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1 Basic Set Theory

Why set theory?

• Set theory provides a common language to describe collections of things in both mathematics and
computer science. For example, we often talk about the set of natural numbers, a set of names/strings,
etc.

• The knowledge of set theory can also be very useful in practice. In all popular programming languages,
set is implemented as a kind of data structure, and the language provides libraries to manipulate sets.

1.1 Basic concepts and notations

First let us consider the following example of set using braces.

• Infinite set: natural numbers1 (N = {0, 1, 2, 3, ...}), integers (Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}).

• Finite set: {0, 1, 2, 3}, {‘a’, ‘b’, ..., ‘z’}, {0, 1}, {}, {1}.

Remarks.

• The emptyset {} is also written as ∅.

• The braces notation can be nested. For example, {{0, 1, 2}, {3, 4}} is a set contains two elements and
each element itself is a set.

• Although very rarely used in practice, a set can be heterogeneous. For example, {‘a’, “hello”, 1, ∅,N}
is a set contains five elements.

• A set with one element is also called singleton set.

Given a set A, one natural thing to ask is if a given thing e is in the set. We write e ∈ A if e is in the set
A, otherwise we write e /∈ A. For example, 1 ∈ N, ‘a’ /∈ N, ‘a’ ∈ {‘a’, ‘b’, ..., ‘z’}.

Given two sets A,B, we can ask if they are equal. Two sets are equal if they have the same elements.
Questions, are the following equals?

• {0, 1, 2} ?
= {2, 1, 0}

• {0, 1, 2, 2} ?
= {2, 1, 0}

1Note that 0 is a natural number.
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• {0, 1, 2} ?
= {2 + 1, 1 + 2, 0}

• {0, 1, 2} ?
= {3, 2, 0}

A more rigor definition of set equality is the following.

Definition 1. Let A,B be sets. A = B if for every e ∈ A, we have e ∈ B; and for every e ∈ B, we have
e ∈ A.

Given two sets, we can also ask if one set contains the other.

Definition 2. Let A,B be sets. We write A ⊆ B if all the elements of A are in B.

• {0, 1}
?
⊆ {0, 1, 2}

• {0, 1, 2}
?
⊆ {0, 1}

• {0, 1, 2}
?
⊆ {0, 1, 2}

• {}
?
⊆ {0, 1, 2}

• {0, 1, 2}
?
⊆ {0, 1, 3}

• {0, 1, 3}
?
⊆ {0, 1, 2}

Note that we write A ⊂ B if A ⊆ B and A 6= B. In another word, B contains A, and it contains more
things than A.

Theorem 1. Let A be any set, we always have ∅ ⊆ A.

Theorem 2. Let A,B be set, A = B if and only if A ⊆ B and B ⊆ A.

1.2 Set comprehension, basic operations and cartesian product

Set comprehension notation 2 Informally, we often use ellipses to describe infinite set. For example,
{0, 1, 2, 3, . . .}, {0, 2, 4, 6, 8, . . .}. But sometimes this can be ambiguous. For example, what does the set
A = {2, 3, . . .} mean? So it can means at least two things, i.e., a set of numbers larger than one, or the set
of prime numbers. So the better practice is to use set comprehension notation instead. For example, if we
want the set A to mean primes, then we just need to write {x | x ∈ N, x is a prime}. If we want A to mean
a set of numbers larger than one, we just write {x | x ∈ N, x > 1}.

The set comprehension notation in general has the form S = {x | x ∈ A, statements about x}, where A
is a set. Note that there can be many statements about x in the set comprehension notation. To check
whether e ∈ S, we just need to check: e ∈ A and e satisfies all the statements. Sometimes the requirement
of x ∈ A can be dropped when it is clear.

The following are some more examples.

• Even numbers: {x | x ∈ N, x = 2k for some k ∈ N}

• Odd numbers: {x | x ∈ N, x = 2k + 1 for some k ∈ N}

With set comprehension notation, we can define the following operations on sets.

2It is also called set builder notation.
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• A ∪B def
= {x | x ∈ A or x ∈ B}.

e.g. {0, 1, 2} ∪ {1, 2, 3} =?

• A ∩B def
= {x | x ∈ A and x ∈ B}.

e.g. {0, 1, 2} ∩ {1, 2, 3} =?

• A/B def
= {x | x ∈ A and x /∈ B}.

e.g. {0, 1, 2}/{1, 2, 3} =?

• Pow(A)
def
= {B | B ⊆ A}.

e.g. Pow({0, 1, 2}) =?

Cartesian products. Let a, b ∈ A. We write (a, b) to mean a pair with left component a, and right
component b. We can compare pairs, (a, b) = (c, d) if a = c and b = d. Note that the order of the pair
matter, in general, (a, b) 6= (b, a) (unless a = b of course).

Let A,B be sets, we define A× B = {(a, b) | a ∈ A, b ∈ B}, and we say A× B is the Cartesian product
of A and B. For example, let A = {0, 1, 2}, B = {3, 4}, what is A×B?

1.3 The size of a finite set

Why we care about the size of a set? Well, I often get asked how many students I have in this class. Let’s
consider some examples. #{‘a’, ‘b’, ‘c’} = 3, #∅ = 0. But how do we calculate the size of a finite set in
general? Can we just count the listed elements?

Definition 3 (size of a finite set). Let A be a finite set. We write #A to mean the size of set A. If A is
an empty set, then we define #A = 0. If A is not an empty set, then it must be that A = B ∪ {a} for some
a ∈ A and a /∈ B for some set B, thus we define #A = #B + 1.

For example, # {0, 1, 1, 2, 2}︸ ︷︷ ︸
{0}∪{1,1,2,2}

= # {1, 1, 2, 2}︸ ︷︷ ︸
{1}∪{2,2}

+1 = # {1, 1}︸ ︷︷ ︸
{1}∪∅

+1 + 1 = #∅+ 1 + 1 + 1 = 3.

The following are some theorems about the size of finite sets, we will be able to prove them in our later
class.

Theorem 3. Let A,B be finite sets.

1. #(A ∪B) = #A+ #B −#(A ∩B)

2. #Pow(A) = 2#A

Can we at least verify the above theorem by some examples?
Note that infinite sets have sizes too! There are different kind of infinite sizes, e.g. it can be shown that

the size of Pow(N) is strictly larger than the size of N. But we will have to defer this interesting topic to
later of the class.

1.4 Partitions of a set

What is a partition of a set? For example, let A = {0, 1, 2, 3, 4}, then B1 = {0, 1}, B2 = {2, 3, 4} is a
partition. Note that B1 ∪B2 = A and B1 ∩B2 = ∅. We also call B1, B2 a 2-partition of A. In general, there
can be n-partition of a set. Partition is useful for proving theorems about the sizes of finite sets.

Definition 4. Let A be a set, and S1, ..., Sn ⊆ A. We say S1, ..., Sn form a n-partition of A if A =
S1 ∪ S2... ∪ Sn (or A =

⋃n
i=1 Si) and Si ∩ Sj = ∅ for i 6= j and 1 ≤ i, j ≤ n.
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Another example of 2-partition would be natural numbers can be partitioned into even and odd numbers.
We will again left the proof of the following theorem for later.

Theorem 4. Let S be a finite set. If S1, S2 is a 2-partition for S, then #S = #S1 + #S2. This generalizes
to n-partition of S as well. So if S1, ..., Sn is a n-partition for S, then #S = #S1 + #S2 + ...+ #Sn.

Proof. By definition of 2-partition, S1∩S2 = ∅. So by Theorem 3, we have #S = #S1 +#S2−#(S1∩S2) =
#S1 + #S2.

The following is another application of n-partition.

Theorem 5. Let A,B be finite sets, we have #(A×B) = #A×#B.

Proof. The following is a sketch of the proof.
Since A,B are finite sets, we have A = {a1, a2, ..., an} for some n ∈ N and B = {b1, b2, ..., bl} for some

l ∈ N. So #A = n and #B = l. Our goal is to show #(A×B) = n× l.
Let Si = {x | b ∈ B, x = (ai, b)} for 1 ≤ i ≤ n. Note that #Si = l, because ai is fixed. We can verify

that S1, ..., Sn form a n-partition for S. Now by Theorem 4, we have #S = #S1 + #S2 + ... + #Sn =
l + l + ...+ l︸ ︷︷ ︸

n

= n× l = #A×#B.

2 Basic relation theory

2.1 Introduction

Relation is a concept that is useful for characterizing the connections between different sets. Relation is
widely used in computer science for describing database and state transitions.

Definition 5. A relation R on sets A,B is a subset R ⊆ A×B. We often write aRb when (a, b) ∈ R.

It is common to talk about a relation R on set A, i.e., R ⊆ A × A. What is nice about relation
on A is that it also admits a diagram representation. Consider A = {Red,Green,Yellow} and R =
{(Green,Yellow), (Yellow,Red), (Red,Green)}.

Green Yellow Red

The above diagram describes the transition relation of a traffic light. For a relation R on a finite set A,
we can represent all the members in A as nodes in a diagram, and the element (a, b) ∈ R as an edge going
from a to b.

