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Abstract. The quantum programming language Quipper supports cir-
cuit operations such as reversing and control, which allows programmers
to control and reverse certain quantum circuits. In addition to these two
operations, Quipper provides a function called with-computed, which can
be used to program circuits of the form g; f ; g†. The latter is a common
pattern in quantum circuit design. One benefit of using with-computed,
as opposed to constructing the circuit g; f ; g† directly from g, f , and g†,
is that it facilitates an important optimization. Namely, if the resulting
circuit is later controlled, only the circuit f in the middle needs to be
controlled; the circuits g and g† need not even be controllable.
In this paper, we formalize a semantics for reversible and controllable
circuits, using a dagger symmetric monoidal category R to interpret re-
versible circuits, and a new notion we call a controllable category N to
interpret controllable circuits. The controllable category N encompasses
the control and with-computed operations in Quipper. We extend the
language Proto-Quipper with reversing, control and the with-computed
operation. Since not all circuits are reversible and/or controllable, we
use a type system with modalities to track reversibility and controllabil-
ity. This generalizes the modality of Fu-Kishida-Ross-Selinger 2023. We
give an abstract categorical semantics for reversing, control and with-
computed, and show that the type system and operational semantics are
sound with respect to this semantics. Lastly, we construct a concrete
model using a generalization of biset enrichment from Fu-Kishida-Ross-
Selinger 2022.

Keywords: Proto-Quipper· Quipper· Control· Reversing· With-computed·
Quantum Circuits· Categorical Semantics.

1 Introduction

The goal of this paper is to devise a strongly typed, functional programming
language that can formally treat the quantum operations of reversing and con-
trol. Many quantum algorithms take essential advantage of reversing, control,
and their associated operation “with-computed”. At the same time, some essen-
tial operations, such as state preparations and measurements, can make circuits
irreversible or uncontrollable. It is therefore desirable to equip quantum pro-
gramming languages with a type system that can prevent the user from trying
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to reverse the irreversible or to control the uncontrollable. Some recently pro-
posed quantum programming languages (e.g., Qiskit and Cirq) also include the
concepts of reversibility and controllability. However, since these languages are
imperative, errors of reversibility or controllability are treated as run-time excep-
tions (see [11,15]). As to the with-computed operation, we are only aware of one
language besides Quipper that has a similar operation, namely ProjectQ [14,26].
However, ProjectQ is not a strongly-typed language. In this paper, we incorpo-
rate reversing, control, and with-computed into the language Proto-Quipper.

Proto-Quipper is a family of programming languages that aims to provide a
formal syntax and semantics for various features of the embedded quantum pro-
gramming language Quipper [12,13]. Like Quipper, Proto-Quipper is a quantum
circuit description language. When a Proto-Quipper program is run, it outputs
a quantum circuit; this generated circuit can later be executed on a quantum
computer. We refer to these two runtimes as “circuit generation time” and “cir-
cuit execution time”, respectively. There are various errors that programmers
can introduce by attempting the impossible—e.g., to duplicate linear data, to
apply circuit operations to a program that is not a circuit, etc.—but since Proto-
Quipper is strongly typed, it can catch such errors at compile time, rather than
at circuit generation time or circuit execution time. Previous research on Proto-
Quipper includes providing a syntax and semantics for circuit boxing [22,23],
supporting recursion [18], combining linear types and dependent types [7,10], and
incorporating dynamic lifting [4,8,9,17]. This paper defines a new variant Proto-
Quipper-C, which extends the type system of Proto-Quipper with reversibility
and controllability.

