
Self Types for Dependently Typed Lambda
Encodings

Peng Fu, Aaron Stump

Computer Science, The University of Iowa

Abstract. We revisit lambda encodings of data, proposing new solu-
tions to several old problems, in particular dependent elimination with
lambda encodings. We start with a type-assignment form of the Calcu-
lus of Constructions, restricted recursive definitions and Miquel’s implicit
product. We add a type construct ιx.T , called a self type, which allows
T to refer to the subject of typing. We show how the resulting System S
with this novel form of dependency supports dependent elimination with
lambda encodings, including induction principles. Strong normalization
of S is established by defining an erasure from S to a version of Fω with
positive recursive type definitions, which we analyze. We also prove type
preservation for S.

1 Introduction

Modern type-theoretic tools Coq and Agda extend a typed lambda calculus with
a rich notion of primitive datatypes. Both tools build on established foundational
concepts, but the interactions of these, particularly with datatypes and recur-
sion, often leads to unexpected problems. For example, it is well-known that
type preservation does not hold in Coq, due to the treatment of coinductive
types [14]. Arbitrary nesting of coinductive and inductive types is not supported
by the current version of Agda, leading to new proposals like co-patterns [2]. And
new issues are discovered with disturbing frequency; e.g., an unexpected incom-
patibility of extensional consequences of Homotopy Type Theory with both Coq
and Agda was discovered in December, 2013 [21].

The above issues all are related to the datatype system, which must de-
termine what are the legal inductive/coinductive datatypes, in the presence of
indexing, dependency, and generalized induction (allowing functional arguments
to constructors). And for formal study of the type theory – either on paper [23],
or in a proof assistant [5] – one must formalize the datatype system, which can
be daunting, even in very capable hands (cf. Section 2 of [6]).

Fortunately, an alternative to primitive datatypes exists: lambda encodings,
like the well-known Church and Scott encodings [7,10]. Utilizing the core typed
lambda calculus for representing data means that no datatype system is needed
at all, greatly simplifying the formal theory. We focus here just on inductive
types, since in extensions of System F, coinductive types can be reduced to
inductive ones [12].

Several problems historically prevented lambda encodings from being adopted
in practical type theories. Scott encodings are efficient but do not inherently
provide a form of iteration or recursion. Church encodings inherently provide
iteration, and are typable in System F. Due to strong normalization of System
F [15], they are thus suitable for use in a total (impredicative) type theory, but:

1. The predecessor of n takes O(n) time to compute instead of constant time.
2. We cannot prove 0 6= 1 with the usual definition of 6=.
3. Induction is not derivable [13].

These issues motivated the development of the Calculus of Inductive Construc-
tions (cf. [22]). Problem (1) is best known but has a surprisingly underappreci-
ated solution: if we accept positive recursive definitions (which preserve normal-
ization), then we can use Parigot numerals, which are like Church numerals but
based on recursors not iterators [20]. Normal forms of Parigot numerals are ex-
ponential in size, but a reasonable term-graph implementation should be able to
keep them linear via sharing. The other three problems have remained unsolved.

In this paper, we propose solutions to problems (2) and (3). For problem
(2) we propose to change the definition of falsehood from explosion (∀X.X,
everything is true) to equational inconsistency (∀X.Πx : X.Πy : X.x =X y,
everything is equal for any type). We point out that 0 6= 1 is derivable with
this notion. Our main contribution is for problem (3). We adapt CC to support
dependent elimination with Church or Parigot encodings, using a novel type
construct called self types, ιx.T , to express dependency of a type on its subject.
This allows deriving induction principles in a total type theory, and we believe it
is the missing piece of the puzzle for dependent typing of pure lambda calculus.

We summarize the main technical points of this paper:

– System S, which enables us to encode Church and Parigot data and derive
induction principles for these data.

– We prove strong normalization of S by erasure to a version of Fω with
positive recursive type definitions. We prove strong normalization of this
version of Fω by adapting a standard argument.

– Type preservation for S is proved by extending Barendregt’s method [4] to
handle implicit products and making use of a confluence argument.

Detailed arguments omitted here may be found in an extended version [11].

2 Overview of System S

System S extends a type-assignment formulation of the Calculus of Construc-
tions (CC) [9]. We allow global recursive definitions in a form we call a closure:

{(xi : Si) 7→ ti}i∈N ∪ {(Xi : κi) 7→ Ti}i∈M

The xi are term variables which cannot appear in the terms ti, but can appear in
the types Ti. And N,M are nonempty index set. Occurrences in types are used

2

to express dependency, and are crucial for our approach. Erasure to Fω with
positive recursive definitions will drop all such occurrences. The Xi are type
variables that can appear positively in the Ti or at erased positions (explained
later).

The essential new construct is the self type ιx.T . Note that this is different
from self typing in the object-oriented (OO) literature, where the central problem
has been to allow self-application while still validating natural record-subtyping
rules [19,1]. Typing the self parameter of an object’s methods appears different
from allowing a type to refer to its subject, though Hickey proposes a type-
theoretic encoding of objects based on very dependent function types {f |x :
A→ B}, where the range B can depend on both x and values of the function f
itself [16]. The self types we propose appear to be simpler.

2.1 Induction Principle

Let us take a closer look at the difficulties of deriving an induction principle for
Church numerals in CC, and then consider our solutions. In CC à la Curry, let
Nat := ∀X.(X → X)→ X → X. One can obtain a notion of indexed iterator by
It := λx.λf.λa.x f a and It : ∀X.Πx : Nat.(X → X) → X → X. Thus we have
It n̄ =β λf.λa.n̄ f a =β λf.λa. f(f(f...(f︸ ︷︷ ︸

n

a)...)). One may want to know if we

can obtain a finer version, namely, the induction principle-Ind such that:
Ind : ∀P : Nat→ ∗.Πx : Nat.(Πy : Nat.(Py → P (Sy)))→ P 0̄→ P x

Let us try to construct such Ind. First observe the following beta-equalities and
typings:

Ind 0̄ =β λf.λa.a
Ind 0̄ : (Πy : Nat.(Py → P (Sy)))→ P 0̄→ P 0̄
Ind n̄ =β λf.λa. f n− 1(...f 1̄ (f︸ ︷︷ ︸

n>0

0̄ a))

Ind n̄ : (Πy : Nat.(Py → P (Sy)))→ P 0̄→ P n̄
with f : Πy : Nat.(Py → P (Sy)), a : P 0̄

These equalities suggest that Ind := λx.λf.λa.x f a, using Parigot numerals [20]:
0̄ := λs.λz.z
n̄ := λs.λz.s n− 1 (n− 1 s z)

Each numeral corresponds to its terminating recursor.
Now, let us try to type these lambda numerals. It is reasonable to assign

s : Πy : Nat.(P y → P (S y)) and z : P 0̄. Thus we have the following typing
relations:

0̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P 0̄
1̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P 1̄
n̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄

So we want to define Nat to be something like:
∀P : Nat→ ∗.Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄ for any n̄.

Two problems arise with this scheme of encoding. The first problem involves
recursiveness. The definiens of Nat contains Nat, S and 0̄, while the type of S

3

is Nat → Nat and the type of 0̄ is Nat. So the typing of Nat will be mutually
recursive. Observe that the recursive occurrences of Nat are all at the type-
annotated positions; i.e., the right side of the “:”.

Note that the subdata of n̄ is responsible for one recursive occurrence of Nat,
namely, Πy : Nat. If one never computes with the subdata, then these numerals
will behave just like Church numerals. This inspires us to use Miquel’s implicit
product [18]. In this case, we want to redefine Nat to be something like:
∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P n̄ for any n̄.

Here ∀y : Nat is the implicit product. Now our notion of numerals are exactly
Church numerals instead of Parigot numerals. Even better, this definition of
Nat can be erased to Fω. Since Fω’s types do not have dependency on terms,
P : Nat → ∗ will get erased to P : ∗. It is known that one can also erase the
implicit product [3]. The erasure of Nat will be ΠP : ∗.(P → P) → P → P ,
which is the definition of Nat in Fω.

The second problem is about quantification. We want to define a type Nat
for any n̄, but right now what we really have is one Nat for each numeral n̄. We
solve this problem by introducing a new type construct ιx.T called a self type.
This allows us to make this definition (for Church-encoded naturals):

Nat := ιx.∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P x
We require that the self type can only be instantiated/generalized by its own
subject, so we add the following two rules:

Γ ` t : [t/x]T

Γ ` t : ιx.T
selfGen

Γ ` t : ιx.T
Γ ` t : [t/x]T

selfInst

We have the following inferences1:

n̄ : ∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P n̄

n̄ : ιx.∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P x

2.2 The Notion of Contradiction

In CC à la Curry, it is customary to use ∀X : ∗.X as the notion of contradiction,
since an inhabitant of the type ∀X : ∗.X will inhabit any type, so the law of ex-
plosion is subsumed by the type ∀X : ∗.X. However, this notion of contradiction
is too strong to be useful. Let t =A t

′ denote ∀C : A→ ∗.C t→ C t′ with t, t′ : A.
Then 0 =Nat 1 can be expanded to ∀C : Nat→ ∗.C 0→ C 1 (0 is Leibniz equals
to 1). One can not derive a proof for (∀C : Nat → ∗.C 0 → C 1) → ∀X : ∗.X,
because the erasure of (∀C : Nat → ∗.C 0 → C 1) → ∀X : ∗.X in System F
would be (∀C : ∗.C → C) → ∀X : ∗.X, and we know that ∀C : ∗.C → C is
inhabited. So the inhabitation of (∀C : Nat → ∗.C 0 → C 1) → ∀X : ∗.X will
imply the inhabitation of ∀X : ∗.X in System F, which does not hold. If we take
Leibniz equality and use ∀X : ∗.X as contradiction, then we can not prove any
negative results about equality.

1 The double bar means that the converse of the inference also holds.

4

On the other hand, an equational theory is considered inconsistent if a = b
for all term a and b. So we propose to use ∀A : ∗.Πx : A.Πy : A.x =A y as
the notion of contradiction in CC. We first want to make sure it is uninhabited.
The way to argue that is first assume it is inhabited by t. Since CC is strongly
normalizing, the normal form of t must be of the form2 [λA : ∗.]λx[: A].λy[:
A].[λC : A→ ∗].λz[: C x].n for some normal term n with type C y, but we know
that there is no combination of x, y, z to make a term of type C y. So the type
∀A : ∗.Πx : A.Πy : A.∀C : A→ ∗.Cx→ Cy is uninhabited. We can then prove
the following theorem 3:

Theorem 1. 0 = 1 → ⊥ is inhabited in CC, where ⊥ := ∀A : ∗.Πx : A.Πy :
A.∀C : A→ ∗.C x→ C y, 0 := λs.λz.z, 1 := λs.λz.s z.

Once ⊥ is derived, one can not distinguish the domain of individuals. Note
that this notion of contradiction does not subsume law of explosion.

3 System S

We use gray boxes in this section to highlight the terms, types and rules that
are not in Fω with positive recusive definitions 4.