As an exercise, please describe an elevator moving relation on the set {L1,L2,L3}.
Note that when A is an infinite set, the diagrammatic representation for R ⊆ A × A does not work

anymore. In this case we have to work with the definition of the relation (Definition 5). An example of a
relation on infinite set is the following, which represents the less than relation on natural numbers.

less = {(a, b) | a, b ∈ N, a < b}

Definition 6 (Inverse relation). Let R ⊆ A×B, we define the inverse of R as R−1 = {(b, a) | (a, b) ∈ R} ⊆
B ×A.
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Notice that if R ⊆ A × B, then R−1 ⊆ B × A. If R is a relation on A, i.e., R ⊆ A × A, then we still
have R−1 ⊆ A×A. So when A is a finite set and R is a relation on A, the inverse of R means reversing the
direction of all edges in R, while keeping the nodes unchanged.

2.2 Properties of relations

Definition 7. Let R is a relation on A.

• R is reflexive: for every a ∈ A, we have aRa.

• R is symmetric: for every a, b ∈ A, if aRb, then bRa.

• R is transitive: for a, b, c ∈ A, if aRb and bRc, then aRc.

Here are some exercises you can do to see if the above definition makes sense:

1. Determine if the relations in Section 2.1 (i.e., the traffic light/elevator/less relations) are reflex-
ive/symmetric/transitive.

2. The states of an automatic door form a set {open, closed}. The following is a relation that characterizes
the behavior of the door.

open closed

Is this relation reflexive/symmetric/transitive?

2.3 Failing preconditions

There are a few edge cases you will need to keep in mind when determining the reflexive/symmetric/transitive
for a relation. They are all related to the preconditions of Definition 7 (which are all underlined). When a
relation fails the preconditions in Definition 7, the corresponding property will be trivially satisfied (you will
learn more about this later in the logic class3). Therefore, we have the following unusual examples.

• Let A = ∅. The empty set ∅ is a relation on A, and it is trivially reflexive, symmetric and transitive.
This is because the empty set fails all the preconditions in Definition 7.

• Let A be an non-empty set. The empty set ∅ is a relation on A, and it is trivially symmetric and
transitive, but it is not reflexive.

• The relation {(1, 2)} (for A = {1, 2, 3, 4}) is trivially transitive, because there is no edge coming out of
2, it fails the precondition for transitivity.

It is important to note that failing precondition is not the same as failing the definition. For example
R = {(1, 2)} (for A = {1, 2, 3, 4}) is still not reflexive nor symmetric because it does not satisfy the definition
of reflexivity and symmetry.

3Similar to how we argue that the empty set is a subset of any set.
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2.4 Closure operations on relations

Often a relation we consider does not have all the desirable properties (i.e., it may not be reflexive, symmetric,
or transitive), in this case we can use the following closure operations to obtain a larger relation that has
the properties.

Definition 8 (Closures). Let R be a relation on A.

• The reflexive closure of R is defined as {(a, a) | a ∈ A} ∪R.

• The symmetric closure of R is defined as R−1 ∪R.

• The transitive closure of R is defined as the smallest transitive relation (denoted by R+) on A that
contains R. So if there is another relation S that contains R and S is transitive, then R+ ⊆ S.

Consider the following relation R = {(1, 2), (2, 3)} on {1, 2, 3}.

1 2 3

It is not a transitive relation because (1, 3) is not in R. So we add (1, 3) to R, obtaining the relation
R1 = {(1, 2), (2, 3), (1, 3)}, and we can see that it is transitive.

1 2 3

It turns out R1 is the transitive closure of R. Because any other transitive relation that contains R would
also contain R1. For example, the following R2 = {(1, 2), (2, 3), (1, 3), (1, 1)} is also transitive.

1 2 3

But R2 is not the transitive closure of R because it is not the smallest transitive relation that contains R
(note that R1 ⊆ R2).

Definition 9 (Obtaining transitive closure). The following is a simple manual process to make a transitive
closure from R (assuming A is a finite set).

1. Let S := R

2. Is S a transitive relation?

3. If yes, done, return S.

4. If no because there are (a, b), (b, c) ∈ S, but (a, c) /∈ S.

Update S := S ∪ {(a, c)}. Goto (2).
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Let us now see another example. Consider the following relation R = {(1, 2), (2, 1), (2, 3)} on {1, 2, 3}.

1 2 3

It is not transitive because (1, 2), (2, 1) ∈ R, but (1, 1) /∈ R. So we add (1, 1) and obtain the following relation
R1.

1 2 3

R1 is still not transitive because (2, 1), (1, 2) ∈ R1, but (2, 2) /∈ R1. So we add (2, 2) to R1 and obtain the
following relation R2.

1 2 3

R2 is still not transitive because (1, 2), (2, 3) ∈ R2, but (1, 3) /∈ R2. So we add (1, 3) to R2 and obtain the
following relation R3.

1 2 3

Now R3 is transitive. So R3 is the transitive closure for R.
The following is a few exercises you can do to try out Definition 9. Let A = {1, 2, 3, 4}.

• Obtain the transitive closure of {(1, 2), (2, 3), (3, 4)}.

• Obtain the transitive closure of {(1, 2), (2, 3), (3, 4), (4, 1)}.

Note that the method in Definition 9 does not scale well when A and R is large, for that we need more
clever algorithms. So we leave it as a question for you to consider after finishing this course!

3 Functions

Why do we care about functions? In computer science, function is a useful concept to describe the compu-
tational process, a lot of computational tasks can be described as functions. For example, in programming,
the program that sorts a list is a function. A program that search information from a database can also be
viewed as a function.
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Figure 1: Examples of injective, surjective and bijective functions

Definition 10. A function f from input set A to output set B (we write f : A→ B) is a mapping such that
every a ∈ A is mapped to a unique b ∈ B (we write f(a) for b in this case). The input set A is also called
domain, the output set is also called range/codomain.

Can you give me a simple concrete example of a function?
I can give you one: not : B→ B, where not(0) = 1 and not(1) = 0 for the set of booleans B = {0, 1}.
We can compose functions together to form new functions. For example, say we have two functions

not : B → B, or : B × B → B, then we can define a new function imply(x, y) = or(not(x), y), where
imply : B× B→ B.

3.1 Injective, surjective and bijective functions

There are three properties of functions that you should know.

Definition 11. • A function f : A → B is called injective if the following holds: for every a, b ∈ A, if
a 6= b, then f(a) 6= f(b).

Alternatively, if f(a) = f(b) for some a, b ∈ A, then a = b.

• A function f : A→ B is called surjective if the following holds. For every b ∈ B, there exists an a ∈ A
such that f(a) = b.

• A function f : A→ B is called bijective if it is both injective and surjective.

There are some examples of functions on finite sets at Figure 1. Note that for functions on infinite sets,
we have to use logical arguments to prove whether a function is injective, surjective or bijective.

3.2 Recursive functions for natural numbers

Recursive functions are important because they are essentially descriptions of algorithms. There are a range
of programming languages called functional programming languages where the programs are based on the
idea of functions. Moreover, most mainstream programming languages also support recursion by one way or
another.

A lot of concepts we encountered so far can be described using recursive function as well. For example,
the informal summation 0 + 1 + 2 + 3 + ...+n can be formally described by the following recursive function.

Definition 12.
sum : N→ N
sum(0) = 0
sum(n) | if n > 0 = n+ sum(n− 1)

9



If you try to calculate the value of sum(5) for example, you should be able to convince yourself that it is
equal to 0 + 1 + 2 + 3 + 4 + 5.

The summation function we define above is the same thing as the following piecewise function.

sum(n) =

{
0 if n = 0

n+ sum(n− 1) if n > 0

We will stick to the format in Definition 12 in this note.
Another use of recursive function is to describe infinite sequences. Consider the well-known Fibonacci

sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, .... The first two numbers of the sequence are 0, 1, from then on, every
number in the sequence is the addition of previous two numbers. We can describe these kind of sequences
formally as recursive functions N → N, where the input set denotes the position in the sequence and the
output is the number at that position.

Definition 13 (Fibonacci function).
fib : N→ N
fib(0) = 0
fib(1) = 1
fib(n) | if n > 1 = fib(n− 1) + fib(n− 2)

We can convince ourselves that above definition indeed describe the fibonacci sequence by calculating the
values for fib(0), fib(1), fib(2), fib(3), ....

Now consider the sequence 1, 2, 6, 24, 120, ... generated by n! (the factorial of n). Can you find a recursive
function for (n!)?

Definition 14. In general, we use the following scheme to define recursive functions on natural numbers.

• Base cases:

Define the function from zero upto a number (e.g. f(0) = 0, f(1) = 1.).

• Recursive cases:

Define the function for the rest of the cases.

E.g., f(n) = ... if n > 1, and we can use f(n− 1), f(n− 2) and so on in the recursive cases.

Now say we have simple calculator that only supports ±1 and recursion. Can we program an addition
function?

Definition 15 (Addition).
add : N× N→ N
add(0, y) = y
add(x, y) | if x > 0 = 1 + add(x− 1, y)

You should do a calculation for add(4, 3) to test the addition function. Let us look at another example, can
we program a subtraction function for our calculator? Of course!

Definition 16 (Subtraction).
minus : N× N→ N
minus(0, y) = 0
minus(x, 0) | if x > 0 = x
minus(x, y) | if x > 0 and y > 0 = minus(x− 1, y − 1)
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You should do a calculation for minus(4, 3) to test the function. Note that the above minus(x, y) will return
0 if x ≤ y, this makes sense because there is no negative number in N!

The following are a few exercises you can do.

• Is the above minus function an injective function?

• Can you define the multiplication function mult for natural numbers using only ±1, add,minus?

• Can you define the exponential function exp(x, y) for natural numbers (such that it gives xy) using
only ±1, add,minus,mult?