1.1 Reversing, control, and with-computed

In this paper, we address the issue of how to formally treat reversing, control,
and the with-computed operations by extending Proto-Quipper. In Quipper, the
controlled function takes a Quipper circuit as input, and returns the controlled
version of the circuit. The reverse function takes the adjoint of an input circuit.
The program (with_computed g f) first performs a circuit g, then a circuit f ,
and finally the adjoint of g.

g f g†

The with-computed circuit pattern is very common in quantum computing.
For example, Bennett’s method for constructing reversible classical circuits [1]
uses this pattern to initialize ancillary qubits and uncompute them; and the
quantum Fourier transform (QFT) addition [6] conjugates a series of controlled
rotation gates by the QFT. This pattern is used so often that Quipper imple-
ments the following optimization: when controlling a quantum circuit g; f ; g†

generated by the with-computed function, it suffices to control the circuit f .
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•

g f g† =

• • •

g f g†

In fact, the circuits g and g† need not even be controllable. As long as the circuit
f is controllable, we are able to control the circuit g; f ; g† by directly controlling
f . Thus the left hand side of the above circuit identity is more general to the right
hand side. It is also more efficient, since it uses a smaller number of controlled
gates than the circuit on the right. Note that in quantum computing, a controlled
gate may require substantially more resources than the non-controlled version.
For example, a common way of measuring resources is the T-count, i.e., the
number of T -gates required to implement a gate. While a T -gate itself has T -
count 1, a controlled T -gate has a T -count of at least 5.

1.2 Incorporating reversing, control and with-computed in
Proto-Quipper

To incorporate reversing, control, and with-computed in Proto-Quipper, our
starting point is to annotate each gate with flags that indicate its reversibil-
ity and controllability. So when controlling or reversing a circuit, we can first
check if all the gates in the circuit are controllable or reversible. If they are, then
we proceed to control or reverse each gate in the circuit. If there is a gate that
is not controllable or reversible, then the operation fails.

To handle the with-computed operation, we could define withComputed(g, f)
directly as the composition g; f ; g†. But this has the drawback that when the
circuit g is not controllable, it would not be possible to control g; f ; g†. This
prevents a large class of circuits from being controllable, e.g., quantum circuits
that are constructed via Bennett’s method [1].

Our solution is to view withComputed as a special programming language
construct, rather than as the composition g; f ; g†. It satisfies, for example, the
following identity (up to equivalence of circuits):

controlS(withComputed(g, f)) = withComputed(g ⊗ idS , controlS(f)) (1)

This identity states that controlling withComputed(g, f) is the same thing as
first controlling f , and then combining it with g⊗ idS using the with-computed
construct. Here, g ⊗ idS means stacking identity wires of type S on top of g.

Now let us give a semantic description for withComputed. We assume that
we are given a symmetric monoidal category M of quantum circuits. We further
assume that we are given a monoidal subcategory R of M such that R is dagger
symmetric monoidal, i.e., if g ∈ R(A,B), then g† ∈ R(B,A). So R represents the
category of reversible quantum circuits, where reversing a circuit corresponds to
applying the dagger functor (−)† : R(A,B) → R(B,A). To interpret control and
withComputed, we require an additional dagger symmetric monoidal category N
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of controllable circuits. It has same set of objects as R, and is equipped with two
operations, namely controlS : N(A,A) → N(A ⊗ S,A ⊗ S) and withComputed :
R(A,B)×N(B,B) → N(A,A). The functions controlS and withComputed must
be assumed to satisfy equation (1), as well as several other properties (which we
will state in more detail in Section 3). For example, here are two more properties
that withComputed satisfies:

withComputed(id, f) = f (2)
withComputed(g1; g2, f) =withComputed(g1,withComputed(g2, f)) (3)

We can interpret withComputed in the category R by an identity-on-objects,
dagger symmetric monoidal functor G : N → R such that

G(withComputed(g, f)) = g;G(f); g†.

Because of the functor G, we can regard every controllable circuit as a reversible
circuit. However, note that N is not a subcategory of R, as the functor G is not
in general faithful: it is possible for two circuits, such as withComputed(ĝ, f) and
g; f ; g†, where G(g) = ĝ, to be different in N (as they behave differently when
controlled), but equal in R.

1.3 Modalities for reversing and control

In Quipper, controlling an uncontrollable circuit or reversing a non-reversible
circuit will give rise to runtime errors. We want to incorporate reversing and
control in Proto-Quipper in such a way that erroneously controlling or reversing
a circuit is detected as a typing error at compile time. We achieve this by in-
troducing a notion of modality α ∈ {0, 1, 2}. Here, the modality 2 is associated
with circuits that are both controllable and reversible, for example a Hadamard
gate. The modality 1 is associated with circuits that are reversible but not con-
trollable, for example an initialization gate. The modality 0 is associated with
circuits that are neither controllable nor reversible, for example a measurement
gate.

