We have (a,1,0) = extGCD(a,0). Soa=1-a+0-0 and a = gcd(a,0).

e Step case. Suppose for any 0 < k < b, if (g, s,t) = extGCD(a, k), then g = s-a+t-k and ged(a, k) = ¢

for any a € N (IH).

So extGCD(a,b) = (g,t,s — q x t), where (¢,7) = divMod(a,b) and (g, s,t) = extGCD(b,r). Hence
a=gb+r. Since r < b, by IH, we have g = s-b+1¢-r and ged(b,r) = g.

Thus ged(a, b) = ged(b,r) = gand t-a+(s—gxt)-b= (tx(gb+7))+(s—gxt)-b=tgb+itr+sb—qth=
tr+sb=g

O

20

8.3 Congruence and modulo arithmetic

Theorem 37. Let a,m € Z and m > 0. then there exists unique q,r € Z such that a = mq + r and
0<r<m. Wewrite a =r (mod m) for a=mg+r. We write a mod m for r.

Theorem 38. Suppose a =b (mod m) and ¢ =d (mod m). We have the following.
e a+c=b+d (mod m).
e ac =bd (mod m).

Theorem 39. Let a,b,m € Z and m > 0. Then we have the followings.
e (a+b) mod m = ((a mod m) + (b mod m)) mod m.

e (a-b) mod m = ((a mod m) - (b mod m)) mod m.

Theorem 40 (Modular inverse). Let b,c € N. If ged(b,c) = 1, then there exists a € N such that ab = ba =
1 (mod c).

Proof. Let b,c € N. Suppose gecd(b, ¢) = 1. By Bézout’s identity, we have sb + tc = 1. Thus a = s (mod c).
O

Lemma 1. Let a,b,c € N. If gcd(a,b) =1 and albe, then alc.

Theorem 41. Let p,q be primes, b€ N andp # q and x € N. If z = b (mod p) and x = b (mod q), then
x =b (mod pgq).

Proof. Since x = k1p+ b and x = kog + b for some k1, ke € N, we have k1p = kag. So q|k1 (i-e., k1 = ksq for
some k3 € N), which means @ = k1p + b = k3qp + b. O

Lemma 2 (Modular binomial expansion). Let p be a prime and x,y € N. Then (z+y)? = 2P +y? (mod p)
Theorem 42 (Fermat’s little theorem). Let a € N, p be prime. We have a? = a (mod p).

Proof. We prove this theorem by induction on a.

e Base case: a = 0. In this case we have 0?7 = 0 (mod p).

e Step case: Let a € N. We assume a? = a (mod p) as inductive hypothesis. We have (a + 1)? =
a? +1=a+1 (mod p). Note that the first modular equality is by Lemma [2| and the second one is
by induction.

O

Theorem 43. Let a € N, p be prime and p Ja. As a consequence of Fermat’s little theorem, We have
a’~!' =1 (mod p).

21

8.4 A quick tour of RSA

Definition 52 (RSA).

Public key n,e | Priviate key p,q,d

n n = pq, where p,q are generated large primes.

e d, where e is generated such that ged(e, (p—1)(¢ — 1)) = 1.
d can be calculated from e, i.e., de =1 mod (p—1)(¢ — 1)

Encryption: Let m be a number represents plaintext. We can calculate the ciphertext ¢ = (m® mod n).
Decryption: Calculate ¢ mod n.
Protocol: FEach person has her own private key and public key, where the private key are keep private, the
public key can be sent to the internet.

If Alice want to send Bob a message m, she just need to obtain Bob’s public key (n,e) from the internet,
and calculate ¢ = mod(me,n) and send ¢ to Bob.

When Bob receives c, he just need to fetch his private key (n,d) and calculates ¢ mod n.

Why RSA is secure? The security of RSA lies in given ¢, n, e, it is computationally hard to find out m.
One way to find out m is to factor n into a product of two primes, but this is a hard problem.
Why RSA is correct? The following theorem establish the correctness of RSA.

Theorem 44. Let p,q be different primes, n = pq and de = 1 mod (p — 1)(¢ — 1). Then for any number
0 < m < min(p, q), (m*)% = m mod n.

Proof. Since de =1 mod (p — 1)(¢ — 1), we have de = k(p — 1)(¢ — 1) + 1 for some k € N. So by Fermat’s
little theorem, we have (m®)4 = mde = mPP=D@=D+1 = pkE=D=D .1 = m mod p and (m®)? = m?®
mFP=D@=DH+ = ypk(p=1D=1) ;= m mod ¢. By Theorem [41] we have (m®)? = m mod pq.

(]

22

	Basic Set Theory
	Basic concepts and notations
	Set comprehension, basic operations and cartesian product
	The size of a finite set
	Partitions of a set

	Functions
	Boolean functions
	Intuition about the boolean implication function

	Injective, surjective and bijective functions

	Relations
	Properties of relations
	Closure operations on relations
	Equivalence relation

	Basic Logic and Proof Methods
	Basic concepts in logic
	Deduction
	Constructive proof methods
	Proof by induction

	Indirect proof methods

	A brief introduction to propositional logic and satisfiability
	Brief introduction to recursive definitions and functions
	Recursive functions for Peano Numbers
	Recursive function for Natural numbers

	Counting: applied finite sets
	Permutations: listings of a finite set
	Combinations: subsets of a finite set

	Basic number theory
	Primes and divisibility
	Basic number theoretic algorithms
	Congruence and modulo arithmetic
	A quick tour of RSA