3.1 Syntax

Terms t ::= x | λx.t | tt′

Types T ::= X | ∀X : κ.T | Πx : T1.T2 | ∀x : T1.T2 |
ιx.T | T t | λX.T | λx.T | T1T2

Kinds κ ::= ∗ | Πx : T.κ | ΠX : κ′.κ
Context Γ ::= · | Γ, x : T | Γ,X : κ | Γ, µ
Closure µ ::= {(xi : Si) 7→ ti}i∈N ∪ {(Xi : κi) 7→ Ti}i∈M

Closures. For {(xi : Si) 7→ ti}i∈N , we mean the term variable xi of type Si
is defined to be ti for some i ∈ N ; similarly for {(Xi : κi) 7→ Ti}i∈M .

Legal positions for recursion in closures. For {(xi : Si) 7→ ti}i∈N ,
we do not allow any recursive (or mutually recursive) definitions. For {(Xi :
κi) 7→ Ti}i∈M , we only allow singly recursive type definitions, but not mutually
recursive ones. This is not a fundamental limitation of the approach; it is just
for simplicity of the normalization argument. The recursive occurrences of type
variables can only be at positive or erased positions. Erased positions, following
the erasure function we will see in Section 5.1, are those in kinds or in the types
for ∀-bound variables.

Variable restrictions for closures. Let FV(e) denote the set of free term
variables in expression e (either term, type, or kind), and let FVar(T) denote the

2 We use square brackets [] to show annotations that are not present in the inhabiting
lambda term in Curry-style System F.

3 Coq code for this is in the extended version.
4 Full specification of Fω with positive recursive definitions is in the extended version.

5

set of free type variables in type T . Then for {(xi : Si) 7→ ti}i∈N ∪ {(Xi : κi) 7→
Ti}i∈M , we make the simplifying assumption that for any 1 ≤ i ≤ n, FV(ti) = ∅.
Also, for any 1 ≤ i ≤ m, we require FV(Ti) ⊆ dom(µ), and FVar(Ti) ⊆ {Xi}.
All our examples below satisfy these conditions.

3.2 Kinding and Typing

Some remarks on the typing and kinding rules:
Notation for accessing closures. (ti : Si) ∈ µ means (xi : Si) 7→ ti ∈ µ

and (Ti : κi) ∈ µ means (Xi : κi) 7→ Ti ∈ µ. Also, xi 7→ ti ∈ µ means (xi : Si) 7→
ti ∈ µ for some Si and Xi 7→ Ti ∈ µ means (Xi : κi) 7→ Ti ∈ µ for some κi.

Well-formed annotated closures. Γ ` µ ok stands for {Γ, µ ` tj :
Tj}(tj :Tj)∈µ and {Γ, µ ` Tj : κj}(Tj :κj)∈µ. In other words, the defining expres-
sions in closures must be typable with respect to the context and the entire
closure.

Notation for equivalence. ∼= is the congruence closure of →β .
Self type formation. Typing and kinding do not depend on well-formedness

of the context, so the self type formation rule self is not circular.

Well-formed Contexts Γ ` wf

· ` wf
Γ ` wf Γ ` T : ∗
Γ, x : T ` wf

Γ ` wf Γ ` κ : �
Γ,X : κ ` wf

Γ ` wf Γ ` µ ok

Γ, µ ` wf

Well-formed Kinds Γ ` κ : �

Γ ` ∗ : �

Γ,X : κ′ ` κ : � Γ ` κ′ : �

Γ ` ΠX : κ′.κ : �

Γ, x : T ` κ : � Γ ` T : ∗
Γ ` Πx : T.κ : �

Kinding Γ ` T : κ

(X : κ) ∈ Γ
Γ ` X : κ

Γ ` T : κ Γ ` κ ∼= κ′ Γ ` κ′ : �
Γ ` T : κ′

Γ ` T1 : ∗ Γ, x : T1 ` T2 : ∗
Γ ` Πx : T1.T2 : ∗

Γ,X : κ ` T : ∗ Γ ` κ : �

Γ ` ∀X : κ.T : ∗

Γ, x : T1 ` T2 : ∗ Γ ` T1 : ∗
Γ ` ∀x : T1.T2 : ∗

Γ, x : ιx.T ` T : ∗
Γ ` ιx.T : ∗ Self

Γ,X : κ ` T : κ′ Γ ` κ : �

Γ ` λX.T : ΠX : κ.κ′
Γ, x : T ′ ` T : κ Γ ` T ′ : ∗

Γ ` λx.T : Πx : T ′.κ

Γ ` S : Πx : T.κ Γ ` t : T
Γ ` S t : [t/x]κ

Γ ` S : ΠX : κ′.κ Γ ` T : κ′

Γ ` S T : [T/X]κ

Typing Γ ` t : T

6

Γ ` t : T1 Γ ` T1
∼= T2 Γ ` T2 : ∗

Γ ` t : T2
Conv

(x : T) ∈ Γ
Γ ` x : T

Var

Γ ` t : [t/x]T Γ ` ιx.T : ∗
Γ ` t : ιx.T

SelfGen
Γ ` t : ιx.T
Γ ` t : [t/x]T

SelfInst

Γ, x : T1 ` t : T2 Γ ` T1 : ∗ x /∈ FV(t)

Γ ` t : ∀x : T1.T2
Indx

Γ ` t : ∀x : T1.T2 Γ ` t′ : T1

Γ ` t : [t′/x]T2
Dex

Γ ` t : Πx : T1.T2 Γ ` t′ : T1

Γ ` tt′ : [t′/x]T2

App
Γ,X : κ ` t : T Γ ` κ : �

Γ ` t : ∀X : κ.T
Poly

Γ ` t : ∀X : κ.T Γ ` T ′ : κ

Γ ` t : [T ′/X]T
Inst

Γ, x : T1 ` t : T2 Γ ` T1 : ∗
Γ ` λx.t : Πx : T1.T2

Func

Reductions Γ ` t→β t
′ , Γ ` T →β T

′

(x 7→ t) ∈ Γ
Γ ` x→β t Γ ` (λx.t)t′ →β [t′/x]t

(X 7→ T) ∈ Γ
Γ ` X →β T

Γ ` (λx.T)t→β [t/x]T Γ ` (λX.T)T ′ →β [T ′/X]T

4 Lambda Encodings in S

Now let us see some concrete examples of lambda encoding in S. For convenience,
we write T → T ′ for Πx : T.T ′ with x /∈ FV(T ′), and similarly for kinds.

4.1 Natural Numbers

Definition 1 (Church Numerals). Let µc be the following closure:
(Nat : ∗) 7→ ιx.∀C : Nat→ ∗.(∀n : Nat.C n→ C (S n))→ C 0→ C x
(S : Nat→ Nat) 7→ λn.λs.λz.s (n s z)
(0 : Nat) 7→ λs.λz.z

With s : ∀n : Nat.C n→ C (S n), z : C 0, n : Nat, we have µc ` wf (using selfGen
and selfInst rules). Also note that the µc satisfies the constraints on recursive
definitions. Similarly, if we choose to use explicit product, then we can define
Parigot numerals.

Definition 2 (Parigot Numerals). Let µp be the following closure:

(Nat : ∗) 7→ ιx.∀C : Nat→ ∗.(Π n : Nat.C n→ C (S n))→ C 0→ C x
(S : Nat→ Nat) 7→ λn.λs.λz.s n (n s z)
(0 : Nat) 7→ λs.λz.z

7

Note that the recursive occurences of Nat in Parigot numerals are at positive
positions. The rest of the examples are about Church numerals, but a similar
development can be carried out with Parigot numerals.

Theorem 2 (Induction Principle).
µc ` Ind : ∀C : Nat→ ∗.(∀n : Nat.C n→ C (S n))→ C 0→ Πn : Nat.C n
where Ind := λs.λz.λn.n s z
with s : ∀n : Nat.C n→ C (S n), z : C 0, n : Nat.

Proof. Let Γ = µc, C : Nat → ∗, s : ∀n : Nat.C n → C (S n), z : C 0, n : Nat.
Since n : Nat, by selfInst, n : ∀C : Nat→ ∗.(∀y : Nat.C y → C (S y))→ C 0→
C n. Thus n s z : C n.

It is worth noting that it is really the definition of Nat and the selfInst rule that
give us the induction principle, which is not derivable in CC [8].

Definition 3 (Addition). m+ n := Ind S n m

One can check that µc ` + : Nat→ Nat→ Nat by instantiating the C in the type
of Ind by λy.Nat, then the type of Ind is (Nat→ Nat)→ Nat→ (Nat→ Nat).

Definition 4 (Leibniz’s Equality). Eq := λA[: ∗].λx[: A].λy[: A].∀C : A →
∗.C x→ C y.

Note that we use x =A y to denote Eq A x y. We often write t = t′ when the
type is clear. One can check that if ` A : ∗ and ` x, y : A, then ` x =A y : ∗.

Theorem 3. µc ` Πx : Nat.x+ 0 =Nat x

Proof. We prove this by induction. We instantiate C in the type of Ind with
λn.(n + 0) =Nat n. So by beta reduction at type level, we have (∀n : Nat.(n +
0 =Nat n) → ((S n) + 0 =Nat S n)) → 0 + 0 =Nat 0 → Πn : Nat.n + 0 =Nat n.
So for the base case, we need to show 0 + 0 =Nat 0, which is easy. For the
step case, we assume n + 0 =Nat n (Induction Hypothesis), and want to show
(S n) + 0 =Nat S n. Since (S n) + 0→β S (n S 0) =β S(n+ 0), by congruence on
the induction hypothesis, we have (S n)+0 =Nat S n. Thus Πx : Nat.x+0 =Nat x.

The above theorem is provable inside S. It shows how to inhabit the type
Πx : Nat.x+ 0 =Nat x given µc, using Ind.

4.2 Vector Encoding

Definition 5 (Vector). Let µv be the following definitions:
(vec : ∗ → Nat→ ∗) 7→

λU : ∗.λn : Nat. ιx .∀C : Πp : Nat.vec U p→ ∗ .
(Πm : Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y)))
→ C 0 nil→ C n x

(nil : ∀U : ∗.vec U 0) 7→ λy.λx.x
(cons : Πn : Nat.∀U : ∗.U → vec U n→ vec U (S n)) 7→ λn.λv.λl.λy.λx.y n v (l y x)
where n : Nat, v : U, l : vec U n, y : Πm : Nat.Πu : U.∀z : vec U m.(C m z →
C (S m) (cons m u z)), x : C 0 nil.

8

Typing: It is easy to see that nil is typable to ∀U : ∗.vec U 0. Now we show
how cons is typable to Πn : Nat.∀U : ∗.U → vec U n → vec U (S n). We
can see that l y x : C n l (using selfinst on l). After the instantiation with
l, the type of y n v is C n l → C (S n) (cons n v l). So y n v (l y x) :

C (S n) (cons n v l). So λy.λx.y n v (l y x) : ΠC : (Nat→ vec U p→ ∗).(Πm :

Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y))) → C 0 nil →
C (S n) (λy.λx.y n v (l y x)) . So by selfGen, we have λy.λx.y n v (l y x) :

vec U(S n). Thus cons : Πn : Nat.∀U : ∗.U → vec U n→ vec U (S n).

Definition 6 (Induction Principle for Vector).
µv ` Ind :
∀U : ∗.Πn : Nat.∀C : Nat→ vec U p→ ∗.
(Πm : Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y)))
→ C 0 nil→ Πx : vec U n.(C n x)

where Ind := λn.λs.λz.λx.x s z
n : Nat, s : ∀C : (Πp : Nat.vec U p→ ∗).(Πm : Nat.Πu : U.∀y : vec U m.(C m y →
C (S m) (cons m u y))), z : C 0 nil, x : vec U n.