• Can you think of other interesting functions that you can define like above?

4 Basic Logic and Proof Methods

Logic and deduction are important for both mathematics and computer science. In mathematics, they
provide means to formulate and prove theorems. In computer science, they allow us to reason about the
correctness of the programs, to program automated reasoning systems, to build intelligent systems.

4.1 Basic concepts in logic

The following concepts are essential in logic: proposition, predicate, implication, negation, conjunction, dis-
junction, the forall and exists quantifiers.

Proposition. A proposition is a statement. E.g. “Today is Monday”, “It is sunny today”. We use
capital letters P,Q, S to denote a proposition, they are called propositional variables.

Predicate. A predicate is an incomplete statement. E.g. “ is even” is an incomplete statement (which
can be written as P ( )). We can fill in 3, then we get a statement “3 is even”. In general, we fill in a variable
x get a complete statement and use substitution to talk about specific instances of x. For example, we write
P (x) to mean “x is even”, then P (3) gives the statement “3 is even”.

The most basic forms of statements are coming from propositions and predicates. We can compose these
basic statements to obtain more statements using the followings.

Implication. “If x and y are even, then x + y is even.”, “x is an odd number implies that it is not
divisible by 2”. We write A⇒ B to denote the statement A implies the statement B.

Negation. “ x is not even.”, We write ¬A to denote the negation of the statement A.
Conjunction. “ x is an even number and x is a prime number.”, We write A ∧ B to denote the

conjunction of A,B.
Disjunction. “ x is an even number or x is a prime number.”, We write A∨B to denote the disjunction

of A,B.
Forall. “For every x ∈ N, if x is even , then x is not odd.” We write ∀x.(x ∈ N∧Even(x))⇒ ¬Odd(x).

If A is a statement, then ∀x.A is a statement.
Exists. “There exists x ∈ N such that x is even and x is prime.”, it can be translated to ∃x.x ∈ N⇒

Even(x)∧Prime(x). Even(x) is defined as ∃k.k ∈ N⇒ x = 2k. Odd(x) is defined as ∃k.k ∈ N⇒ x = 2k+ 1.
If A is a statement, then ∃x.A is also a statement.

As an exercise, try to translate a theorem into a statement that consists of ∀,∃,⇒,¬,∧,∨.

4.2 Deduction

An axiom is a statement that is assumed to be true. Deduction (or proof) is a process to establish the
validity of a statement based on existing axioms. For example, let “Socrates is a human” and “all men
must die” be axioms. Then by rule of deduction, we can establish that “Socrates must die”. All this sounds
plausible, but on what basis can we conclude “Socrates must die” ?

11



The followings are some deduction rules that we commonly use.

• Modus ponens: From statements A and A⇒ B, we conclude B.

• Instantiation: We write A[x] to mean A is a statement contains the variable x. From a statement
∀x.A[x], we conclude A[t] for any individual t.

• And-elimination-1: From statement A ∧B, we can conclude A.

• And-elimination-2: From statement A ∧B, we can conclude B.

• Or-introduction-1: From statement A, we can conclude A ∨B.

• Or-introduction-2: From statement B, we can conclude A ∨B.

• Exist-introduction: From statement A[t], we can conclude ∃x.A[x].

• Principle of explosion(⊥-elimination): Contradiction (denoted by ⊥) are usually of the forms
¬A ∧A, or (A⇒ ¬A) ∧ (A⇒ ¬A), or it can also be not obeying basic facts of arithmetic (e.g. 0 = 1,
a|1 for a > 1.). From a contradiction, we can conclude any statement B, i.e., ⊥ ⇒ B.

Now let H(x) be the statement “ x is a human” and D(x) means “x must die”. Then “Socrates is human”
corresponds to H(Socrates), and “all men must die” corresponds to ∀x.H(x)⇒ D(x). By instantiation, we
have H(Socrates)⇒ D(Socrates). By modus ponens, we have D(Socrates).

4.3 Constructive proof methods

To prove a statement of the form ∀x.A[x], we prove A[y], where y is a fresh variable. To prove a statement
of the form ∀x.P (x)⇒ Q(x), we assume P (y) and try to prove Q(y).

Theorem 6. For every x ∈ N, if x is odd, then x2 is odd.

Proof.
Suppose x ∈ N is odd.
By definition of odd numbers, we know that x = 2a+ 1 for some a ∈ N.
By basic arithmetic, we have x2 = (2a+ 1)(2a+ 1) = 4a2 + 4a+ 1 = 2(2a2 + 2a) + 1.
Thus x2 is odd.

To prove a statement of the form A ∨B ⇒ C, we have to prove both A⇒ C and B ⇒ C.

Theorem 7. Let A,B,C be sets. If C ∩A = ∅ and C ∩B = ∅, then (A ∪ C) ∩ (B ∪ C) = (A ∩B) ∪ C.

Proof. Assume C ∩A = ∅ and C ∩B = ∅.

• We first prove that (A ∪C) ∩ (B ∪C) ⊆ (A ∩B) ∪C. Let x ∈ (A ∪C) ∩ (B ∪C). By definition of set
union and intersection, we have x ∈ A ∪ C and x ∈ B ∪ C. Thus (x ∈ A or x ∈ C) and (x ∈ B or
x ∈ C). This implies four possibilities: x ∈ A, x ∈ B, or x ∈ A, x ∈ C, or x ∈ C, x ∈ B, or x ∈ C.

Since x ∈ A, x ∈ C and C ∩ A = ∅ give us a contradiction, by principle of explosion, we conclude
x ∈ (A ∩B) ∪ C. Similarly for x ∈ C, x ∈ B.

Consider the case x ∈ A, x ∈ B, by definition of set union, we x ∈ (A ∩B) ∪ C.

Consider the case x ∈ C, we also have x ∈ (A ∩B) ∪ C.

Thus (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩B) ∪ C.

12



• Let x ∈ (A ∩B) ∪ C. This implies that x ∈ A ∩B or x ∈ C.

Suppose x ∈ C. This implies that (x ∈ C or x ∈ A) and (x ∈ C or x ∈ B). So x ∈ (A∪C)∩ (B ∪C).

Suppose x ∈ A and x ∈ B. This implies that (x ∈ C or x ∈ A) and (x ∈ C or x ∈ B). So
x ∈ (A ∪ C) ∩ (B ∪ C).

To prove a negation ¬P , we assume P and try to derive a contradiction.

Theorem 8. There is no smallest rational number greater than 0.

Proof. Suppose there is a smallest rational number r.
But we have 0 < r/2 < r, this implies that r is not the smallest rational number.
Contradiction. So there is no smallest rational number greater than 0.

Theorem 9. There is no natural number that can be both even and odd.

Proof. Suppose there is a number r that is even and odd.
Then there exists k1, k2 ∈ N such that r = 2k1 = 2k2 + 1.
This implies 2(k1 − k2) = 1, where k1 − k2 ∈ N.
This implies 2|1, contradiction.

Theorem 10 (Cantor’s theorem). There does not exists a surjective function from N to Pow(N).

Proof. Suppose there is a surjective function f : N→ Pow(N).
By definition of surjective function, for every A ∈ Pow(N), there exist a number n ∈ N such that

f(n) = A.
Define S = {x | x ∈ N, x /∈ f(x)}.
Since S ⊆ N, we have S ∈ Pow(N).
Since f is surjective, there exist a n such that f(n) = S.
Now suppose n ∈ S, this means n /∈ f(n) = S.
Suppose n /∈ S, this means n ∈ S. Hence contradiction.

Cantor’s theorem has a fundamental impact in mathematics. It implies that the size of power set of
natural numbers is in a sense strictly larger than the size of natural numbers, even though both are infinite
sets. It means some infinite set are strictly larger than the other!

4.3.1 Proof by induction

Definition 17 (Induction). To prove a statement A[n] holds for any natural number n: We first prove that
A[0] holds. Then let n ∈ N, we assume A[n] holds (this assumption is called inductive hypothesis), we prove
that A[n+ 1] holds.

Why does induction make sense? Well, say our goal is to prove A[n] holds for any natural number n.
One way to prove it is to make sure all of A[0], A[1], A[2], ... hold. Say we manage to prove A[0], and we
manage to prove A[n]⇒ A[n+ 1] hold for any n ∈ N. Then by modus ponens, we can show that A[1] holds,
A[2] holds, and so on. Therefore we conclude that A[n] holds for any n.

Theorem 11. Every natural number is either even or odd. (∀x.x ∈ N⇒ (Even(x) ∨Odd(x)))
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Proof. Suppose x ∈ N. We need to show Even(x) ∨ Odd(x). By induction on x, we consider the following
cases.

Base case. x = 0. Since Even(0) holds. We have Even(0) ∨Odd(0).
Step case. Assume Even(x) ∨Odd(x) holds.
Suppose Even(x) holds, then we have Odd(x+ 1), hence Odd(x+ 1) ∨ Even(x+ 1).
Suppose Odd(x) holds, then we have Even(x+ 1), hence Odd(x+ 1) ∨ Even(x+ 1).
Thus Odd(x+ 1) ∨ Even(x+ 1).

Theorem 12. 1 + 2 + 3 + ...+ n = n(n+1)
2

Proof. By induction on n.
Base case. n = 0, we have 0 = 0.

Step case. Assume 1 + 2 + 3 + ...+n = n(n+1)
2 , we need to show 1 + 2 + 3 + ...+n+ (n+ 1) = (n+1)(n+2)

2 .

