
Programming Quantum Circuits in Proto-Quipper
Frank Fu

Computer Science and Engineering Department, University of South Carolina

Objectives of Proto-Quipper

• Provide formal foundations for high-level quantum
programming languages.

• Identify high-level programming constructs for
quantum circuits.

• Support programming a wide range of quantum
algorithms.

Introduction

Quipper is a functional programming language for quantum
computing. Proto-Quipper is a family of languages aiming to
provide a formal foundation for Quipper. We added a notion
of dependent types to Proto-Quipper in 2020, which enables
Proto-Quipper to express family of quantum circuits indexed
by parameters. Recently, we have extended Proto-Quipper
with a construct called dynamic lifting. Dynamic lifting is an
operation that enables a state, such as the result of a mea-
surement, to be lifted to a parameter, where it can influence
the generation of the next portion of the circuit. As a result,
dynamic lifting enables Proto-Quipper programs to interleave
classical and quantum computation.

A Repeat-Until-Success Algorithm

The repeat-until-success paradigm provides a technique to ap-
ply a unitary that cannot be implemented exactly, at the cost
of potentially running the same circuit multiple times. In or-
der to apply a non-Clifford+T gate N to a target qubit |ϕ⟩,
one first initializes several ancillary qubits before applying a
well-chosen Clifford+T circuit C to the target and the ancillas
and measuring the ancillas. If all of the measurement results
are 0, the target qubit is guaranteed to be in the state N |ϕ⟩.
Otherwise, a correction is applied to the target to return it to
its initial state and the process is repeated.
The following circuit gives an illustration of how to implement
the gate V3 = I+2iZ√

5 [Paetznick and Svore 2014].

0 H T*

0 H

T H Meas

T Z

T H Meas

Quantum Fourier Transform

The quantum Fourier transform is the map defined by
|a1, . . . , an⟩ 7→

(|0⟩ + e2πi0.a1a2...an|1⟩) . . . (|0⟩ + e2πi0.an−1an|1⟩)(|0⟩ + e2πi0.an|1⟩)
2n/2 .

Let us define the controlled rotation gates R(k) by

R(k) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/2k

 .

Applying the Hadamard gate to the first qubit produces the
following state

H1|a1, . . . , an⟩ = 1√
2
(|0⟩ + e2πi0.a1|1⟩) ⊗ |a2, . . . , an⟩,

where the subscript on the gate indicates the qubit on which
the gate acts. We then apply a sequence of controlled rotations
using the the first qubit as the target. This yields
R(n)1,n . . . R(2)1,2H1|a1, . . . , an⟩ = 1

21/2(|0⟩+e2πi0.a1a2...an|1⟩)⊗|a2, . . . , an⟩,

where the subscripts i and j in R(k)i,j indicate the target and
control qubit, respectively. The following circuit corresponds
to QFT on 5 qubits.

H R(2) R(3) R(4) R(5)

H R(2) R(3) R(4)

H R(2) R(3)

H R(2)

H

Proto-Quipper Program for V3

The following is a Proto-Quipper program that implements the
repeat-until-success algorithm for V3 gate outlined above.

QFT in Proto-Quipper

The following is a Proto-Quipper program describes QFT as a
family of circuits parameterized by the number of qubits.

Summary and Future Work

We show Proto-Quipper programs for a repeat-until-success al-
gorithm and Quantum Fourier Transform. They showcase the
use of dynamic lifting and dependent types. For future work,
on the aspect of language design, we are investigating the sup-
port for controlling and reversing quantum circuits in Proto-
Quipper. On the aspect of implementation and compilation,
we plan to explore the possibility of compiling Proto-Quipper
to lower level languages such as OpenQASM and QIR.

References

[1] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger.
Proto-quipper with dynamic lifting.
Proc. ACM Program. Lang., 7(POPL), jan 2023.

[2] Peng Fu, Kohei Kishida, and Peter Selinger.
Linear Dependent Type Theory for Quantum Programming
Languages.
Logical Methods in Computer Science, Volume 18, Issue 3,
September 2022.

[3] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger.
A tutorial introduction to quantum circuit programming in
dependently typed Proto-Quipper.
In Proceedings of the 12th International Conference on Reversible
Computation, RC 2020, Oslo, Norway, volume 12227 of Lecture
Notes in Computer Science, pages 153–168. Springer, 2020.

Acknowledgements

Joint work with Kohei Kishida, Neil J. Ross and Peter Selinger.

Contact Information

• Gitlab repository:
https://gitlab.com/frank-peng-fu/dpq-remake

• Web: https://cse.sc.edu/~pfu
• Email: pfu@cse.sc.edu

https://gitlab.com/frank-peng-fu/dpq-remake
https://cse.sc.edu/~pfu
mailto:pfu@cse.sc.edu