Definition 7 (Append).
µv ` app : ∀U : ∗.Πn1 : Nat.Πn2 : Nat.vec U n1 → vec U n2 → vec U (n1 + n2)
where app := λn1.λn2.λl1.λl2.(Ind n1) (λn.λx.λv.cons (n+ n2) x v) l2 l1.

Typing: We want to show app : ∀U : ∗.Πn1 : Nat.Πn2 : Nat.vec U n1 →
vec U n2 → vec U (n1 + n2). Observe that λn.λx.λv.cons(n + n2) x v : Πn :
Nat.Πx : U.vec U (n + n2) → vec U (n + n2 + 1). We instantiate C :=
λy.(λx.vec U (y + n2)) , where x free over vec U (y + n2), in Ind n1. By beta
reductions, we get Ind n1 : (Πm : Nat.Πu : U.∀y : vec U m.(vec U (m + n2) →
vec U ((S m) + n2))→ vec U (0 + n2)→ Πx : vec U n1.vec U (n1 + n2).
So (Ind n1) (λn.λx.λv.cons(n+n2) x v) : vec U (0+n2)→ Πx : vec U n1.vec U (n1+n2).
We assume l1 : vec U n1, l2 : vec U n2. Thus (Ind n1) (λn.λx.λv.cons(n+n2) x v) l2 l1 :
vec U (n1 + n2).

5 Metatheory

We first outline the erasure from S to Fω with positive recursive definitions. Then we
conclude strong normalization for S by the strong normalization of Fω with positive
recursive definitions. The strong normalization proof is an extension of the method
describes in [17]. We also prove type preservation for S, which involves confluence
analysis (Section 5.2) and morph analysis (Section 5.3). All omitted proofs may be
found in the extended version [11].

5.1 Strong Normalization

We prove strong normalization of S through the strong normalization of Fω with
positive recursive definitions. We first define the syntax for Fω with positive recursive
definitions. We work with kind-annotated types to avoid the interpretation for ill-
formed types like λX.X → λX.X.

9

Definition 8 (Syntax for Fω with positive definitions).

Terms t ::= x | λx.t | tt′
Kinds κ ::= ∗ | κ′ → κ
Types Tκ ::= Xκ | (∀Xκ.T ∗)∗ | (T ∗1 → T ∗2)∗ | (λXκ1 .Tκ2)κ1→κ2 | (Tκ1→κ2

1 Tκ1
2)κ2

Context Γ ::= · | Γ, x : Tκ | Γ, µ
Definitions µ ::= {(xi : Sκi) 7→ ti}i∈N ∪ {Xκ

i 7→ Tκi }i∈M
Term definitions ρ ::= {xi 7→ ti}i∈N

Note that for every x 7→ t,Xκ 7→ Tκ ∈ µ, we require FV(t) = ∅ and FVar(Tκ) ⊆
{Xκ}; and the Xκ can only occur at the positive position in Tκ, no mutually recusive
definitions are allowed. We elide the typing rules for space reason.

Definition 9 (Erasure for kinds). We define a function F which maps kinds in S
to kinds in Fω with positive definitions.

F (∗) := ∗
F (Πx : T.κ) := F (κ)
F (ΠX : κ′.κ) := F (κ′)→ F (κ)

Definition 10 (Erasure relation). We define a relation Γ ` T . T ′κ (intuitively, it
means that type T can be erased to T ′κ under the context Γ), where T, Γ are types and
context in S, T ′κ is a type in Fω with positive definitions.

F (κ′) = κ (X : κ′) ∈ Γ
Γ ` X .Xκ

Γ ` T . Tκ1
Γ ` ιx.T . Tκ1

Γ,X : κ ` T . T ∗1
Γ ` ∀X : κ.T . (∀XF (κ).T ∗1)∗

Γ ` T1 . T
∗
a Γ ` T2 . T

∗
b

Γ ` Πx : T1.T2 . (T ∗a → T ∗b)∗

Γ ` T2 . T
κ

Γ ` ∀x : T1.T2 . T
κ

Γ ` T1 . T
κ1→κ2
a Γ ` Tκ1

b

Γ ` T1T2 . (Tκ1→κ2
a Tκ1

b)κ2

Γ,X : κ ` T . Tκ
′

a

Γ ` λX.T . (λXF (κ).Tκ
′

a)κ→κ
′
Γ ` T . Tκ1
Γ ` T t . Tκ1

Γ ` T . Tκ1
Γ ` λx.T . Tκ1

Definition 11 (Erasure for Context). We define relation Γ . Γ ′ inductively.

Γ ` T . TF (κ)
a Γ . Γ ′

Γ, (X : κ) 7→ T . Γ ′, XF (κ) 7→ T
F (κ)
a

Γ ` Γ ′

Γ,X : κ . Γ ′ · . ·

Γ ` T . Tκa Γ . Γ ′

Γ, (x : T) 7→ t . Γ ′, x : Tκa 7→ t

Γ ` T . Tκa Γ . Γ ′

Γ, x : T . Γ ′, x : Tκa

Theorem 4 (Erasure Theorem).

1. If Γ ` T : κ, then there exists a T
F (κ)
a such that Γ ` T . TF (κ)

a .
2. If Γ ` t : T and Γ ` wf, then there exist T ∗a and Γ ′ such that Γ ` T . T ∗a , Γ . Γ ′

and Γ ′ ` t : T ∗a .

10

Now that we obtained an erasure from S to Fω with positive definitions. We con-
tinue to show that the latter is strongly normalizing. The development below is in Fω
with positive definitions. Let Rρ be the set of all reducibility candidates5. Let σ be a
mapping between type variable of kind κ to element of ρJκK.

Definition 12.

– ρJ∗K := Rρ.
– ρJκ→ κ′K := {f | ∀a ∈ ρJκK, f(a) ∈ ρJκ′K}.
– ρJXκKσ := σ(Xκ).
– ρJ(T ∗1 → T ∗2)∗Kσ := {t | ∀u. ∈ ρJT ∗1 Kσ, tu ∈ ρJT ∗2 Kσ}.
– ρJ(∀Xκ.T ∗)∗Kσ :=

⋂
f∈ρJκK ρJT

∗Kσ[f/X].

– ρJ(λXκ′ .Tκ)κ
′→κKσ := f where f is the map a 7→ ρJTκKσ[a/X] for any a ∈ ρJκ′K.

– ρJ(Tκ
′→κ

1 Tκ
′

2)κKσ := ρJTκ
′→κ

1 Kσ(ρJTκ
′

2 Kσ).

Let | · | be a function that retrieves all the term definitions from the context Γ .

Definition 13. Let ρ = |Γ |, and FVar(Γ) be the set of free type variables in Γ . We
define σ ∈ ρJΓ K if σ(Xκ) ∈ ρJκK for undefined variable Xκ; and σ(Xκ) = lfp(b 7→
ρJTκKσ[b/Xκ]) for b ∈ ρJκK if Xκ 7→ Tκ ∈ Γ .

Note that the least fix point operation in lfp(b 7→ ρJTκKσ[b/Xκ]) is defined since we can
extend the complete lattice of reducibility candidate to complete lattice (ρJκK,⊆κ,∩κ).

Definition 14. Let ρ = |Γ | and σ ∈ ρJΓ K. We define the relation δ ∈ ρJΓ K inductively:

· ∈ ρJ·K
δ ∈ ρJΓ K t ∈ ρJTκKσ
δ[t/x] ∈ ρJΓ, x : TκK

δ ∈ ρJΓ K
δ ∈ ρJΓ, (x : Tκ) 7→ tK

Theorem 5 (Soundness theorem6). Let ρ = |Γ |. If Γ ` t : T ∗ and Γ ` wf, then
for any σ, δ ∈ ρJΓ K, we have δt ∈ ρJT ∗Kσ, with ρJT ∗Kσ ∈ Rρ.

Theorem 4 and 5 imply all the typable term in S is strongly normalizing.

5.2 Confluence Analysis

The complications of proving type preservation are due to several rules which are not
syntax-directed. To prove type preservation, one needs to ensure that if Πx : T.T ′ can
be transformed to Πx : T1.T2, then it must be the case that T can be transformed to T1

and T ′ can be transformed to T2. This is why we need to show confluence for type-level
reduction. We first observe that the selfGen rule and selfInst rule are mutually inverse,
and model the change of self type by the following reduction relation.

Definition 15.
Γ ` T1 →ι T2 if T1 ≡ ιx.T ′7 and T2 ≡ [t/x]T ′ for some fix term t.

5 The notion of reducibility candidate here slightly extends the standard one [15] to
handle definitional reduction: ρ ` x→β t, where x 7→ t ∈ ρ. So it is parametrized by
ρ.

6 Please note that since we are in Curry style assignment, the infinite reduction se-
quence in term will not be thrown away.

7 We use ≡ to mean syntactic identity.

11

Note that →ι models the selfInst rule, →−1
ι models the selfGen rule. Importantly,

the notion of ι-reduction does not include congruence; that is, we do not allow reduction
rules like if T →ι T

′, then λx.T →ι λx.T
′. The purpose of ι-reduction is to emulate

the typing rule selfInst and selfGen.
We first show confluence of→β by applying the standard Tait-Martin Löf method,

and then apply Hindley-Rossen’s commutativity theorem to show →ι commutes with
→β . We use →∗ to denote the reflexive symmetric transitive closure of →.

Lemma 1. →β is confluent.

Definition 16 (Commutativity). Let→1,→2 be two notions of reduction. Then→1

commutes with →2 iff ←1 · →2 ⊆ →1 · ←2.

Proposition 1. Let →1,→2 be two notions of reduction. Suppose both →1 and →2

are confluent, and →∗1 commutes with →∗2. Then →1 ∪ →2 is confluent.

Lemma 2. →β commutes with →ι. Thus →β,ι is confluent, where →β,ι=→β ∪ →ι.

Theorem 6 (ι-elimination). If Γ ` Πx : T1.T2 =β,ι Πx : T ′1.T
′
2, then Γ ` T1 =β T

′
1

and Γ ` T2 =β T
′
2.

Proof. If Γ ` Πx : T1.T2 =β,ι Πx : T ′1.T
′
2, then by the confluence of→β,ι, there exists a

T such that Γ ` Πx : T1.T2 →∗ι,β T and Γ ` Πx : T ′1.T
′
2 →∗ι,β T . Since all the reductions

onΠx : T1.T2 preserve the structure of the dependent type, one will never have a chance
to use →ι-reduction, thus Γ ` Πx : T1.T2 →∗β T and Γ ` Πx : T ′1.T

′
2 →∗β T . So T must

be of the form Πx : T3.T4. And Γ ` T1 →∗β T3, Γ ` T ′1 →∗β T3, Γ ` T2 →∗β T4 and
Γ ` T ′2 →∗β T4. Finally, we have Γ ` T1 =β T

′
1 and Γ ` T2 =β T

′
2.

5.3 Morph Analysis

The methods of the previous section are not suitable for dealing with implicit poly-
morphism, since as a reduction relation, polymorphic instantiation is not confluent.
For example, ∀X : κ.X can be instantiated either to T or to T → T . The only known
syntactic method (to our knowledge) to deal with preservation proof for Curry-style
System F is Barendregt’s method [4]. We will extend his method to handle the instan-
tiation of ∀x : T.T ′.