(1 + 2 + 3 + ...+ n) + (n+ 1)
IH
= n(n+1)

2 + (n+ 1) = (n+1)(n+2)
2 .

Theorem 13. 1 + 2 + 22 + ...+ 2n = 2n+1 − 1

Proof. By induction on n.
Base case. n = 0, we have 1 = 1.
Step case. Assume 1+2+22+ ...+2n = 2n+1−1, we need to show 1+2+22+ ...+2n+2n+1 = 2n+1+1−1.

1 + 2 + 22 + ...+ 2n + 2n+1 IH
= 2n+1 − 1 + 2n+1 = 2n+2 − 1.

4.4 Indirect proof methods

To prove P ⇒ Q, we prove ¬Q⇒ ¬P instead.

Theorem 14. For every n ∈ N, if n2 is even, then n is even.

Proof. Suppose n is not even.
By Theorem 9 and Theorem 11, we conclude that n is odd.
By Theorem 6, we have n2 is odd.
By Theorem 9 and Theorem 11, we conclude n2 is not even.
Thus For every n ∈ N, if n2 is even, then n is even.

Using law of excluded middle A ∨ ¬A.

Theorem 15. Let ∼ be an equivalence relation on A, and a, b ∈ A. Either [a] = [b], or [a] ∩ [b] = ∅.

Proof. By law of excluded middle, a ∼ b∨ a 6∼ b. Suppose a ∼ b. Then for every x ∈ [a], we have x ∼ a ∼ b.
So x ∈ [b]. Similarly, for every y ∈ [b], we have y ∈ [a]. So we prove that [a] = [b].

Suppose a 6∼ b. We need to show [a] ∩ [b] = ∅. By contrapositive, we can assume [a] ∩ [b] = ∅ and prove
that a ∼ b. Suppose [a] ∩ [b] 6= ∅. This implies there exists c ∈ A such that c ∈ [a] and c ∈ [b]. So a ∼ c ∼ b.

Thus either [a] = [b], or [a] ∩ [b] = ∅.

Theorem 16. Recall that the definition of exponentiation can be extended to allow any real exponent. There
exists irrational numbers a and b such that ab is rational.

Proof. We know that
√

2 is an irrational number.

By law of excluded middle, either
√

2
√
2

is rational or it is not.

Suppose
√

2
√
2

is rational, then in this case a = b =
√

2.

Suppose
√

2
√
2

is not rational. Let a =
√

2
√
2

and b =
√

2. By property of exponentiation, we have

(
√

2
√
2
)
√
2 =
√

2
√
2×
√
2

=
√

2
2

= 2. So a =
√

2
√
2
, b =

√
2.
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Note that any proofs using law of excluded middle (LEM) is consider indirect proof. One side effect of
proving an existential statement using LEM is that it does not give us the exact witnesses. In the above

theorem, we do not know whether a, b should be
√

2,
√

2, or
√

2
√
2
,
√

2.
Why contrapositive proof is also a kind of indirect proof? The correctness of positive proof is based on

LEM as well. To show ¬Q⇒ ¬P implies P ⇒ Q, we assume P and ¬Q⇒ ¬P , and try to conclude Q. By
LEM, Q ∨ ¬Q. Suppose Q, we are done. Suppose ¬Q, by modus ponens, we have ¬P , which contradicts
our assumption P . So by law of explosion, we can conclude Q.

Proof by contradiction: to prove F , we assume ¬F and try to derive ⊥.

4.5 A brief introduction to propositional logic and satisfiability

Definition 18 (Formulas of propositional logic). The formulas of propositional logic are of the following
forms.

F ::= p | F1 ⇒ F2 | ¬F | F1 ∨ F2 | F1 ∧ F2

The truth tables for the propositional formulas are exactly the same as the description of boolean func-
tions.

Definition 19 (Satisfiable). An assignment or valuation is a mapping from a set of propositional variables
to their corresponding truth values. The formula G is satisfiable by ρ (written as ρ |= G) if G is evaluated
to T by the assignment ρ.

Definition 20. A formula G is semantically valid (written as |= G) if for every possible assignment ρ, we
have ρ |= G. The formula G is also called tautology.

Definition 21 (Semantic entailment). We say F entails G (written as F |= G) if for every assignment ρ,
ρ |= F implies ρ |= G.

Definition 22. We say F and G are semantically equivalent if F |= G and G |= F .

Theorem 17 (Deduction theorem). If G |= F , then |= G⇒ F .

Theorem 18. F is satisfiable iff ¬F is not valid.

Definition 23 (Conjunctive normal form). Let a literal be L = ¬p | p. A conjunctive normal form is of the
form C1 ∧ C2 ∧ ... ∧ Cn, where Ci = L1 ∨ L2 ∨ ... ∨ Lm. We often call each Ci a disjunctive clause.

Given a CNF, how to determine its validity?

Theorem 19. A disjunction of literals L1 ∨ L2 ∨ .. ∨ Lm is valid iff there are 1 ≤ i, j ≤ m and i 6= j such
that Li = ¬Lj.

Proof. Exercise.

So to determine if a CNF C1 ∧C2 ∧ ...∧Cn is valid, we need to check Ci is valid for 1 ≤ i ≤ n. To check
if Ci = L1 ∨ L2 ∨ ... ∨ Lm is valid, we just find a Li, Lj such that Li = ¬Lj .

For example, determine the validity of (¬q ∨ p ∨ r) ∧ (¬p ∨ r) ∧ q.
How to convert a formula into CNF? We can use the following process to convert a formula into CNF.

1. Remove implications: F ⇒ G = ¬F ∨G.

2. Propagate negations: ¬(¬F ) = F , ¬(F1 ∧ F2) = ¬F1 ∨ ¬F2 and ¬(F1 ∨ F2) = ¬F1 ∧ ¬F2.

3. Or distributions: (F1 ∧ F2) ∨G = (F1 ∨G) ∧ (F2 ∨G), G ∨ (F1 ∧ F2) = (G ∨ F1) ∧ (G ∨ F2).
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For example, convert ¬p ∧ q ⇒ p ∧ (r ⇒ q) to CNF.
Other use of CNF, we can synthesize a boolean formula from a truth table.
The key application of CNF is in solving satisfiability (SAT problem). As we know, SAT is trivial if the

formula is in DNF (disjunctive normal form), but most problem are given in CNF, and converting CNF to
DNF is impractical since it increases the number of clauses exponentially.

Algorithm for solving SAT problem for CNF does exist, a lot of modern SAT solvers are based DPLL
(Davis-Putnam-Logemann-Loveland) algorithm. The basic DPLL algorithm assume a formula is in CNF,
and try to reduce the number of guesses via the notion of unit clause. A unit clause is a disjunctive clause
where only one variable’s truth value are unknown. For example, p is a unit clause since p’s truth value is
unknown. If p1 = p2 = F, then p1 ∨ p2 ∨¬p3 is a unit clause because p3’s truth value is unknown. In DPLL,
since we aim to find a satisfiable assignment, so we set the truth value of the variable in a unit clause to
make the unit clause truth.

Definition 24 (A basic DPLL algorithm).

1. Guess a truth value of a propositional variable.

2. Deduce the truth value of a propositional variable from a unit clause.

3. Backtrack if a contradiction is reached, flip the truth value of the previous guess and resume.

Example 1. We will use comma to denote the conjunction, consider the CNF: x2∨¬x3∨x4,¬x1∨¬x2,¬x1∨
¬x3 ∨ ¬x4, x1.

1. Deduce x1 = T x2 ∨ ¬x3 ∨ x4,��¬x1 ∨ ¬x2,��¬x1 ∨ ¬x3 ∨ ¬x4,HHx1
2. Deduce x1 = T, x2 = F ��x2 ∨ ¬x3 ∨ x4,XX¬x2,¬x3 ∨ ¬x4
3. Guess x1 = T, x2 = F, x3 = T ��¬x3 ∨ x4,��¬x3 ∨ ¬x4
4. Backtrack 3 x1 = T, x2 = F, x3 = F hhhhh¬x3 ∨ x4,hhhhh¬x3 ∨ ¬x4
5. Success! x1 = T, x2 = F, x3 = F ∅

5 Counting: applied finite sets

Definition 25 (Product rule/multiplication principle). Let A1, ..., An be finite sets. Since #(A1×...×An) =
#A1 × ...×#An, there all #A1 × ...×#An possible ways to obtain a n-tuple.

Example 2.

1. How many functions are there from a set with m elements to a set with n elements?

2. How many injective functions are there from a set with m elements to one with n elements?

3. A standard postal code in Canada has 6 position, the first, third and fifth position must be a letter, the
second, fourth, sixth position must be a number. For example, B3H 4J1. How many different postal
codes are possible?

Answer: 26× 10× 26× 10× 26× 10

Definition 26 (Addition principle). Let A1, ..., An be finite sets and Ai∩Aj = ∅ for all i 6= j and 1 ≤ i, j ≤ n.
Then #(A1 ∪ ... ∪An) = #A1 + ...+ #An.

Example 3. How many length-4 non-repetitive lists can be made from the symbols A, B, C, D, E, F, G, if
the list must contain an E?

Definition 27 (Subtraction principle). If S ⊆ A, then #(A/S) = #A−#S.
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Example 4. How many length-4 lists can be made from the symbols A, B, C, D, E, F, G if the list has at
least one E, and repetition is allowed?