We can use modalities to annotate the type of a circuit. For example, the
values of the type Circα(S,U) are circuits with input type S, output type U and
a modality annotation α. One important feature of modalities is that they are
composable. Suppose we want to compose a circuit Circα(S,U) with a circuit
Circβ(U, S

′). The resulting circuit will have type Circα∧β(S, S
′), where α ∧

β = min(α, β). This means that as long as we know the modalities for the
basic gate sets, we can devise a type system to track the modalities of the
circuits constructed from basic gates. Moreover, the reversing, control, and with-
computed operations can be given the following types:

controlS : Circ2(U,U) → Circ2(U ⊗ S,U ⊗ S).
reverse : Circα(U, S) → Circα(S,U), where α > 0.
withComputed : Circα(U, S)×Circ2(S, S) → Circ2(U,U), where α > 0.
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Note that withComputed requires its first argument to be at least reversible, and
the resulting circuit is again controllable.

Our modal type system makes it possible to detect errors, like controlling a
uncontrollable circuit, at compile time. From the programmer’s perspective, it
is not necessary to specify modalities explicitly in the source code, as they can
be inferred automatically by the type checker.

1.4 Detecting reversing and controlling errors with modalities

Consider the following Proto-Quipper program that implements quantum tele-
portation [19].

tele : !(Qubit -> Qubit)
tele q =

let (a, b) = bell00 ()
(cq, cb) = bellMeas (q, b)
(a, cb) = C_X a cb
(a, cq) = C_Z a cq
_ = Discard cq
_ = Discard cb

in a

teleCirc : Circ(Qubit, Qubit)
teleCirc = box Qubit tele

The bell00 function prepares a Bell state and bellMeas performs Bell mea-
surement. The gates C_X and C_Z are classically controlled gates such that the
second bit is the classical control bit. The operation box turns the circuit gener-
ating function tele of type !(Qubit -> Qubit) into a circuit teleCirc of type
Circ(Qubit, Qubit), which is the following.

0

0

H

H Meas

Meas

X Z

Even though teleportation conceptually implements an identity function, it
is not reversible nor controllable, due to the presence of state preparations, mea-
surements, and the discarding of states. So if programmers try to reverse or
control teleCirc, the type checker reports a typing error. For example, consider
the program below.

rteleCirc : Circ(Qubit, Qubit)
rteleCirc = reverse teleCirc

It gives rise to the following typing error in Proto-Quipper-C.



6 Peng Fu, Kohei Kishida , Neil J. Ross, and Peter Selinger

Can’t resolve modality.
When checking

teleCirc,
the type

Circ{1, 0, 0}(Qubit, Qubit)
indicates that it is not reversible,
but it is expected to be reversible.

Here the notation {1,0,0} is an encoding of the modality that means the circuit
is boxable, but it is not controllable nor reversible. The modalities are not directly
visible to the programmer and they only show up in an error message when a
modality constraint is violated.

1.5 Related work

The reverse, control and with-computed operations we consider in this paper
originally appeared in Quipper [13]. Our contributions are the formal study of
these operations via a type system, operational semantics, and categorical se-
mantics. Other than Quipper, the closest related work is our earlier papers [8]
and [9]. In this work, we gave a type system, operational semantics, and cate-
gorical semantics for Proto-Quipper with dynamic lifting. Dynamic lifting allows
interleaving circuit execution time with circuit generation time. Our type sys-
tem ensures that a boxable quantum circuit does not use dynamic lifting. This is
done by using a modality to distinguish quantum circuits from quantum compu-
tations. We also constructed a categorical semantics based on biset-enrichment.
In the present paper, we give a similar type system, but with multiple modal-
ities. We also generalize our categorical construction from biset-enrichment to
triset-enrichment. For the operational semantics, we only consider the circuit
evaluation for reversing, control and with-computed; we do not consider dy-
namic lifting in this paper. We believe this work complements our earlier work
in the sense that the controllability and reversibility can work together with the
notion of boxability.