Definition 17 (Morphing Relations).

– ([Γ], T1) →i ([Γ], T2) if T1 ≡ ∀X : κ.T ′ and T2 ≡ [T/X]T ′ for some T such that
Γ ` T : κ.

– ([Γ,X : κ], T1)→g ([Γ], T2) if T2 ≡ ∀X : κ.T1 and Γ ` κ : �.
– ([Γ], T1) →I ([Γ], T2) if T1 ≡ ∀x : T.T ′ and T2 ≡ [t/x]T ′ for some t such that
Γ ` t : T .

– ([Γ, x : T], T1)→G ([Γ], T2) if T2 ≡ ∀x : T.T1 and Γ ` T : ∗.

Intuitively, ([Γ], T1)→ ([Γ ′], T2) means T1 can be transformed to T2 with a change
of context from Γ to Γ ′. One can view morphing relations as a way to model typing rules
which are not syntax-directed. Note that morphing relations are not intended to be
viewed as rewrite relation. Instead of proving confluence for these morphing relations,
we try to use substitutions to summarize the effects of a sequence of morphing relations.
Before we do that, first we “lift” =β,ι to a form of morphing relation.

12

Definition 18. ([Γ], T) =β,ι ([Γ], T ′) if Γ ` T =β,ι T
′ and Γ ` T : ∗ and Γ ` T ′ : ∗.

The best way to understand the E,G mappings below is through understanding
Lemmas 4 and 5. They give concrete demonstrations of how to summarize a sequence
of morphing relations.

Definition 19.
E(∀X : κ.T) := E(T) E(X) := X E(Πx : T1.T2) := Πx : T1.T2

E(λX.T) := λX.T E(T1T2) := T1T2 E(∀x : T ′.T) := ∀x : T ′.T
E(ιx.T) := ιx.T E(T t) := T t E(λx.T) := λx.T

Definition 20.
G(∀X : κ.T) := ∀X : κ.T G(X) := X G(Πx : T1.T2) := Πx : T1.T2

G(λX.T) := λX.T G(T1T2) := T1T2 G(∀x : T ′.T) := G(T)

G(ιx.T) := ιx.T G(T t) := T t G(λx.T) := λx.T

Lemma 3. E([T ′/X]T) ≡ [T ′′/X]E(T) for some T ′′; G([t/x]T) ≡ [t/x]G(T) .

Proof. By induction on the structure of T .

Lemma 4. If ([Γ], T)→∗i,g([Γ ′], T ′), then there exists a type substitution σ such that
σE(T) ≡ E(T ′).

Proof. It suffices to consider ([Γ], T)→i,g([Γ
′], T ′). If T ′ ≡ ∀X : κ.T and Γ = Γ ′, X : κ,

then E(T ′) ≡ E(T). If T ≡ ∀X : κ.T1 and T ′ ≡ [T ′′/X]T1 and Γ = Γ ′, then E(T) ≡
E(T1). By Lemma 3, we know E(T ′) ≡ E([T ′′/X]T1) ≡ [T2/X]E(T1) for some T2.

Lemma 5. If ([Γ], T)→∗I,G([Γ ′], T ′), then there exists a term substitution δ such that
δG(T) ≡ G(T ′).

Proof. It suffices to consider ([Γ], T)→I,G([Γ ′], T ′). If T ′ ≡ ∀x : T1.T and Γ = Γ ′, x :
T1, then G(T ′) ≡ G(T). If T ≡ ∀x : T2.T1 and T ′ ≡ [t/x]T1 and Γ = Γ ′, then
E(T) ≡ E(T1). By Lemma 3, we know E(T ′) ≡ E([t/x]T1) ≡ [t/x]E(T1).

Lemma 6. If ([Γ], Πx : T1.T2)→∗i,g([Γ ′], Πx : T ′1.T
′
2), then there exists a type substi-

tution σ such that σ(Πx : T1.T2) ≡ Πx : T ′1.T
′
2.

Proof. By Lemma 4.

Lemma 7. If ([Γ], Πx : T1.T2)→∗I,G([Γ ′], Πx : T ′1.T
′
2), then there exists a term substi-

tution δ such that δ(Πx : T1.T2) ≡ Πx : T ′1.T
′
2.

Proof. By Lemma 5.

Let →∗ι,β,i,g,I,G denote (→i,g,I,G ∪ =ι,β)∗. Let →ι,β,i,g,I,G denote →i,g,I,G ∪ =ι,β . The
goal of confluence analysis and morph analysis is to establish the following compatibility
theorem.

Theorem 7 (Compatibility). If ([Γ], Πx : T1.T2) →∗ι,β,i,g,I,G ([Γ ′], Πx : T ′1.T
′
2),

then there exists a mixed substitution8 φ such that ([Γ], φ(Πx : T1.T2)) =ι,β ([Γ], Πx :
T ′1.T

′
2). Thus Γ ` φT1 =β T

′
1 and Γ ` φT2 =β T

′
2 (by Theorem 6).

Proof. By Lemma 7 and 6, making use of the fact that if Γ ` t =ι,β t
′, then for any

mixed substitution φ, we have Γ ` φt =ι,β φt
′.

Theorem 8 (Type Preservation). If Γ ` t : T and Γ ` t →β t
′ and Γ ` wf, then

Γ ` t′ : T .

8 A substitution that contains both term substitution and type substitution.

13

6 0 6= 1 in S

The proof of 0 6= 1 follows the same method as in Theorem 1, while emptiness of ⊥
needs the erasure and preservation theorems. Notice that in this section, by a = b, we
mean ∀C : A→ ∗.C a→ C b with a, b : A.

Definition 21. ⊥ := ∀A : ∗.∀x : A.∀y : A.x = y.

Theorem 9. There is no term t such that µc ` t : ⊥

Proof. Suppose µc ` t : ⊥. By the erasure theorem (Theorem 4) in Section 5.1, we
have F (µc) ` t : ∀A : ∗.∀C : ∗.C → C in Fω. We know that ∀A : ∗.∀C : ∗.C → C
is the singleton type9, which is inhabited by λz.z. This means t →∗β λz.z (the term
reductions of Fω with let-bindings are the same as S) and µc ` λz.z : ⊥ in S (by type
preservation, Theorem 8). Let Γ = µc, A : ∗, x : A, y : A,C : A → ∗, z : C x. Then
we would have Γ ` z : C y. So by inversion, we have Γ ` C x →∗ι,β,i,g,I,G C y, which
means Γ ` C x→∗β C y. We know this is impossible by confluence of →β .

Theorem 10. µc ` 0 = 1→ ⊥.

Proof. This proof follows the method in Theorem 1. Let Γ = µc, a : (∀B : Nat →
∗.B 0 → B 1), A : ∗, x : A, y : A,C : A → ∗, c : C x. We want to construct a term of
type C y. Let F := λn[: Nat].n [λp : Nat.A] (λq[: A].y)x, and note that F : Nat → A.
We know that F 0 =β x and F 1 =β y. So we can indeed convert the type of c from
C x to C (F 0). And then we instantiate the B in ∀B : Nat → ∗.B 0 → B 1 with
λx[: Nat].C (F x). So we have C (F 0) → C (F 1) as the type of a. So a c : C (F 1),
which means a c : C y. So we have just shown how to inhabit 0 = 1→ ⊥ in S.

7 Conclusion

We have revisited lambda encodings in type theory, and shown how a new self type
construct ιx.T supports dependent eliminations with lambda encodings, including in-
duction principles. We considered System S, which incorporates self types together
with implicit products and a restricted version of global positive recursive definition.
The corresponding induction principles for Church- and Parigot-encoded datatypes are
derivable in S. By changing the notion of contradiction from explosion to equational in-
consistency, we are able to show 0 6= 1 in both CC and S. We proved type preservation,
which is nontrivial for S since several rules are not syntax-directed. We also defined an
erasure from S to Fω with positive definitions, and proved strong normalization of S
by showing strong normalization of Fω with positive definitions. Future work includes
further explorations of dependently typed lambda encodings for practical type theory.
In particular, we would like to implement our system and carry out some case studies.
Last but not least, we want to thank anonymous reviewers for their helpful comments.

References

1. M. Abadi and L. Cardelli. A Theory of Primitive Objects - Second-Order Systems.
In European Symposium on Programming (ESOP), pages 1–25, 1994.

9 Note that we are dealing with Curry-style Fω.

14

2. A. Abel and B. Pientka. Wellfounded recursion with copatterns: a unified approach
to termination and productivity. In G. Morrisett and T. Uustalu, editors, Inter-
national Conference on Functional Programming (ICFP), pages 185–196, 2013.

3. K.Y. Ahn, T. Sheard, M. Fiore, and A.M. Pitts. System Fi. In Typed Lambda
Calculi and Applications, pages 15–30. 2013.

4. H. Barendregt. Lambda calculi with types, handbook of logic in computer science
(vol. 2): background: computational structures, 1993.

5. B. Barras. Sets in coq, coq in sets. Journal of Formalized Reasoning, 3(1), 2010.
6. V. Capretta. General recursion via coinductive types. Logical Methods in Computer

Science, 1(2), 2005.
7. A. Church. The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics

Studies). 1985.
8. T. Coquand. Metamathematical investigations of a calculus of constructions. Tech-

nical Report RR-1088, INRIA, September 1989.
9. T. Coquand and G. Huet. The calculus of constructions. Inf. Comput., 76(2-3):95–

120, February 1988.
10. H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic, Volume II. 1972.
11. P. Fu and A. Stump. Self Types for Dependently Typed Lambda Encodings,

2014. Extended version available from http://homepage.cs.uiowa.edu/~pfu/

document/papers/rta-tlca.pdf.
12. H. Geuvers. Inductive and Coinductive Types with Iteration and Recursion. In

B. Nordstrom, K. Petersson, and G. Plotkin, editors, Informal proceedings of the
1992 workshop on Types for Proofs and Programs, pages 183–207, 1994.

13. H. Geuvers. Induction Is Not Derivable in Second Order Dependent Type Theory.
In Typed Lambda Calculi and Applications (TLCA), pages 166–181, 2001.

14. E. Gimenez. Un calcul de constructions infinies et son application a la verification
de systemes communicants. PhD thesis, 1996.

15. J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur, 1972.

16. J. Hickey. Formal objects in type theory using very dependent types. In K. Bruce,
editor, In Foundations of Object Oriented Languages (FOOL) 3, 1996.

17. P. Mendler. Inductive definition in type theory. Technical report, Cornell Univer-
sity, 1987.

18. A. Miquel. Le Calcul des Constructions implicite: syntaxe et sémantique. PhD
thesis, PhD thesis, Université Paris 7, 2001.

19. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A Nominal Theory of Objects
with Dependent Types. In L. Cardelli, editor, 17th European Conference on Object-
Oriented Programming (ECOOP), pages 201–224, 2003.

20. M. Parigot. Programming with Proofs: A Second Order Type Theory. In
H. Ganzinger, editor, Proceedings of the 2nd European Symposium on Program-
ming (ESOP), pages 145–159, 1988.

21. D. Schepler. bijective function implies equal types is provably inconsistent with
functional extensionality in coq. message to the Coq Club mailing list, December
12, 2013.