Definition 28 (Principle of inclusion–exclusion). Let A,B be finite sets. #(A∪B) = #A+#B−#(A∩B).

Example 5.

1. A computer company receives 350 applications from computer graduates for a job planning a line of
new Web servers. Suppose that 220 of these applicants majored in computer science, 147 majored in
business, and 51 majored both in computer science and in business. How many of these applicants
majored neither in computer science nor in business?

5.1 Permutations: listings of a finite set

We can define recursive function on N as well, we can identify a natural number as either 0 or of the form
n+ 1 for some n ∈ N.

Definition 29. Let A be a finite set such that #A = n and r ∈ N such that 0 ≤ r ≤ n. We write P (n, r)
to mean the possible listings of r elements of A. We define P (n, r) recursively as a function N×N→ N the
following:

P (n, 0) = 1.
P (n,m+ 1) = P (n,m)× (n−m).

Note that the condition m ≤ n has to be met for P (n,m) to be a well-defined function.
The justification of the definition of P (n,m) is by product rule. We write [i] to mean there are i possible

choices to fill in a position. If we have m places, then [n], [n− 1], ..., [n−m]︸ ︷︷ ︸
m

.

To extend m to m+ 1, we have [n], [n− 1], ..., [n−m]︸ ︷︷ ︸
m

, [n− (m+ 1)].

Definition 30 (Factorial function). We give a recursive definition of the factorial function ! : N→ N below
(using postfix notation).

0! = 1
(n+ 1)! = (n+ 1)× n!

Observation: Let A be a finite set and #A = n. There are n! possible permutations (arrangements) for
listing all the elements non-repeatedly in A.

Definition 29 is often informally written using ellipsis: P (n,m) = n× (n− 1)× ...× (n−m+ 1)︸ ︷︷ ︸
m

assum-

ing 0 < m ≤ n.

Theorem 20. If n,m ∈ N and 0 ≤ m ≤ n, then P (n,m) = n!
(n−m)! .

Proof. By induction on m.
Base case: m = 0. We have 1 = 1.
Step case: Assume P (n,m) = n!

(n−m)! for any n such that 0 ≤ m ≤ n (Induction hypothesis).

Let n′ ∈ N and 0 ≤ m + 1 ≤ n′. We have P (n′,m + 1) = P (n′,m) × (n′ −m)
IH
= n′!

(n′−m)! × (n′ −m) =
n′!

(n′−(m+1))! .

Example 6.

1. How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize winner
from 100 different people who have entered a contest?
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5.2 Combinations: subsets of a finite set

Definition 31. Let A be a finite set such that #A = n and r ∈ N such that 0 ≤ r ≤ n. We write
C(n, r)(sometimes

(
n
r

)
) to mean all the possible r-element subsets of A. We define C(n, r) recursively as a

function N× N→ N the following:
C(n,m) = 1 if m = n or m = 0.
C(n+ 1,m+ 1) = C(n,m) + C(n,m+ 1) otherwise.

The justification for C(n + 1,m + 1) = C(n,m) + C(n,m + 1) (also called Pascal’s identity, where
m+ 1 < n+ 1) is by addition principle: since in this case #A = n+ 1, A = B ∪ {a} where a /∈ B. A subset
E of A such that #E = m+ 1 either contain a, in which case there are C(n,m) possibilities; Or doesn’t, in
which case there are C(n,m+ 1) possibilities.

Example 7. 1. How many ways are there to select five players from a 10-member tennis team to make
a trip to a match at another school?

Since there are 2#A all possible subsets for A, on the other hand, we can add C(#A, 0) (emptyset),
C(#A, 1) (all the subsets of size 1),..., C(#A,#A) (all the subsets of size #A) together. This allows us to
discover the following theorem4.

Theorem 21. For every n ∈ N, we have C(n, 0) + C(n, 1) + ...+ C(n, n) = 2n.

Proof. We prove this theorem by induction on n.
Base case: n = 0. In this case C(0, 0) = 1 = 20

Step case: Let n ∈ N, we assume C(n, 0) +C(n, 1) + ...+C(n, n) = 2n as induction hypothesis (IH). We
want to prove C(n+1, 0) +C(n+ 1, 1) + ...+C(n+1, n+ 1) = 2n+1. Since C(n+ 1, 0) = C(n+ 1, n+1) = 1,
we have the following

C(n+ 1, 0) + C(n+ 1, 1) + ...+ C(n+ 1, n+ 1) = 1 + 1 + C(n+ 1, 1) + C(n+ 1, 2) + ...+ C(n+ 1, n) =
1 + 1 + C(n, 0) + C(n, 1) + C(n, 1) + C(n, 2) + ...+ C(n, n− 1) + C(n, n) =

(C(n, 0) + C(n, 1) + ...+ C(n, n− 1) + 1) + (1 + C(n, 1) + C(n, 2) + ...+ C(n, n))
IH
= 2n + 2n = 2n+1.

Another way of constructing C(n, r) is by considering its relation to r-permutations P (n, r). We know
that P (n, r) can be constructed by the following: first we obtain C(n, r) r-subsets. Then for each r-subset,
we do a permutation, so P (n, r) = C(n, r)× r!.

Theorem 22. For n ∈ N and 0 ≤ r ≤ n, we have P (n, r) = C(n, r) × r!. By Theorem 20, we have
P (n, r) = n!

(n−r)! . So we just need to prove C(n, r) = n!
(n−r)!×r! .

Proof. We prove by induction on n.
Base case: n = 0 = r. C(n, r) = 1 = 0!

0!×0! .

Step case: Let n ∈ N, assume for any 0 ≤ r ≤ n, we have C(n, r) = n!
(n−r)!×r! as inductive hypothesis(IH).

We need to prove that for any 0 ≤ r′ ≤ n+ 1, we have C(n+ 1, r′) = (n+1)!
(n+1−r′)!×r′! .

Suppose r′ = n+ 1 or r′ = 0. In this case C(n+ 1, r′) = (n+1)!
(n+1−r′)!×r′! = 1.

Suppose 0 < r′ < n+ 1. In this case we have the following:

C(n+ 1, r′) = C(n, r′) + C(n, r′ − 1)
IH
= n!

(n−r′)!×r′! + n!
(n−(r′−1))!×(r′−1)! =

n!×(n−r′+1)
(n−r′+1)×(n−r′)!×r′! + n!×r′

(n−(r′−1))!×(r′−1)!×r′ = (n+1)!
(n+1−r′)!×r′!

4This kind of discovery is also called combinatorial proof in some textbook.
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Theorem 23. If 0 ≤ r ≤ n, then C(n, r) = C(n, n− r).

Proof. Exercise.

A well-known theorem in counting is the following binomial theorem.

Theorem 24 (Binomial theorem). Let x, y be variables and n ∈ N. We have (x + y)n = C(n, 0) · xn +
C(n, 1) · xn−1y + ...+ C(n, n− 1) · xyn−1 + C(n, n) · yn.

Intuitively, the binomial theorem makes sense because for example when we calculate (x + y)4 = (x +
y)(x+ y)(x+ y)(x+ y), we must have the following terms x4, x3y, x2y2, xy3, y4. To determine the coefficient
of x4, the x must be coming from each of the sum, so it should be C(4, 4) = C(4, 0). To determine the
coefficient of x3y, we can see x must coming from three of the four sums, so there are C(4, 3) ways to obtain
it so the coefficient of x3y is C(4, 3) = C(4, 1).

Now let us prove the binomial theorem by induction.

Theorem 25. Let x, y be variables and n ∈ N. We have (x + y)n = C(n, 0) · xn + C(n, 1) · xn−1y + ... +
C(n, n− 1) · xyn−1 + C(n, n) · yn.

Proof. Base case. n = 0. We have (x+ y)0 = 1. Note that when n = 0, the right hand side is 1.
Step case. Let n ∈ N, assume (x+y)n = C(n, 0)·xn+C(n, 1)·xn−1y+...+C(n, n−1)·xyn−1+C(n, n)·yn

as inductive hypothesis (IH). We need to show (x + y)n+1 = C(n + 1, 0) · xn+1 + C(n + 1, 1) · xny + ... +
C(n+ 1, n) · xyn + C(n+ 1, n+ 1) · yn+1. One the left hand side, we have the following:

(x+y)n+1 = (x+y)n(x+y)
IH
= (C(n, 0) ·xn +C(n, 1) ·xn−1y+ ...+C(n, n−1) ·xyn−1 +C(n, n) ·yn)(x+y) =

(C(n, 0) · xn+1 + C(n, 1) · xny + ...+ C(n, n− 1) · x2yn−1 + C(n, n) · xyn) + (C(n, 0) · xny + C(n, 1) ·
xn−1y2 + ...+ C(n, n− 1) · xyn + C(n, n) · yn+1)

On the right hand side, we have the following.

C(n+ 1, 0) · xn+1 + C(n+ 1, 1) · xny + ...+ C(n+ 1, n) · xyn + C(n+ 1, n+ 1) · yn+1 =
C(n, 0) · xn+1 + C(n, 0) · xny + C(n, 1) · xny + ...+ C(n, n− 1) · xyn + C(n, n) · xyn + C(n, n) · yn+1 =
(C(n, 0) · xn+1 + C(n, 1) · xny + ...+ C(n, n− 1) · x2yn−1 + C(n, n) · xyn) + (C(n, 0) · xny + C(n, 1) ·

xn−1y2 + ...+ C(n, n− 1) · xyn + C(n, n) · yn+1)

So we prove the step case.