QWire [20] is a quantum programming language that also supports circuit
reversal. Unlike Proto-Quipper, QWire has a host language and a circuit lan-
guage. The host language describes the computation of the classical computer,
while the circuit language describes the computation of the quantum computer.
Safe circuit reversing can be defined in QWire in the host language via pat-
tern matching on circuits. In our work, it is ensured by the type system. To
our knowledge, there are no concepts corresponding to the control and with-
computed operations in QWire.

The quantum programming language Silq [2] has annotations qfree and
mfree. These are annotations for types and typing judgments to denote classical
functions and functions that do not use measurement, respectively. Silq’s core
language supports reversing, and the control operation is supported by an if-
then-else construct. The main difference between Silq and Proto-Quipper is that
Proto-Quipper is primarily a circuit description language. Silq is not a circuit
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description language and does not have a notion of boxed circuits. As a result,
the circuit optimization shown in equation (1) is not presented in Silq.

In our construction of a concrete model for reversing and control in Section 6,
we use enriched category theory. There are some recent works that also use
enriched categories to model the semantics of quantum programming languages.
For example, [18] use a CPO-enriched categorical model to interpret a version
of Proto-Quipper with recursion. [21] give a categorical model for a QWire-like
language that also uses enriched categories. As far as we know, none of these
works studied the concepts of reversing, control and with-computed.

1.6 Contributions

In this paper, we formalize a notion of controllable category and give an ax-
iomatization of an abstract categorical model for Proto-Quipper with reversing,
control, and the with-computed operation. We extend the type system of [9]
with modalities for reversing and control. We furthermore define an operational
semantics and show that it is sound with respect to the categorical semantics.
Lastly, we give a construction of a concrete categorical model that generalizes
the biset-enrichment construction that was first developed in [8].

The rest of the paper is organized as follows: In Section 2, we give more
examples of how reversing, control and with-computed are used in practice. In
Section 3, we define a notion of controllable category and give an axiomatization
of a categorical semantics for reversing and control. In Section 4, we define a
type system that features the use of modalities. We then show how a typing
judgment with modalities can be interpreted as a morphism in our categorical
model. In Section 5, we define a call-by-value big-step operational semantics for
our language. We show that the operational semantics is sound with respect
to the categorical semantics. In Section 6, we construct a concrete categorical
model. We finish the paper with concluding remarks in Section 7.

2 Reversing, control and with-computed in
Proto-Quipper

In this section, we give examples of programs using reversing, control, and with-
computed. We have implemented the type system and operational semantics
(available from https://gitlab.com/frank-peng-fu/dpq-remake) and the pro-
grams in this section have been tested with this implementation.

The reversing, control, and with-computed operations have the following
types.

reverse : forall (a b : Type) ->
(Simple a, Simple b) => Circ(a, b) -> Circ(b, a)

control : {a s : Type} ->
(Simple s, Simple a) => Circ(a, a) -> Circ(a * s, a * s)

withComputed : forall (a b : Type) ->
(Simple a, Simple b) => Circ(a, b) -> Circ(b, b) -> Circ(a, a)

https://gitlab.com/frank-peng-fu/dpq-remake
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The tensor product is represented by *. The type class constraint (Simple a)
ensures that the variable a is a simple type.

2.1 Controlling a permutation circuit

In Proto-Quipper, there are two ways to represent the swap operation. One way
is by permuting the logical order of the circuit outputs without using any gates,
as in the following diagram.

input 1 = x x = output 2
input 2 = y y = output 1

The above circuit is generated by the following Proto-Quipper program.

f : !(Qubit * Qubit -> Qubit * Qubit)
f input = let (x, y) = input in (y, x)

The other way is by using an explicit swap gate, as in the following diagram.

input 1 = x × y = output 1
input 2 = y × x = output 2

The corresponding Proto-Quipper program is the following.

g : !(Qubit * Qubit -> Qubit * Qubit)
g input = let (x, y) = input in Swap x y

These circuits are semantically equivalent: each of them sends (x, y) to (y, x).
However, care must be taken when controlling these circuits, since controlling
them naively may produce the following non-equivalent circuits.