22. B. Werner. A Normalization Proof for an Impredicative Type System with Large
Elimination over Integers. In B. Nordström, K. Petersson, and G. Plotkin, editors,
International Workshop on Types for Proofs and Programs (TYPES), pages 341–
357, 1992.

23. B. Werner. Une théorie des constructions inductives. PhD thesis, Université Paris
VII, 1994.

15

http://homepage.cs.uiowa.edu/~pfu/document/papers/rta-tlca.pdf
http://homepage.cs.uiowa.edu/~pfu/document/papers/rta-tlca.pdf

A Coq Code

The following code formalizes the proof of theorem 1 in Coq.

Definition eq :=

fun (A : Prop)(a b : A) => forall C : A -> Prop , C a -> C b.

Definition false :=

forall A : Prop , forall a : A , forall b : A , eq A a b .

Definition Nat := forall A : Prop , (A -> A) -> A -> A.

Definition zero : Nat := fun (A : Prop)(s : A -> A)(z : A) => z.

Definition succ : Nat -> Nat :=

fun (n:Nat)(A : Prop)(s : A -> A)(z : A) => s (n A s z).

Definition one : Nat := succ zero.

Theorem zeroNeqOne : eq Nat zero one -> false.

unfold false.

unfold eq.

intros u A a b C.

exact (u (fun (n:Nat) => C (n A (fun(q:A) => b) a))).

Qed.

B Full Specification of Reductions in S

Definition 22 (Metalevel Abbrieviation).
Objects o ::= t | T | κ
Classifiers c ::= T | κ
Reduction Context C ::=
• | λx.C | Ct′ | tC | ∀X : κ.C | Πx : T.C | Πx : C.T |
∀x : T.C | ∀x : C.T | λX.C | ιx.C | TC | CT | Πx : C.κ |
ΠX : C.κ | Πx : κ.C | ∀X : κ.C

Definition 23 (Beta Reductions).

(x 7→ t) ∈ Γ
Γ ` x→β t Γ ` (λx.t)t′ →β [t′/x]t Γ ` (λX.T)T ′ →β [T ′/X]T

(X 7→ T) ∈ Γ
Γ ` X →β T Γ ` (λx.T)t→β [t/x]T

Γ ` o→β o
′

Γ ` C[o]→β C[o′]

C Full Specifications of Fω with Positive Recursive
Definition

Definition 24 (Syntax).

16

Terms t ::= x | λx.t | tt′

Types T ::= Xκ | (∀Xκ.T ∗)∗ | (T ∗1 → T ∗2)∗ | (λXκ1 .Tκ2)κ1→κ2 | (Tκ1→κ2
1 Tκ1

2)κ2

Kinds κ ::= ∗ | κ′ → κ

Context Γ ::= · | Γ, x : Tκ | Γ, µ
Definitions µ ::= {(xi : Sκi) 7→ ti}i∈N ∪ {Xκ

i 7→ Tκi }i∈M
Term definitions ρ ::= {xi 7→ ti}i∈N

Note that for every x 7→ t,X 7→ T ∈ µ, we require FV(t) = ∅ and FV(T) ⊆ {X};
and the X can only occur at the positive position in T , no mutually recusive definitions
are allowed.

Definition 25 (Polarity). Let b ∈ ({0,1},¬), where ¬(0) := 1,¬(1) := 0. We define

relation Pol(Xκ, Tκ
′
, b) to mean all occurences of Xκ in Tκ

′
has polarity b.

Pol(Xκ, Xκ,0) Pol(Xκ, Y κ
′
, b)

Pol(Xκ, T ∗1 ,¬(b)) Pol(Xκ, T ∗2 , b)

Pol(Xκ, (T ∗1 → T ∗2)∗, b)

Pol(Xκ, Tκ1→κ2
1 , b) Xκ /∈ FV(Tκ1

2)

Pol(Xκ, (Tκ1→κ2
1 Tκ1

2)κ2 , b)

Pol(Xκ, T ∗, b)

Pol(Xκ, (∀Xκ.T ∗)∗, b)

Pol(Xκ, Tκ
′
, b)

Pol(Xκ, (λXκ.Tκ
′
)κ→κ

′
, b)

We call X occurs positive in T if Pol(X,T,0), negative if Pol(X,T,1).

Definition 26. We define a function from context to term definitions.

·	:=	·
Γ, x : Tκ	:=	Γ
Γ,Xκ 7→ Tκ	:=	Γ
Γ, x : Sκ 7→ t	:=	Γ

Definition 27 (Well-formed Context).

· ` wf
Γ ` wf

Γ, x : T ∗ ` wf

Γ ` wf Γ ` µ ok

Γ, µ ` wf

Definition 28 (Typing Rules).
(x : Tκ) ∈ Γ
Γ ` x : Tκ

Var
Γ ` t : T ∗1 Γ ` T ∗1 ∼= T ∗2

Γ ` t : T ∗2
Conv

Γ, x : T ∗1 ` t : T ∗2

Γ ` λx.t : (T ∗1 → T ∗2)∗
Func

Γ ` t : (T ∗1 → T ∗2)∗ Γ ` t′ : T ∗1

Γ ` tt′ : T ∗2
App

Γ ` t : (∀Xκ.T ∗)∗

Γ ` t : ([T ′κ/Xκ]T ∗)∗
Inst

Γ ` t : T ∗ Xκ /∈ FVar(Γ)

Γ ` t : (∀Xκ.T ∗)∗
Poly

Remarks :

– Γ ` µ ok stands for {Γ, µ ` tj : T ∗j }(tj :T∗j)∈µ.

– ∼= is the congruence closure of →β .

17

Definition 29 (Beta Reductions).

(x 7→ t) ∈ Γ
Γ ` x→β t Γ ` (λx.t)t′ →β [t′/x]t

(Xκ 7→ Tκ) ∈ Γ
Γ ` Xκ →β T

κ Γ ` ((λXκ.Tκ
′
)κ→κ

′
Tκ1)κ

′
→β [Tκ1 /X

κ]Tκ
′

C.1 Strong Normalization

In this section we use → to denote →β .

Definition 30 (Neutral terms). A term is neutral if it is of the form x, t u.

Definition 31 (Reducibility Candidate). A reducibility candidate Rρ is a set of
terms such that:

– (CR1) If t ∈ Rρ, then ρ ` t is strongly normalizing.

– (CR2) If t ∈ Rρ and ρ ` t→∗ t′, then t′ ∈ Rρ.

– (CR3) If t is neutral and for all t′ such that ρ ` t→∗ t′ with t′ ∈ Rρ, then t ∈ Rρ.

Let Rρ be the set of all reducibility candidates. Let σ be a mapping between type
variable of kind κ to element of ρJκK.

Lemma 8. (Rρ,⊆,
⋂

) is a complete lattice (or complete meet-semilattice)10.

Proof. Obvious.

Note that (Rρ,⊆,∩) is parametrized by ρ.

Definition 32.

– ρJ∗K := Rρ.

– ρJκ→ κ′K := {f | ∀a ∈ ρJκK, f(a) ∈ ρJκ′K}.

Definition 33. For any a, b ∈ ρJκK, we define a ⊆κ b inductively:

– a ⊆∗ b := a ⊆ b.
– a ⊆κ→κ′ b := ∀c ∈ ρJκK, a(c) ⊆κ′ b(c).

Definition 34. For any S ⊆ ρJκK, we define
⋂
κ S inductively:

–
⋂
∗ S :=

⋂
S, where

⋂
is set intersection in ρJ∗K.

–
⋂
κ→κ′ S := c 7→

⋂
κ′{f(c)|f ∈ S} where c ∈ ρJκK.

Lemma 9. (ρJκK,⊆κ,∩κ) is a complete lattice.

10 It is not the case that (R,⊆,∪) is a complete join-semilattice.

18

Proof. We elide the proof of partial order of ⊆κ, we are confirming that for any subset
S ⊆ ρJκK, it has a greatest lower bound. By induction on κ. Base case is obvious.
Suppose κ ≡ κ1 → κ2 and S ⊆ ρJκ1 → κ2K. First, we need to show

⋂
κ1→κ2

S ⊆κ1→κ2 f
for any f ∈ S. For any a ∈ ρJκ1K, we want to show

⋂
κ2
{f(a) | f ∈ S} ⊆κ2 f(a). This

is by induction.
Second, we need to show for any B ∈ ρJκ1 → κ2K, if B ⊆κ1→κ2 A for any A ∈

ρJκ1 → κ2K, then B ⊆κ1→κ2

⋂
κ1→κ2

S. For any a ∈ ρJκ1K, we want to show B(a) ⊆κ2

(
⋂
κ1→κ2

S)(a) =
⋂
κ2
{f(a)|f ∈ S}. Since B(a) ⊆κ2 f(a), we can use induction to

show B(a) ⊆κ2 (
⋂
κ1→κ2

S)(a).

Definition 35.

– ρJXκKσ := σ(Xκ).
– ρJ(T ∗1 → T ∗2)∗Kσ := {t ∈ Λ | ∀u. ∈ ρJT ∗1 Kσ, tu ∈ ρJT ∗2 Kσ}.
– ρJ(∀Xκ.T ∗)∗Kσ :=

⋂
f∈ρJκK ρJT

∗Kσ[f/X].

– ρJ(ΛXκ′ .Tκ)κ
′→κKσ := f where f is the map a 7→ ρJTκKσ[a/X] for any a ∈ ρJκ′K.

– ρJ(Tκ
′→κ

1 Tκ
′

2)κKσ := ρJTκ
′→κ

1 Kσ(ρJTκ
′

2 Kσ).

Lemma 10. ρJTκKσ ∈ ρJκK.

Proof. By induction on T .
Base Case: Tκ ≡ Xκ. Obvious.
Step Case: Tκ ≡ (ΛY κ1 .Aκ2)κ1→κ2 . We need to show ρJ(ΛY κ1 .Aκ2)κ1→κ2Kσ = f ∈
ρJκ1 → κ2K, where f is the map a 7→ ρJAκ2Kσ[a/Y] with a ∈ ρJκ1K. By IH, we know
that ρJAκ2Kσ[a/Y] ∈ ρJκ2K. So it is the case.
Step Case: Tκ ≡ (Tκ1→κ2

1 Tκ1
2)κ2 . We need to show ρJ(Tκ1→κ21 Tκ12)κ2Kσ = ρJTκ1→κ21 Kσ(ρJTκ1

2 Kσ) ∈
ρJκ2K. This is by induction.
Step Case: Tκ ≡ (T ∗1 → T ∗2)∗. We need to show ρJT ∗1 → T ∗2 Kσ = {t | ∀u. ∈
ρJT ∗1 Kσ, tu ∈ ρJT ∗2 Kσ} ∈ ρJ∗K. Let t ∈ ρJT ∗1 → T ∗2 Kσ and u ∈ ρJT ∗1 Kσ and tu ∈ ρJT ∗2 Kσ.
(CR1). Since tu and u is strongly normalizing, t is strongly normalizing. (CR2). Sup-
pose ρ ` t → t′. By IH, we know that t′u ∈ ρJT ∗2 Kσ. So t′ ∈ ρJT ∗1 → T ∗2 Kσ. (CR3).
Suppose t is neutral, and for any t′ such that ρ ` t → t′, t′ ∈ ρJT ∗1 → T ∗2 Kσ. Let
u ∈ ρJT ∗1 Kσ. We need to show tu ∈ ρJT ∗2 Kσ. We prove this by induction on the length
of reduction of u, namely, ν(u). Suppose ρ ` tu → t′u. If ν(u) = 0, it means u is
normal, so ρ ` tu → t′u ∈ ρJT ∗2 Kσ. So by IH(CR3) on T2 we know that tu ∈ ρJT ∗2 Kσ.
Suppose ν(u) > 0 and ρ ` tu → tu′. Then by IH(ν(u)) we know that tu′ ∈ ρJT ∗2 Kσ.
Thus tu ∈ ρJT ∗2 Kσ. There are no other possibility since t is neutral.
Step Case: Tκ ≡ (∀X : κ.T ∗)∗. We need to show ρJ∀X : κ.T ∗Kσ =

⋂
f∈ρJκK ρJT

∗Kσ[f/X] ∈
ρJ∗K. Let t ∈ ρJ∀X : κ.T ∗Kσ. (CR1, CR2) is by direct induction. (CR3). Suppose
t→ t′ ∈ ρJ∀X : κ.T ∗Kσ =

⋂
f∈ρJκK ρJT

∗Kσ[f/X] ∈ ρJ∗K. Again, this is by IH.