6 Basic number theory

6.1 Divisibility and modulo arithmetic

Definition 32 (Divisibility). Let a, b ∈ Z. We write a|b if there exist k ∈ Z such that b = ka. The number
a is called a factor/divisor of b.

You should be able to prove the following theorem.

Theorem 26. Let n, a, b ∈ Z.

1. If n|a and n|b, then n|a+ b.

2. If n|a+ b and n|a, then n|b.
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Theorem 27 (Division theorem). Let a, b ∈ Z and b > 0. There exists unique q, r ∈ Z such that a = qb+ r
and 0 ≤ r < b. The number q is called quotient, and the number r is called remainder.

For the space reason, we will not go over the proof for division theorem at this point.
Note that the q, r are unique in the division theorem, moreover, r can only be 0 ≤ r < b. We often

denoted q by div(a, b), and we denote r by mod(a, b).

Theorem 28. Let a, b,m ∈ Z and a > 0,m > 0. We have the following.

• If a|b, then we have mod(b, a) = 0.

• If b = ka+ c for some k, c ∈ Z, then we have mod(b, a) = mod(c, a).

Proof. Exercise.

Definition 33. Let a, b,m ∈ Z and m > 0. We say a is congruent/equivalent to b modulo m, denoted by
a ≡ b (mod m), if mod(a,m) = mod(b,m).

Recall that an equivalence relation is reflexive, symmetric and transitive. As an exercise, you should
be able prove the following theorem, which says that the congruence modulo m is in fact an equivalence
relation.

Theorem 29. Let m ∈ Z and m > 0. The relation Rm = {(a, b) | a ≡ b (mod m)} is an equivalence
relation.

Theorem 30. Let a, b, c, d,m ∈ Z and m > 0. If a ≡ b (mod m) and c ≡ d (mod m), then a − c ≡
b− d (mod m).

Proof. Suppose a ≡ b (mod m) and c ≡ d (mod m). By the division theorem, and the definition of congruence
modulo m, we have a = k1m + r1 and b = k2m + r1 for some k1, k2, r1 ∈ Z and 0 ≤ r1 < m. Moreover,
c = k3m+ r2 and d = k4m+ r2 for some k3, k4, r2 ∈ Z and 0 ≤ r2 < m. Thus a− c = (k1− k3)m+ (r1− r2)
and b− d = (k2 − k4)m+ (r1 − r2). Thus mod(a− c,m) = mod(r1 − r2,m) = mod(b− d,m) by Theorem 28
(2). Hence a− c ≡ b− d (mod m).

Let m ∈ Z and m > 0. By division theorem, we know that upto equivalence modulo m, there can only
be m possible remainders. We use Zm to denote the set {0, 1, ...,m− 1}. We can do basic arithmetic (e.g.,
addition and multiplication) on these remainders.

Definition 34 (Arithmetic modulo m). Let m ∈ Z and m > 0. Let a, b ∈ Zm. We define the following.

• a+m b = mod(a+ b,m). Note that mod(a+ b,m) ∈ Zm.

• a×m b = mod(a× b,m). Note that mod(a× b,m) ∈ Zm.

The following are a few properties of arithmetic modulo m, you should be able to prove it.

Theorem 31. Let m ∈ Z and m > 0. Let a, b, c ∈ Zm. We have the following.

• a+m b = b+m a and a×m b = b×m a.

• (a+m b) +m c = a+m (b+m c) and (a×m b)×m c = a×m (b×m c).

• If a > 0, then a +m (m − a) = 0. We say the (m − a) is the additive inverse of a. Note that when
a = 0, the additive inverse for 0 is 0.

• a×m (b+m c) = (a×m b) + (a×m c).
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6.2 Primes and GCD

Definition 35. We say p ∈ N is prime if there does not exist an n ∈ N such that 1 < n < p and n|p. If
there exists an n ∈ N such that 1 < n < p and n|p, we say p is composite.

We can show that every natural number admits a prime factorization.

Theorem 32. If n is a natural number greater than 1, then n = p1 × ...× pl for some primes p1, ..., pl.

Proof. We prove this by strong induction on n.

• Base case: n = 2. This case is true since 2 is a prime.

• Step case: Let n > 1. We assume for any 1 < k < n, we have k = p1× ...× pl for some primes p1, ..., pl
as inductive hypothesis (IH). We need to show that n = q1 × ...× qk for some primes q1, ..., qk. Since
n can either be a prime or a composite, we only have two cases to consider.

– When n is a prime. In this case we are done.

– When n is a composite. In this case there exists 1 < m < n such that m|n. In another word,
n = mb for some 1 < b < n. Thus by IH, m = e1 × ...× eh and b = c1 × ...× cj for some primes
e1, ..., eh, c1, ..., cj . Thus n = m× n = e1 × ...× eh × c1 × ...× cj .

Obtaining prime factorization is of practical interest. However, currently, there are no known efficient
algorithm to factor large number into products of primes. In fact, the famous RSA encryption system 5 is
based on the difficulty of prime factorization.

We can use the so called trial division to obtain the prime factorization. It is based on the following
theorem.

Theorem 33. If n is a composite, then there exists a prime p ≤
√
n such that p|n.

Proof. Since n is a composite, we have n = ab, where 1 < a < n and 1 < b < n. We can show that (using
proof by contradiction) either a ≤

√
n or b ≤

√
n, since a and b can not be both greater than

√
n. Now by

Theorem 32, we know that a (or b) are either prime or has a prime factor p such that p|a (or p|b). So we
conclude that there exists a prime p ≤

√
n such that p|n.

The contrapositive of the above theorem says that if a number n is not divisible by any primes p ≤
√
n,

then n is prime. As an example, you can show that 101 is a prime.
Now we describe an algorithm for factoring a natural number n.

Definition 36. Let n ∈ N and n > 1.

1. Let a := n.

2. P = {p | 2 ≤ p ≤
√
a, p is prime}.

3. We begin with 2, if there exists p ∈ P such that p|a, then in this case we found a prime factor p and
a = pb. Set a := b, then goto (2). Otherwise, it means that a itself is a prime factor, goto (4).

4. Return the p1 × ...× pn, where p1, ..., pn are all the prime factors found.

5You can learn more about RSA in the upper lever course Math 4116.
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As an example, let’s consider n = 7007. Note that 2, 3, 5 do not divide 7007. So the smallest prime factor
is 7, with 7007 = 7 × 1001. Similarly, the smallest prime factor of 1001 is 7, with 1001 = 7 × 143. Now
consider 143, we just need to test if any of {2, ..., 11} is a prime factor (since

√
143 < 12). We found that

143 = 11× 13. Therefore, we found a prime factorization 7007 = 72 × 11× 13.
An partial order is a relation that is reflexive, antisymmetric and transitive. An example of partial order

is ≤ on N. You can show that the relation a|b on N is also a partial order. In the following notion of greatest
common divisor and least common multiple, the words greatest/least are relative to the partial order a|b.

Definition 37. Let a, b, n ∈ N.

• We say n is a common divisor of a, b if n|a and n|b.

• We say n is the greatest common divisor of a, b if n is a common divisor of a, b and for any other
common divisor m, we have m|n. We write gcd(a, b) to denote the greatest common divisor.

• We say a, b are coprime/relatively prime if gcd(a, b) = 1.

• We say n is the least common multiple of a, b if a|n and b|n. And if there exists m such that a|m
and b|m, then n|m. We write lcm(a, b) to denote the least common multiple.

Theorem 34. Suppose a = pa1
1 × p

a2
2 × ...× pan

n and b = pb11 × p
b2
2 × ...× pbnn , where p1, ..., pn are primes and

pairwise distinct, and a1, ..., an, b1, ...bn ≥ 0. Then

• gcd(a, b) = p
min(a1,b1)
1 × pmin(a2,b2)

2 × ...× pmin(an,bn)
n , where min returns the smaller number.

• lcm(a, b) = p
max(a1,b1)
1 × pmax(a2,b2)

2 × ...× pmax(an,bn)
n , where max returns the larger number.

Theorem 35. Suppose a, b ∈ N. We have ab = lcm(a, b)× gcd(a, b).

Note that we have lcm(0, 0) = gcd(0, 0) = 0.

6.3 Euclidean division and gcd algorithms

We have learned the division theorem (Theorem 27) in previous section. For the sake of simplicity, we will
focus on natural numbers instead of integers. Now we are going to give a recursive function that calculates
the quotient and remainder. Giving numbers a, b ∈ N and b > 0, the idea of calculating quotient and
remainder of a and b is the following, we repeatedly subtract b from a, until we obtain a number r that is
smaller than a, then that r is the remainder and the number of times that we perform the subtraction is the
quotient.

Definition 38 (Euclidean division algorithm). We define the following division function that return a pair
of quotient and remainder.

divMod : N× (N− {0})→ N× N.
divMod(n,m) | if n < m = (0, n)
divMod(n,m) | if n ≥ m = (q + 1, r), where (q, r) = divMod(n−m,m).

For example, consider the following evaluation of divMod(10, 3):

divMod(10, 3) = (q1 + 1, r1), where (q1, r1) = divMod(7, 3).
divMod(7, 3) = (q2 + 1, r2), where (q2, r2) = divMod(4, 3).
divMod(4, 3) = (q3 + 1, r3), where (q3, r3) = divMod(1, 3).

divMod(1, 3) = (0, 1).
So r1 = r2 = r3 = 1, and q1 = q2 + 1 = q3 + 1 + 1 = 0 + 1 + 1 = 2.