(a) control = c c

input 1 = x x = output 2
input 2 = y y = output 1

(b) control = c • c

input 1 = x × y = output 1
input 1 = y × x = output 2

While the second circuit is correct, the first one is not. Indeed, the first
circuit will send input 1 to output 2 independently of the state of the control
qubit. This is not the correct behavior, since the swapping should only take
place when the control qubit is in the state |1⟩. When the control qubit is in the
state |0⟩, the functions f and g should both behave like the identity function on
Qubit * Qubit.

Therefore, the programming language must be aware not only of the circuit,
but also of the implicit permutation of any qubits performed in the language. If
such an operation is controlled, explicit swap gates must sometimes be inserted.
Proto-Quipper-C does this correctly, whereas the original Quipper implementa-
tion did not.

For example, consider the following program.
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permuteCirc : Circ(Qubit * Qubit * Qubit * Qubit,
Qubit * Qubit * Qubit * Qubit)

permuteCirc =
boxCirc $ \ input -> let (x, y, z, w) = input in (w, y, x, z)

Since permuteCirc only permutes the input qubits and does nothing else,
the generated circuit has no gates. It is shown in Fig. 1. The following program
is the controlled version of permuteCirc.

cpermuteCirc : Circ(Qubit * Qubit * Qubit * Qubit * Qubit,
Qubit * Qubit * Qubit * Qubit * Qubit)

cpermuteCirc = control permuteCirc

The printed circuit for cpermuteCirc is in Fig. 2.

input 1 = x x = output 3
input 2 = y y = output 2
input 3 = z z = output 4
input 4 = w w = output 1

Fig. 1. Circuit for permuteCirc

control = c • • c

input 1 = x × w = output 1
input 2 = y y = output 2
input 3 = z × × x = output 3
input 4 = w × z = output 4

Fig. 2. Circuit for cpermuteCirc

Thus, in the implementation, we do not insert any swap gates when the
qubit variables are permuted in the programming language. We do, however,
track permutations of the variables and insert necessary swap gates when we are
controlling a circuit.

2.2 Controlling a CCZ gate

It is well-known that a CCZ gate can be implemented by 7 T-gates with T-depth
one [25]. See the following circuit.

0

0

0

0

T

T

T

T*

T*

T*

T 0

0

0

0

We can use with-computed to define the above circuit in Proto-Quipper.

my_ccz : Circ(Qubit * Qubit * Qubit, Qubit * Qubit * Qubit)
my_ccz = withComputed box_cnot_circuit box_parallel_T
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The function box_parallel_T generates the 7 parallel T gates in the middle
of the circuit and the function box_cnot_circuit generates the initialization
gates and the cnot circuits before the parallel T gates. Their definitions are
available in Appendix D.

We can add an extra control to the CCZ circuit by the following program.

ctrl_ccz : Circ(Qubit * Qubit * Qubit * Qubit,
Qubit * Qubit * Qubit * Qubit)

ctrl_ccz = control my_ccz

The above program generates the following circuit.

0

0

0

0

T

T

T

T*

T*

T*

T 0

0

0

0

We can see that only the T-gates in the middle are controlled. If we manually
program the CCZ gate without using the with-computed operation, we will get
an error when trying to control it.

cnot_circuit_rev :
!(Qubit * Qubit * Qubit * Qubit * Qubit * Qubit * Qubit

-> Qubit * Qubit * Qubit)
cnot_circuit_rev = unbox (reverse (boxCirc cnot_circuit))

my_ccz’ : Circ(Qubit * Qubit * Qubit, Qubit * Qubit * Qubit)
my_ccz’ =

boxCirc $ \input -> cnot_circuit_rev (parallel_T (cnot_circuit input))

-- The following gives rise to a typing error.
ctrl_my_ccz’ : Circ(Qubit * Qubit * Qubit * Qubit,

Qubit * Qubit * Qubit * Qubit)
ctrl_my_ccz’ = control my_ccz’