Lemma 11.

1. If f is a map a 7→ ρJTκKσ[a/X] where X occurs in T positively and a ∈ ρJκ′K, then
f is monotone.

2. If f is a map a 7→ ρJTκKσ[a/X] where X occurs in T negatively and a ∈ ρJκ′K, then
f is anti-monotone.

Proof. By induction on the structure of Tκ.

Base Case: Tκ ≡ Xκ. Obvious.

Step Case: Tκ ≡ (λY κ1 .Aκ2)κ1→κ2 .

19

1. Let a1, a2 ∈ ρJκK with a1 ⊆κ a2. We need to show ρJ(ΛY κ1 .Aκ2)κ1→κ2Kσ[a1/X] ⊆κ1→κ2

ρJ(ΛY κ1 .Aκ2)κ1→κ2Kσ[a2/X]. We need to show ρJAκ2Kσ[a1/X,b/Y] ⊆κ2 ρJAκ2Kσ[a2/X,b/Y]

for any b ∈ ρJκ1K. By IH(2), we know that a 7→ ρJAκ2Kσ[a/X,b/Y] is monotone.
2. Let a1, a2 ∈ ρJκK with a1 ⊆κ a2. We need to show ρJ(ΛY κ1 .Aκ2)κ1→κ2Kσ[a2/X] ⊆κ1→κ2

ρJ(ΛY κ1 .Aκ2)κ1→κ2Kσ[a1/X]. We need to show ρJAκ2Kσ[a2/X,b/Y] ⊆κ2 ρJA
κ2Kσ[a1/X,b/Y]

for any b ∈ ρJκ1K. By IH(3), we know that a 7→ ρJAκ2Kσ[a/X,b/Y] is anti-monotone.

Step Case: Tκ ≡ (Tκ1→κ2
1 Tκ1

2)κ2 .

1. Let a1, a2 ∈ ρJκK with a1 ⊆κ a2. We need to show ρJ(Tκ1→κ2
1 Tκ1

2)κ2Kσ[a1/X] =
ρJTκ1→κ2

1 Kσ[a1/X](ρJTκ1
2 Kσ[a1/X]) ⊆κ2 ρJT

κ1→κ2
1 Kσ[a2/X](ρJTκ1

2 Kσ[a2/X]) = ρJ(Tκ1→κ2
1 Tκ1

2)κ2Kσ[a2/X].
By IH, we know that a 7→ ρJTκ1→κ2

1 Kσ[a/X] is monotone and X /∈ FV(T2). So
ρJTκ1

2 Kσ[a2/X] = ρJTκ1
2 Kσ[a1/X] and ρJTκ1→κ2

1 Kσ[a1/X] ⊆κ1→κ2 ρJT
κ1→κ2
1 Kσ[a2/X].

So we get what we want.
2. Let a1, a2 ∈ ρJκK with a1 ⊆κ a2. We need to show ρJTκ1→κ2

1 Kσ[a2/X](ρJTκ12 Kσ[a2/X]) =
ρJ(Tκ1→κ2

1 Tκ1
2)κ2Kσ[a2/X] ⊆κ2 ρJ(T

κ1→κ2
1 Tκ12)κ2Kσ[a1/X] = ρJTκ1→κ2

1 Kσ[a1/X](ρJTκ1
2 Kσ[a1/X]).

By IH, we know that a 7→ ρJTκ1→κ2
1 Kσ[a/X] is anti-monotone and X /∈ FV(T2). So

ρJTκ1
2 Kσ[a2/X] = ρJTκ1

2 Kσ[a1/X] and ρJTκ1→κ2
1 Kσ[a2/X] ⊆κ1→κ2 ρJT

κ1→κ2
1 Kσ[a1/X].

So we get what we want.

Step Case: Tκ ≡ T ∗1 → T ∗2 .

1. Let a1, a2 ∈ ρJκK with a1 ⊆κ a2. We need to show ρJT1 → T2Kσ[a1/X] = {t | ∀u ∈
ρJT1Kσ[a1/X], t u ∈ ρJT2Kσ[a1/X]} ⊆ {t | ∀u ∈ ρJT1Kσ[a2/X], t u ∈ ρJT2Kσ[a2/X]} =
ρJT1 → T2Kσ[a2/X]. By IH, we know that ρJT1Kσ[a2/X] ⊆ ρJT1Kσ[a1/X] and ρJT1Kσ[a1/X] ⊆
ρJT1Kσ[a2/X]. So it is the case.

2. Let a1, a2 ∈ ρJκK with a1 ⊆κ a2. We need to show {t | ∀u ∈ ρJT1Kσ[a2/X], t u ∈
ρJT2Kσ[a2/X]} = ρJT1 → T2Kσ[a2/X] ⊆ ρJT1 → T2Kσ[a1/X] = {t | ∀u ∈ ρJT1Kσ[a1/X], t u ∈
ρJT2Kσ[a1/X]}. If X /∈ FV(T2), then ρJT2Kσ[a1/X] = ρJT2Kσ[a2/X]. By IH, we know
that ρJT1Kσ[a1/X] ⊆ ρJT1Kσ[a2/X]. If X ∈ FV(T2) and Neg(X,T2), then by IH we
know ρJT2Kσ[a2/X] ⊆ ρJT2Kσ[a1/X]. So it is the case.

Step Case: Tκ ≡ (∀Y κ.T ∗)∗.

1. Let a1, a2 ∈ ρJκ′K with a1 ⊆κ′ a2. We need to show ρJ(ΠY κ.T ∗)∗Kσ[a1/X] =⋂
f∈ρJκK ρJT

∗Kσ[f/Y,a1/X] ⊆ ρJ(ΠY κ.T ∗)∗Kσ[a2/X] =
⋂
f∈ρJκK ρJT

∗Kσ[f/Y,a2/X]. By

IH, we know that
⋂
f∈ρJκK ρJT

∗Kσ[f/Y,a1/X] ⊆
⋂
f∈ρJκK ρJT

∗Kσ[f/Y,a2/X]. So it is
the case.

2. For the negative case, it is similar.

Definition 36. Let ρ = |Γ |, and FVar(Γ) be the set of free type variables in Γ . We
define σ ∈ ρJΓ K if σ(Xκ) ∈ ρJκK for undefined variable Xκ; and σ(Xκ) = lfp(b 7→
ρJTκKσ[b/Xκ]) for b ∈ ρJκK if Xκ 7→ Tκ ∈ Γ .

Definition 37. Let ρ = |Γ | and σ ∈ ρJΓ K. We define the relation δ ∈ ρJΓ K inductively:

· ∈ ρJ·K
δ ∈ ρJΓ K t ∈ ρJTκKσ
δ[t/x] ∈ ρJΓ, x : TκK

δ ∈ Γ
δ ∈ ρJΓ, (x : Tκ) 7→ tK

Lemma 12. ρJTκKσ[ρJT ′κ′ Kσ/Xκ
′
] = ρJ[T ′κ

′
/Xκ′]TκKσ

Proof. By induction on structure of Tκ.

20

Lemma 13. If Γ ` wf, then Γ ` t : T ∗.

Proof. By induction.

Lemma 14. Let ρ = |Γ |. If Γ ` Tκ1 →β T
κ
2 , then for σ, δ ∈ ρJΓ K, ρJTκ1 Kσ = ρJTκ2 Kσ.

Proof. By induction on derivation of Γ ` Tκ1 →β T
κ
2 .

Base Case:

(Xκ 7→ Tκ) ∈ Γ
Γ ` Xκ →β T

κ

In this case, we know that [a/Xκ] ∈ σ, where a = lfp(b 7→ ρJTκKσ[b/Xκ]) with b ∈ ρJκK.
So ρJXκKσ = a = ρJTκKσ[a/Xκ] = ρJTκKσ.

Base Case:

Γ ` (λXκ1 .Tκ2)κ1→κ2T ′κ1 →β [T ′κ1/Xκ1]Tκ2

We need to show that ρJ(λXκ1 .Tκ2)κ1→κ2T ′κ1Kσ = ρJ[T ′κ1/Xκ1]Tκ2Kσ. By definition,
we know that ρJ(λXκ1 .Tκ2)T ′κ1Kσ = ρJTκ2Kσ[ρJT ′κ1 Kσ/Xκ1]. By lemma 12, we have
ρJTκ2Kσ[ρJT ′κ1 Kσ/Xκ1] = ρJ[T ′κ1/Xκ1]Tκ2Kσ.

Step Case:All the congruence cases are by IH.

We called a term pure if all its free variables are not defined in a context, otherwised
we called it a defined term.

Theorem 11 (Soundness theorem). Let ρ = |Γ |.

1. If Γ ` t : Tκ and t is pure, then for any σ, δ ∈ ρJΓ K, δt ∈ ρJTκKσ.
2. If Γ ` t : Tκ and Γ ` wf, then for any σ, δ ∈ ρJΓ K, δt ∈ ρJTκKσ.

Proof. By induction on the derivation of Γ ` t : Tκ.
Case:

(x : Tκ) ∈ Γ
Γ ` x : Tκ

Var

Obvious.

Case:

(x : Tκ) 7→ t ∈ Γ
Γ ` x : Tκ

Var1

1. x is a defined variable, so this case will not arise.
2. For σ, δ ∈ ρJΓ K, we want to show x ∈ ρJTκKσ. We know that x→ t and Γ ` t : Tκ

(since Γ ` wf) and FV(t) = ∅. So IH(1), we know that t ∈ ρJTκKσ. So by (CR3),
we know that x ∈ ρJTκKσ.

21

Case:

Γ ` t : T ∗1 Γ ` T ∗1 ∼= T ∗2 Γ ` T ∗2
Γ ` t : T ∗2

Conv

(1, 2). For σ, δ ∈ ρJΓ K, we need to show δt ∈ ρJT ∗2 Kσ. By IH, we know that δt ∈ ρJT ∗1 Kσ.
By lemma 14, we know that δt ∈ ρJT ∗2 Kσ.