Therefore divMod(10, 3) = (q1 + 1, r1) = (3, 1).
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We can verify that 3 is indeed the quotient and 1 is the remainder, i.e., 10 = 3 × 3 + 1. The following
theorem shows that the divMod function we defined indeed performs the division as expected.

Theorem 36 (Euclidean division theorem). Let a, d ∈ N and d > 0. If divMod(a, d) = (q, r), then a = dq+r
and 0 ≤ r < d.

Proof. We prove this by strong induction on a.
Base case: a = 0. In this case divMod(0, d) = (0, 0). Therefore 0 = d× 0 + 0 and 0 < d.
Step case: Let a ∈ N. We assume (as inductive hypothesis) for any 0 ≤ k < a, if divMod(k, d) = (p, s) ,

then k = dp+ s and 0 ≤ s < d.
We need to show: If divMod(a, d) = (q, r), then a = dq + r and 0 ≤ r < d.

Suppose a < d. Then divMod(a, d) = (0, a). Therefore a = d× 0 + a and a < d.
Suppose a = d. We have divMod(a − d, d) = divMod(0, d) = (0, 0). Thus divMod(a, d) = (1, 0). So

a = d× 1 + 0 and 0 < d.
Suppose a > d. Since d > 0, so 0 < a − d < a. In this case divMod(a, d) = (u + 1, v) and (u, v) =

divMod(a− d, d). By induction hypothesis, if divMod(a− d, d) = (u, v), then a− d = du+ v and 0 ≤ v < d.
Thus we have a = d(u+ 1) + v and 0 ≤ v < d.

So by strong induction, we conclude.

Sometimes it is convenient to separate the divMod function into two separate functions, namely div
function for calculating quotient, and a mod function for calculating remainder. We give the following
definition.

Definition 39.
div : N× (N− {0})→ N
div(a, b) = 0 if a < b.
div(a, b) = 1 + div(a− b, b), if a ≥ b.

mod : N× (N− {0})→ N
mod(a, b) = a if a < b.
mod(a, b) = mod(a− b, b), if a ≥ b.

Euclidean GCD algorithm Recall that n is the greatest common divisor of a, b if n is a common divisor
of a, b and for any other common divisor m, we have m|n. Our method of calculating gcd(a, b) relies on
prime factorization of a, b, which is not very efficient when a and b are large. So can we find another way
to calculate gcd(a, b)? Euclid came up with the very first efficient algorithm based on division theorem: Let
a, b ∈ N and b > 0. By division theorem, we have a = kb+ r for some unique k, r ∈ N such that 0 ≤ r < b.
Now to calculate gcd(a, b), it is enough to calculate gcd(b, r). Why does this make sense? Because we
know that gcd(b, r)|b and gcd(b, r)|r by definition of gcd(b, r), therefore we have gcd(b, r)|a. So gcd(b, r) is a
common divisor of a and b. It turns out it is also the greatest common divisor for a and b (the proof is left
in the exercises).

Let’s look at an example, gcd(40, 28). By division theorem, we have the following.

40 = 1× 28 + 12.
28 = 2× 12 + 4.
12 = 3× 4 + 0.

Thus gcd(4, 0) = 4. Moreover, we have gcd(4, 0)|0, gcd(4, 0)|4, gcd(4, 0)|12, gcd(4, 0)|28, gcd(4, 0)|40. So we
conclude gcd(4, 0) = gcd(40, 28) = 4.

Based on the above observations, we define the following recursive function for calculating gcd(a, b).
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Definition 40.
gcd : N× N→ N
gcd(a, 0) = a.
gcd(a, b) | if b > 0 = gcd(b,mod(a, b)).

Note that since gcd(a, 0)|0 and gcd(a, 0)|a, so we define gcd(a, 0) = a. As an example, the following is
the evaluation process for gcd(40, 28).

gcd(40, 28) = gcd(28,mod(40, 28)) = gcd(28, 12)
= gcd(12,mod(28, 12)) = gcd(12, 4) = gcd(4,mod(12, 4)) = gcd(4, 0) = 4.

6.4 Bézout’s identity and extended GCD

Definition 41 (Modular inverse). Let m ∈ N and m > 0, we say b ∈ Zm is the modular inverse of a ∈ Zm

if ab ≡ 1 (mod m).

As an example, let us consider m = 5 and a = 3. Then the modular inverse of a is 2 because 2a =
6 ≡ 1 (mod 5). Note that given a number a ∈ Zm, its modular inverse need not exist. Consider m = 4
and a = 2, we can not find any number from Z4 = {0, 1, 2, 3} that is the modular inverse of 2. So now the
question is, when does the inverse exist for a modulo m? Bézout’s identity provides a nice answer. In short,
if gcd(a,m) = 1 (i.e., a and m are relatively prime), then the inverse exist for a modulo m. Before we explain
why, let us first take a look at what is Bézout’s idenity.

Theorem 37 (Bézout’s Identity). Let a, b ∈ N. There exists s, t ∈ Z such that gcd(a, b) = s · a + t · b. We
call s, t Bézout coefficients.

Note that Bézout coefficients are not unique and they can be negatives. For example, gcd(10, 12) = 2 =
−1× 10 + 1× 12 = 11× 10 + (−9)× 12.

Now let us go back to the modular inverse question. When gcd(a,m) = 1, by Bézout’s identity, we know
there exists s, t ∈ Z such that gcd(a,m) = 1 = sa+ tm, which means 1 ≡ sa (mod m), thus mod(s,m) ∈ Zm

is the modular inverse of a. This observation tells us that if we know how to calculate Bézout coefficients,
then we know how to find the modular inverse.

So how do we calculate Bézout coefficients? We will use the division theorem again. Let us consider the
example gcd(40, 28). We have the following.

40 = 1× 28 + 12
28 = 2× 12 + 4
12 = 3× 4 + 0

So the gcd(40, 28) = gcd(4, 0) = 4. If we shift things around, we will have 4 = 28−2×12 and 12 = 40−1×28.
Now we can substitute the equation for 12 into the equation for 4, then we get 4 = 28− 2× (40− 1× 28) =
−2 × 40 + 3 × 28. Thus Bézout’s coefficients for gcd(40, 28) are −2 and 3. The above process of using
substitution to obtain Bézout’s coefficients is called back substitution.

Now consider the equation obtained from division theorem when we divide a by b: a = qb + r. As
we know, gcd(a, b) = gcd(b, r). Now suppose we know the Bézout’s coefficients for gcd(b, r) is s, t, (i.e.,
gcd(b, r) = sb + tr). Since r = a − qb, we then substitute r in gcd(a, b) = sb + tr, we get gcd(a, b) =
sb+ t(a−qb) = ta+(s− tq)b. This means that if we know how to calculate Bézout’s coefficients for gcd(b, r),
then we can obtain Bézout’s coefficients for gcd(a, b). Based on this observation, we define the following
recursive function that calculates Bézout’s coefficients.

Definition 42 (Extended GCD). The following extGCD(a, b) calculate the gcd and the Bézout’s coefficients.
extGCD : N× N→ N× Z× Z
extGCD(a, 0) = (a, 1, 0).
extGCD(a, b) | if b > 0 = (g, t, s− q × t), where (q, r) = divMod(a, b) and (g, s, t) = extGCD(b, r).
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Note that a = gcd(a, 0) = 1× a+ 0× 0. Of course we could have define extGCD(a, 0) = (a, 1, k) for any
k ∈ Z, since a = gcd(a, 0) = 1 × a + k × 0, this explains why Bézout’s coefficients are not unique. In this
note we stick with extGCD(a, 0) = (a, 1, 0).

Let us now look at the following evaluation process for extGCD(662, 414).

extGCD(662, 414) = (g1, t1, s1 − q1t1), where (q1, r1) = divMod(662, 414) = (1, 248) and
(g1, s1, t1) = extGCD(414, 248).

extGCD(414, 248) = (g2, t2, s2 − q2t2), where (q2, r2) = divMod(414, 248) = (1, 166) and
(g2, s2, t2) = extGCD(248, 166).

extGCD(248, 166) = (g3, t3, s3 − q3t3), where (q3, r3) = divMod(248, 166) = (1, 82) and
(g3, s3, t3) = extGCD(166, 82).

extGCD(166, 82) = (g4, t4, s4 − q4t4), where (q4, r4) = divMod(166, 82) = (2, 2) and
(g4, s4, t4) = extGCD(82, 2).

extGCD(82, 2) = (g5, t5, s5 − q5t5), where (q5, r5) = divMod(82, 2) = (41, 0) and
(g5, s5, t5) = extGCD(2, 0) = (2, 1, 0).

So g5 = 2, s5 = 1, t5 = 0. Thus extGCD(82, 2) = (g5, t5, s5 − q5t5) = (2, 0, 1− 41× 0) = (2, 0, 1).
So g4 = 2, s4 = 0, t4 = 1. Thus extGCD(166, 82) = (g4, t4, s4 − q4t4) = (2, 1, 0− 2× 1) = (2, 1,−2).

So g3 = 2, s3 = 1, t3 = −2. Thus extGCD(248, 166) = (g3, t3, s3 − q3t3) = (2,−2, 1− 1× (−2)) = (2,−2, 3).
So g2 = 2, s2 = −2, t2 = 3. Thus extGCD(414, 248) = (g2, t2, s2 − q2t2) = (2, 3,−2− 1× 3) = (2, 3,−5).

So g1 = 2, s1 = 3, t1 = −5. Thus extGCD(662, 414) = (g1, t1, s1 − q1t1) = (2,−5, 3− 1× (−5)) = (2,−5, 8).
We can verify that 2 = −5× 662 + 8× 414.

The following theorem shows that extGCD(a, b) is indeed calculating Bézout’s coefficients.

Theorem 38. Let a, b ∈ N. If extGCD(a, b) = (g, s, t), then g = s · a+ t · b and gcd(a, b) = g.

Proof. We prove this by strong induction on b.

• Base case. b = 0. We have extGCD(a, 0) = (a, 1, 0). So a = 1 · a+ 0 · 0 and a = gcd(a, 0).

• Step case. Suppose for any 0 ≤ k < b, if extGCD(a, k) = (g′, s′, t′), then g′ = s′ · a + t′ · k and
gcd(a, k) = g′ for any a ∈ N (IH).

Since b > 0, we have extGCD(a, b) = (g, t, s − q × t), where (q, r) = divMod(a, b) and extGCD(b, r) =
(g, s, t). We need to show g = gcd(a, b) and t · a+ (s− q × t) · b = g.

Note that a = qb + r. Since 0 ≤ r < b, by IH, we have g = s · b + t · r and gcd(b, r) = g. So we have
gcd(a, b) = gcd(b, r) = g and t·a+(s−q×t)·b = (t×(qb+r))+(s−q×t)·b = tqb+tr+sb−qtb = tr+sb = g.

6.5 Solving congruences

Consider the following equivalences:

x ≡ 4 (mod 7)
x ≡ 1 (mod 6)

Does a solution for x ∈ Z6×7 exist? In another word, can we find an element c ∈ Z6×7 such that c ≡ 4 (mod 7)
and c ≡ 1 (mod 6)? The answer for this question is yes, and the method that we use to obtain such c is
called Chinese remainder theorem.

Theorem 39 (Chinese remainder theorem). Let a, b,m, n ∈ N, m,n > 0 and gcd(m,n) = 1. There exists a
unique x ∈ Zmn such that the following holds.
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x ≡ a (mod m)
x ≡ b (mod n)

Proof. Since gcd(m,n) = 1, by Bézout’s identity, we have s, t ∈ Z such that sm + tn = 1. Thus tn ≡
1 (mod m) and sm ≡ 1 (mod n). Let x = mod(smb + tna,mn) ∈ Zmn. By division theorem, we have
smb+tna = qmn+x for some quotient q ∈ Z. Thus x = smb+tna−qmn. Observe that x ≡ tna ≡ a (mod m)
and x ≡ smb ≡ b (mod m). Therefore we find the solution for x.

We leave proving the uniquenss of x as an exercise.

Once again, we note that computing Bézout coefficients play a crucial role in the Chinese remainder
theorem. Now let us look back at the following equivalences.

x ≡ 4 (mod 7)
x ≡ 1 (mod 6)

Since 1× 7 + (−1)× 6 = 1 = gcd(6, 7), let x = mod(1× 7× 1 + (−1)× 6× 4, 42) = mod(−17, 42) = 25.
We can verify that 25 indeed satisfies the above modular equivalences.

We also have the following more general form of Chinese remainder theorem.

Theorem 40. Let a1, ..., ak,m1, ...,mk ∈ N, mi > 0 for all i and gcd(mi,mj) = 1 when i 6= j. There exists
a unique x ∈ Zm1...mk

such that the following holds.

x ≡ a1 (mod m1)
...

x ≡ ak (mod mk)

Proof. Here we only show the existence of x. Let Mi = m1 × ...×mk/mi, i.e., Mi is a product of m1, ...mk

that excludes mi. Therefore gcd(Mi,mi) = 1. So Mi has an modular inverse bi such that biMi ≡ 1 (mod mi).
Let x = mod(b1M1a1 + b2M2a2 + ...+ bkMkak,m1...mk) ∈ Zm1...mk

. Thus by division theorem, we have
x = b1M1a1 + b2M2a2 + ...+ bkMkak − qm1...mk. We can show that x ≡ ai (mod mi) for all i.

As an example, let us look at the following equivalences.

x ≡ 2 (mod 3)
x ≡ 1 (mod 5)
x ≡ 1 (mod 7)

Let M1 = 5 × 7 = 35,M2 = 3 × 7 = 21,M3 = 3 × 5 = 15. We calculate the inverse for M1 modulo 3,
which is 2. Similarly, the inverse for M2 modulo 5 is 1 and the inverse for M3 modulo 7 is 1. Therefore we
let x = mod(2×M1 × 2 + 1×M2 × 1 + 1×M3 × 1, 3× 5× 7) = 71. We can verify that this is indeed the
solution for x.

6.6 Fermat’s little theorem

Consider the task of calculating mod(21001, 5). If we first calculate the exponentiation 21001, and then
calculate the remainder, it would be too slow and inefficient. Fermat’s little theorem solve this problem for
us. The following is the theorem.

Theorem 41 (Fermat’s little theorem). Let a ∈ N, p be prime and p 6 |a. We have ap−1 ≡ 1 (mod p).
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So how do we use Fermat’s little theorem to calculate mod(21001, 5)? Since by Fermat’s little theorem, we
have 24 ≡ 1 (mod p). Moreover, recall we have mod(a×b,m) = mod(mod(a,m)×mod(b,m),m). By division
theorem, we know that 1001 = 250× 4 + 1, so mod(21001, 5) = mod(2250×4 × 2, 5) = mod(mod(2250×4, 5)×
mod(2, 5), 5) = mod(2, 5) = 2.

In general, whenever we need to calculate the exponentiation of ab modulo some prime p, where p 6 |a,
then we can use Fermat’s little theorem to drastically simplify the calculation. Now let us prove Fermat’s
little theorem. it requires the following two lemmas.

Lemma 1. Recall for the combinatorics function C(p, i), where p is a prime and 0 < i < p, and C(p, i) =
p!

i!×(p−i)! . We have C(p, i) ≡ 0 (mod p).

Proof. Exercise.

Lemma 2 (Modular binomial expansion). Let p be a prime and x, y ∈ N. Then (x+y)p ≡ xp +yp (mod p).

Proof. By Binomial theorem, we have (x+y)p = C(p, 0)xp+C(p, 1)xp−1y+ ...+C(p, p−1)xyp−1+C(p, p)yp.
Since p|C(p, 1), ..., p|C(p, p − 1) (by Lemma 1), and C(p, 0) = C(p, p) = 1, we have (x + y)p ≡ xp +
yp (mod p).

Theorem 42. Let a ∈ N, p be prime. We have ap ≡ a (mod p).

Proof. We prove this theorem by induction on a.

• Base case: a = 0. In this case we have 0p ≡ 0 (mod p).

• Step case: Let a ∈ N. We assume ap ≡ a (mod p) as inductive hypothesis. We need to prove
(a + 1)p ≡ a + 1 (mod p). We have (a + 1)p ≡ ap + 1 ≡ a + 1 (mod p). Note that the first modular
equivalence is by Lemma 2, and the second one is by induction.

Theorem 43 (Fermat’s little theorem). Let a ∈ N, p be prime and p 6 |a. We have ap−1 ≡ 1 (mod p).

Proof. By Theorem 42, we have ap ≡ a (mod p). Since p is a prime and p 6 |a, we know that gcd(p, a) = 1.
So a has a modular inverse, let’s denote it by a−1. Multiply both sides of ap ≡ a (mod p) with a−1, we have
ap−1 ≡ 1 (mod p).

6.7 A quick tour of RSA

Definition 43 (RSA).
Public Priviate
n n = pq, where p, q are large primes.
e d, where e is a number such that gcd(e, (p− 1)(q − 1)) = 1.

d can be calculated from e, i.e., de ≡ 1 (mod (p− 1)(q − 1))

Encryption: Let m be a number represents plaintext. We can calculate the ciphertext c = (me mod n).
Decryption: Calculate mod(cd, n).
Protocol: Each person has her own private key and public key, where the private key are keep private, the
public key can be sent to the internet.

If Alice want to send Bob a message m, she just need to obtain Bob’s public key (n, e) from the internet,
and calculate c = mod(me, n) and send c to Bob.

When Bob receives c, he just need to fetch his private key (n, d) and calculates mod(cd, n).
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Why RSA is secure? What are the obvious attacks? One way to find out m is to factor n into a product
of two primes, but this is a hard problem. The other way is to use a chosen plaintext m and try to calculate
the modular logarithm (or discrete logarithm) d via (me)d ≡ m (mod n). But this is again hard because
there is no known efficient way to solve discrete logarithm problem.

Why RSA is correct? The following theorem establish the correctness of RSA.

Theorem 44. Let p, q be different primes, n = pq and de ≡ 1 (mod (p− 1)(q − 1)). Then for any number
0 ≤ m < min(p, q), (me)d ≡ m (mod n).

Proof. Since de ≡ 1 (mod (p − 1)(q − 1)), we have de = k(p − 1)(q − 1) + 1 for some k ∈ N. So by
Fermat’s little theorem, we have (me)d ≡ mde ≡ mk(p−1)(q−1)+1 ≡ mk(p−1)(q−1) · m ≡ m (mod p) and
(me)d ≡ mde ≡ mk(p−1)(q−1)+1 ≡ mk(p−1)(q−1) ·m ≡ m (mod q). Thus we have (me)d ≡ m (mod pq).
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