Case:

Γ, x : T ∗1 ` t : T ∗2
Γ ` λx.t : T ∗1 → T ∗2

Func

(1, 2). For σ, δ ∈ ρJΓ K, we need to show δ(λx.t) ∈ ρJT ∗1 → T ∗2 Kσ. By definition, we
just need to show that ∀a ∈ ρJT ∗1 Kσ, (λx.δt)a ∈ ρJT ∗2 Kσ. If (λx.δt)a → [a/x](δt), then
by IH we know that [a/x](δt) ∈ ρJT ∗2 Kσ. If (λx.δt)a → (λx.δt)a′, where a → a′; or
(λx.δt)a → (λx.t′)a where δt → t′, then since δt and a are strongly normalizing, we
need to prove (λx.δt)a′, (λx.t′)a ∈ ρJT ∗2 Kσ. This can be proved by induction on length
of reductions of a, δt.

Case:

Γ ` t : T ∗1 → T ∗2 Γ ` t′ : T ∗1

Γ ` tt′ : T ∗2
App

(1,2). For σ, δ ∈ ρJΓ K, we need to show (δt)(δt′) ∈ ρJT ∗2 Kσ. By IH, we know that
δt ∈ ρJT ∗1 → T ∗2 Kσ and δt′ ∈ ρJT ∗2 Kσ.

Case:

Γ ` t : (∀Xκ.T ∗)∗

Γ ` t : [T ′κ/Xκ]T ∗
Inst

(1, 2). For σ, δ ∈ ρJΓ K, we need to show (δt) ∈ ρJ[T ′κ/Xκ]T ∗Kσ. By IH, we know
that δt ∈ ρJ(∀Xκ.T ∗)∗Kσ =

⋂
a∈ρJκK ρJT

∗Kσ[a/Xκ]. Since ρJT ′κKσ ∈ ρJκK, we have

δt ∈ ρJT ∗Kσ[ρJT ′κKσ/Xκ]. By lemma 12, we have (δt) ∈ ρJ[T ′κ/Xκ]T ∗Kσ.

Case:

Γ ` t : T ∗ Xκ /∈ FVar(Γ)

Γ ` t : (∀Xκ.T ∗)∗
Poly

(1, 2). For σ, δ ∈ ρJΓ K, we need to show (δt) ∈ ρJ(∀Xκ.T ∗)∗Kσ =
⋂
a∈ρJκK ρJT

∗Kσ[a/Xκ].
By IH, we know that δt ∈ ρJT ∗Kσ[a/Xκ] for any a ∈ ρJκK.

D Proofs for Section 5.1

Lemma 15. 1. F (κ) ≡ F ([t/x]κ), F ([T/X]κ) ≡ F (κ).

22

2. If Γ ` T . Tκa , then Γ ` [t/x]T . Tκa .
3. If Γ ` λX.T.(λXκ1 .Tκ2

a)κ1→κ2 and Γ ` T ′.Tκ1
b , then Γ ` [T ′/X]T.[T ′κ1/Xκ1]Tκ2

a .

4. If Γ,X : κ1 ` T . Tκ2
a and Γ ` T ′ . TF (κ1)

b with Γ ` T ′ : κ1, then Γ ` [T ′/X]T .
[T ′F (κ1)/XF (κ1)]Tκ2

a .

Lemma 16. If Γ ` T1 .T
κ
a , Γ ` T2 .T

κ
b , Γ .Γ ′ and Γ ` T1 →β T2, then Γ ′ ` Tκa ↪→β

Tκb .

Proof. By induction on derivation of Γ ` T1 →β T2, use lemma 15 above.

Lemma 17. If Γ ` T : κ, then there exit a T
F (κ)
a such that Γ ` T . TF (κ)

a

Proof. By induction on derivation of Γ ` T : κ.
Case:

X : κ ∈ Γ
Γ ` X : κ

We know that Γ ` X .XF (κ). So F (Γ) ` x : XF (κ).
Case:

Γ,X : κ ` T : ∗ Γ ` κ : �

Γ ` ∀X : κ.T : ∗

By IH, we know Γ,X : κ ` T . T ∗a . So Γ ` ∀X : κ.T . (∀XF (κ).T ∗a)∗. So it is the case.

Case:

Γ, x : ιx.T ` T : ∗
Γ ` ιx.T : ∗

By IH, we know Γ, x : ιx.T ` T . T ∗a . So Γ ` ιx.T . T ∗a .

Case:

Γ,X : κ ` T : κ′ Γ ` κ : �

Γ ` λX.T : ΠX : κ.κ′

By IH, we know Γ,X : κ ` T .TF (κ′)
a . So Γ ` λX.T . (λXF (κ).T

F (κ′)
a)F (κ)→F (κ′). Note

that F (ΠX : κ.κ′) ≡ F (κ)→ F (κ′).

Case:

Γ, x : T ′ ` T : κ Γ ` T ′ : ∗
Γ ` λx.T : Πx : T ′.κ

By IH, we have Γ, x : T ′ ` T . TF (κ)
a . We have Γ ` T . TF (κ)

a . Thus Γ ` λx.T . TF (κ)
a .

Case:

Γ ` S : Πx : T.κ Γ ` t : T
Γ ` S t : [t/x]κ

23

By IH, we have Γ ` S . TF (κ)
a . Thus Γ ` T t . T

F (κ)
a . Note that F (Πx : T.κ) ≡ F (κ)

and F ([t/x]κ) ≡ F (κ).

Case:

Γ ` S : ΠX : κ′.κ Γ ` T : κ′

Γ ` S T : [T/X]κ

By IH, we have Γ ` S.TF (κ′)→F (κ)
a and Γ ` T.TF (κ′)

b . So Γ ` S T.(TF (κ′)→F (κ)
a T

F (κ′)
b)F (κ).

Note that we use the fact that F ([T/X]κ) ≡ F (κ).

Case:

Γ, x : T1 ` T2 : ∗ Γ ` T1 : ∗
Γ ` ∀x : T1.T2 : ∗

By IH, we know Γ, x : T1 ` T2 . T
∗
a . We have Γ ` T2 . T

∗
a . Thus Γ ` ∀x : T1.T2 . T

∗
a .

Theorem 12. If Γ ` t : T and Γ ` wf, then Γ ′ ` t : T ∗a for the T ∗a such that
Γ ` T . T ∗a and Γ . Γ ′.

Proof. We prove this by induction on derivation of Γ ` t : T .

Base Case:

(x : T) ∈ Γ
Γ ` x : T

Γ ` wf implies Γ ` T : ∗. By lemma 17, we know that Γ ` T . T ∗a . We know that
x : T . x : T ∗a , where x : T ∗a ∈ Γ ′.

Step Case:

Γ ` t : T1 Γ ` T1
∼= T2 Γ ` T2 : ∗

Γ ` t : T2
Conv

Γ ` wf implies that Γ ` T1 : ∗. By IH, we know that Γ ′ ` t : T ∗c , where Γ ` T1 . T
∗
c

and Γ . Γ ′. And Γ ` T2 : ∗ implies Γ ` T2 . T
∗
d . By lemma 16, we have Γ ′ ` T ∗c ∼= T ∗d .

So Γ ′ ` t : T ∗d .

Step Case:

Γ ` t : [t/x]T Γ ` ιx.T : ∗
Γ ` t : ιx.T

SelfGen

We know that Γ ` ιx.T . T ∗a . So Γ ` [t/x]T . T ∗a . By IH and lemma 15, we have that
Γ . Γ ′ and Γ ′ ` t : T ∗a .

Step Case:

24

Γ ` t : ιx.T
Γ ` t : [t/x]T

SelfInst

We know that Γ ` ιx.T : ∗. So Γ ` ιx.T .T ∗a . By IH and lemma 15, we know Γ ′ ` t : T ∗a
and Γ . Γ ′.

Step Case:

Γ, x : T1 ` t : T2 Γ ` T1 : ∗ x /∈ FV(t)

Γ ` t : ∀x : T1.T2
Indx

Γ ` wf and Γ ` T1 : ∗ imply Γ, x : T1 ` wf. By IH, we know Γ, x : T1 . Γ
′, x : T ∗a

and Γ ′, x : T ∗a ` t : T ∗b , where Γ ` T1 . T
∗
a and Γ ` T2 . T

∗
b . Since x /∈ FV(t), we get

Γ ′ ` t : T ∗b .

Step Case:

Γ ` t : ∀x : T1.T2 Γ ` t′ : T1

Γ ` t : [t′/x]T2
Dex

By IH, we have Γ . Γ ′ and Γ ′ ` t : T ∗a where Γ ` ∀x : T1.T2 . T
∗
a . By lemma 15, we

know Γ ` [t′/x]T2 . T
∗
a .

Step Case:

Γ,X : κ ` t : T Γ ` κ : �

Γ ` t : ∀X : κ.T
Poly

By IH, we know Γ,X : κ . Γ ′ and Γ ′ ` t : T ∗a where Γ,X : κ ` T . T ∗a . So Γ ′ ` t :
(∀XF (κ).T ∗a)∗ (since Xκ /∈ FVar(Γ ′)) with Γ ` ∀X : κ.T . (∀XF (κ).T ∗a)∗.

Step Case:

Γ ` t : ∀X : κ.T Γ ` T ′ : κ

Γ ` t : [T ′/X]T
Inst

By IH, we know Γ .Γ ′ and Γ ′ ` t : (∀XF (κ).T ∗a)∗ with Γ,X : κ ` T .T ∗a . Since Γ ` T ′ .
T
F (κ)
b , by lemma 15, so Γ ` [T ′/X]T . [T

F (κ)
b /XF (κ)]T ∗a . So Γ ′ ` t : [T

F (κ)
b /XF (κ)]T ∗a .

Step Case:

Γ, x : T1 ` t : T2 Γ ` T1 : ∗
Γ ` λx.t : Πx : T1.T2

Func

By IH, we know Γ, x : T1 . Γ
′, x : T ∗a and Γ ′, x : T ∗a ` t : T ∗b with Γ ` T1 . T

∗
a and

Γ, x : T1 ` T2 . T
∗
b . So Γ ′ ` λx.t : (T ∗a → T ∗b)∗ with Γ ` Πx : T1.T2 . (T ∗a → T ∗b)∗.

Step Case:

Γ ` t : Πx : T1.T2 Γ ` t′ : T1

Γ ` tt′ : [t′/x]T2

App

25

By IH, we have Γ ` Γ ′ and Γ ′ ` t : (T ∗a → T ∗b)∗ and Γ ′ ` t′ : T ∗a with Γ ` T1 . T
∗
a ,

Γ ` Πx : T1.T2 . (T ∗a → T ∗b)∗ and Γ ` T2 . T
∗
b . So Γ ′ ` tt′ : T ∗b and Γ ` [t/x]T2 . T

∗
b

(lemma 15).

E Proofs for Section 5.2

We will use Tait-Martin Löf’s parallel reduction method to prove lemma 1. Let us
define the notion of parallel reduction w.r.t. →β .

Definition 38 (Parallel Reductions).

Γ ` t⇒β t

(x 7→ t) ∈ Γ
Γ ` x⇒β t

Γ ` t1 ⇒β t
′
1 Γ ` t2 ⇒β t

′
2

Γ ` (λx.t1)t2 ⇒β [t′2/x]t′1

Γ ` t⇒β t
′

Γ ` λx.t⇒β λx.t
′

Γ ` t⇒β t
′′ Γ ` t′ ⇒β t

′′′

Γ ` tt′ ⇒β t
′′t′′′

Γ ` T ⇒β T
′

Γ ` ιx.T ⇒β ιx.T
′

Γ ` T ′ ⇒β T
′′′ Γ ` T ⇒β T

′′

Γ ` Πx : T.T ′ ⇒β Πx : T ′′.T ′′′
Γ ` T ⇒β T

′

Γ ` λx.T ⇒β λx.T
′

Γ ` T ⇒β T
′

Γ ` λX.T ⇒β λX.T
′ Γ ` T ⇒β T

(X 7→ T) ∈ Γ
Γ ` X ⇒β T

Γ ` T1 ⇒β T
′
1 Γ ` T2 ⇒β T

′
2

Γ ` (λX.T1)T2 ⇒β [T ′2/X]T ′1

Γ ` T1 ⇒β T
′
1 Γ ` t2 ⇒β t

′
2

Γ ` (λx.T1)t2 ⇒β [t′2/x]T ′1

Γ ` T ′ ⇒β T
′′′ Γ ` T ⇒β T

′′

Γ ` ∀x : T.T ′ ⇒β ∀x : T ′′.T ′′′

Γ ` T ⇒β T
′ Γ ` t⇒β t

′

Γ ` Tt⇒β T
′t′

Γ ` T ⇒β T
′′ Γ ` T ′ ⇒β T

′′′

Γ ` TT ′ ⇒β T
′′T ′′′

Γ ` T ′ ⇒β T
′′′ Γ ` κ⇒β κ

′

Γ ` ∀X : κ.T ′ ⇒β ∀X : κ′.T ′′′ Γ ` κ⇒β κ

Γ ` T ⇒β T
′ Γ ` κ⇒β κ

′

Γ ` Πx : T.κ⇒β Πx : T ′.κ′
Γ ` κ⇒β κ

′′ Γ ` κ′ ⇒β κ
′′′

Γ ` ΠX : κ.κ′ ⇒β ΠX : κ′′.κ′′′

Lemma 18. →β⊆⇒β⊆→∗β.

Lemma 19. If Γ ` o2 ⇒β o
′
2, then Γ ` [o2/x]o1 ⇒β [o′2/x]o1 and Γ ` [o2/X]o1 ⇒β

[o′2/X]o1.

26

Proof. By induction on the structure of o1.

Base Cases: o1 = x,X, ∗. Obvious.

Step Case: o1 = λy.t. We have Γ ` λy.[o2/x]t
IH⇒β λy.[o

′
2/x]t.

Step Case: o1 = t t′. We have Γ ` [o2/x]t[o2/x]t′
IH⇒β ([o′2/x]t)[o′2/x]t.

The other cases are similar.

Lemma 20. If Γ ` o1 ⇒β o
′
1 and Γ ` o2 ⇒β o

′
2, then Γ ` [o2/y]o1 ⇒β [o′2/y]o′1 and

Γ ` [o2/Y]o1 ⇒β [o′2/Y]o′1.

Proof. We prove this by induction on the derivation of Γ ` o1 ⇒β o
′
1.

Base Case:

Γ ` t⇒β t

Γ ` T ⇒β T

Γ ` κ⇒β κ

By lemma 19.

Base Case:

(x 7→ t) ∈ Γ
Γ ` x⇒β t

In this case, we do not allow defined variable x to be substituted at all.

Step Case:

Γ ` ta ⇒β t
′
a Γ ` tb ⇒β t

′
b

Γ ` (λx.ta)tb ⇒β [t′a/x]t′b

We have Γ ` (λx.[t2/y]ta)[t2/y]tb
IH⇒β [[t′2/y]t′b)/x][t′2/y]t′a ≡ [t′2/y]([t′b/x]t′a). Here we first apply induction hypothesis

to reduce, then apply ⇒β .

Step Case:

Γ ` t⇒β t
′

Γ ` λx.t⇒β λx.t
′

We have Γ ` λx.[t2/y]t
IH⇒β λx.[t

′
2/y]t′.

Step Case:

27

Γ ` ta ⇒β t
′
a Γ ` tb ⇒β t

′
b

Γ ` tatb ⇒β t
′
at
′
b

We have Γ ` [n2/y]na[n2/y]nb
IH⇒β [n′2/y]n′a[n′2/y]n′b.

The other cases are similar as above.

Lemma 21 (Diamond Property). If Γ ` o ⇒β o
′ and Γ ` o ⇒β o

′′, then there
exists o′′′ such that Γ ` o′′ ⇒β o

′′′ and Γ ` o′ ⇒β o
′′′.

Proof. By induction on the derivation of Γ ` o⇒β o
′.

Base Case:

Γ ` t⇒β t

Obvious.

Base Case:

(x 7→ t) ∈ Γ
Γ ` x⇒β t

Obvious.

Step Case:

Γ ` t1 ⇒β t
′
1 Γ ` t2 ⇒β t

′
2

Γ ` (λx.t1)t2 ⇒β [t′2/x]t′1

Suppose Γ ` (λx.t1)t2 ⇒β (λx.t′′1)t′′2 , where Γ ` t1 ⇒β t
′′
1 and Γ ` t2 ⇒β t

′′
2 . By IH,

there exist t′′′1 , t
′′′
2 such that Γ ` t′′1 ⇒β t′′′1 and Γ ` t′1 ⇒β t′′′1 and Γ ` t′2 ⇒β t′′′2

and Γ ` t′2 ⇒β t
′′′
2 . By lemma 20, Γ ` [t′1/x]t′2 ⇒β [t′′′1 /x]t′′′2 , also Γ ` (λx.t′′1)t′′2 ⇒β

[t′′′1 /x]t′′′2 .

Suppose Γ ` (λx.t1)t2 ⇒β [t′′2/x]t′′1 , where Γ ` t1 ⇒β t
′′
1 and Γ ` t2 ⇒β t

′′
2 . By IH,

there exist t′′′1 , t
′′′
2 such that Γ ` t′′1 ⇒β t

′′′
1 and Γ ` t′1 ⇒β t

′′′
1 and Γ ` t′2 ⇒β n

′′′
2 and

Γ ` t′2 ⇒β t
′′′
2 . By lemma 20, Γ ` [t′1/x]t′2 ⇒β [t′′′1 /x]t′′′2 and Γ ` [t′′1/x]t′′2 ⇒β [t′′′1 /x]t′′′2 .

The other cases are either similar to the one above or easy.

By lemma 21 and lemma 18, we conclude the confluence of →β .

Lemma 22. →ι is confluent.

Proof. This is obvious since →ι is deterministic.

Lemma 23. If Γ ` o →β o′, then Γ ` [o1/x]o →β [o1/x]o′ and Γ ` [o1/X]o →β

[o1/X]o′ for any o1.

Proof. Obvious.

28

Lemma 24. →β commutes with →ι. i.e. if Γ ` T1 →β T2 and Γ ` T1 →ι T3, then
there exists T4 such that Γ ` T2 →ι T4 and Γ ` T3 →β T4.

Proof. Since Γ ` T1 →ι T3, we know that T1 ≡ ιx.T ′ and T3 ≡ [t/x]T ′. We also have
Γ ` T1 ≡ ιx.T ′ →β T2. By inversion, we know that T2 ≡ ιx.T ′′ with Γ ` T ′ →β T

′′.
By lemma 23, we know that Γ ` [t/x]T ′ →β [t/x]T ′′. Thus T4 ≡ [t/x]T ′′ and Γ `
ιx.T ′′ →ι [t/x]T ′′.

F Type Preservation Proofs

Lemma 25. Let ([Γ,∆], T1)→ι,β,i,g,I,G
∗([Γ], T2). If Γ,∆ ` t : T1 with dom(∆)#FV(t),

then Γ ` t : T2.

Note: We write
t→β,ι,i,g,I,G to mean the same thing as →∗β,ι,i,g,I,G with an emphasis

on the subject t.

Lemma 26. If ([Γ], T1)
t→β,ι,i,g,I,G ([Γ ′], T2) and Γ ` t =β t

′, then ([Γ], T1)
t′→β,ι,i,g,I,G

([Γ ′], T2).

Proof. By induction on the length of ([Γ], T1)
t→β,ι,i,g,I,G ([Γ], T2).

Note that this lemma is not subject expansion, do not get confused.

Lemma 27 (Inversion I). If Γ ` x : T , then exist ∆,T1 such that ([Γ,∆], T1)→∗ι,β,i,g,I,G([Γ], T)
and (x : T1) ∈ Γ .

Lemma 28 (Inversion II). If Γ ` t1t2 : T , then exist ∆,T1, T2 such that Γ,∆ ` t1 :
Πx : T1.T2 and Γ,∆ ` t2 : T1 and ([Γ,∆], [t2/x]T2)→∗ι,β,i,g,I,G([Γ], T).

Lemma 29 (Inversion III). If Γ ` λx.t : T , then exist ∆,T1, T2 such that Γ,∆, x :
T1 ` t : T2 and ([Γ,∆], Πx : T1.T2)→∗ι,β,i,g,I,G([Γ], T).

Lemma 30 (Substitution).

1. If Γ ` t : T , then for any mixed substitution φ with dom(φ)#FV(t), φΓ ` t : φT .
2. If Γ, x : T ` t : T ′ and Γ ` t′ : T , then Γ ` [t′/x]t : [t′/x]T ′.

Proof. By induction on derivation.

Theorem 13. If Γ ` t : T and Γ ` t→β t
′ and Γ ` wf, then Γ ` t′ : T .

Proof. By induction on derivation of Γ ` t : T . We list a few interesting cases.

Case:

x : T ∈ Γ
Γ ` x : T

If Γ ` x→β t
′, this means (x : T) 7→ t′ ∈ Γ and Γ ` t′ : T since Γ ` wf.

Case:

29

Γ ` t : Πx : T1.T2 Γ ` t′ : T1

Γ ` tt′ : [t′/x]T2

App

Suppose Γ ` (λx.t1)t2 →β [t2/x]t1. We know that Γ ` λx.t1 : Πx : T1.T2 and Γ ` t2 :
T1. By inversion on Γ ` λx.t1 : Πx : T1.T2, we know that there exist ∆,T ′1, T

′
2 such that

Γ,∆, x : T ′1 ` t1 : T ′2 and ([Γ,∆], Πx : T ′1.T
′
2)→∗ι,β,i,g,I,G([Γ], Πx : T1.T2). By Theorem

7, we have ([Γ,∆], φ(Πx : T ′1.T
′
2)) =ι,β ([Γ,∆], Πx : T1.T2). By Church-Rosser of =ι,β

(Theorem 6), we have Γ,∆ ` φT ′1 =β T1 and Γ,∆ ` φT ′2 =β T2. So by (1) of lemma 30,
we have Γ, φ(∆), x : φT ′1 ` t1 : φT ′2 with dom(φ(∆))#(FV(φT ′1) ∪ FV(φT ′2) ∪ FV(t1)).
So Γ, φ(∆), x : T1 ` t1 : T2. Since Γ ` t2 : T1, by (2) of lemma 30, Γ, φ(∆) ` [t2/x]t1 :
[t2/x]T2. So we have Γ ` [t2/x]t1 : [t2/x]T2.

30

	Self Types for Dependently Typed Lambda Encodings