In the above program, my_ccz’ is defined by manual composition, where
cnot_circuit_rev is the reverse version of cnot_circuit. We will get a typing
error when controlling my_ccz’. This is because according to the semantics of the
control, we have to control all the gates in the circuit my_ccz’, which includes
the non-controllable initialization gates. So in order to control the CCZ circuit
that has initialization gates, we need to use the with-computed operation to
construct the circuit.
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3 Categorical semantics for reversing, control and
with-computed

3.1 The categorical semantics for the modalities

The type system in this paper is closely related to the type system we pro-
posed in [9]. In that work, a typing judgment takes the form of Γ ⊢α M : A,
where α ∈ {0, 1}. The modality α = 1 indicates that the term M is boxable,
whereas modality α = 0 indicates that the term M is not boxable. Semantically,
boxable quantum circuits are interpreted as the morphisms of a category M,
whereas general (not necessarily boxable) circuits are interpreted as morphisms
of a category Q. These categories are equipped with an identity-on-objects func-
tor J : M → Q which forgets that a circuit is boxable. From this data, in [9]
we constructed a single symmetric monoidal category A with a monad T and a
commutative diagram

M A

Q KlT (A).

J

Here, A → KlT (A) is the canonical functor from A to the Kleisli category of T ,
and the functors M ↪→ A and Q ↪→ KlT (A) are full and faithful embeddings.
In this setting, a typing judgment Γ ⊢1 M : A is interpreted as a morphism
JΓ K → JAK in A, which corresponds to a morphism in M via the embedding;
and Γ ⊢0 M : A is interpreted as a morphism JΓ K → T JAK in the Kleisli category
KlT (A), which corresponds to a morphism in Q.

Using an analogous approach, we consider typing judgments Γ ⊢α M :
A where α ∈ {0, 1, 2}. Recall from Section 1.2 that we are given symmetric
monoidal categories M, R, and N of general circuits, reversible circuits, and
controllable circuits, respectively, with functors G : N → R and I : R ↪→ M. In
the semantics, these three categories are combined into a single category A, and
the modalities α = 0, 1, 2 are modeled by monads T0, T1, and T2 on A, where
T2 is the identity monad. This is done in such a way that the following diagram
commutes.

N A

R KlT1
(A)

M KlT0
(A)

G

I

Then a typing judgment Γ ⊢α M : A is interpreted as a morphism JMK :
JΓ K → TαJAK in the category A. Thus a morphism JΓ K → JAK corresponds to
a morphism in the controllable category N, and JΓ K → T1JAK corresponds to a
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morphism in the category R, and JΓ K → T0JAK corresponds to a morphism in
the category M.

We anticipate that it would be easy to combine our modalities for reversing
and control with the modality for dynamic lifting of [9]. To add dynamic lifting,
one would simply add a fourth modality and one more monad T , and extend the
diagram with one more square:

N A

R KlT1
(A)

M KlT0
(A)

Q KlT (A)

G

I

J

For the sake of simplicity, we will only focus on reversing and control in this
paper.

3.2 A category of controllable circuits

Before we can define a programming language for building quantum circuits,
we must specify what a quantum circuit is. However, there exist many different
classes of circuits; for example, they differ by what data they can manipulate
(only qubits, or also classical bits, and/or more exotic objects like qutrits), what
the built-in gates are (for example, the Clifford+T gate set, Toffoli+Hadamard,
rotations by arbitrary angles), whether or not qubit initialization and termi-
nation is supported, whether measurement is considered as a gate, and so on.
Therefore, rather than tailoring our programming language to a specific class
of circuits, we make both the language and its operational and denotational
semantics parametric on a given class of circuits. This is analogous to mak-
ing a classical programming language parametric on some signature of built-in
operations. For us, quantum circuits are abstractly given as the morphisms of
monoidal categories with certain properties, which we now specify.

We start from a given symmetric monoidal category M of quantum circuits.
In practice, the objects of M are generated from wire types such as Bit and
Qubit, and the morphisms are generated from a finite set of gates. In the fol-
lowing, we define what we mean by a reversible subcategory of M. Recall that a
dagger symmetric monoidal category is a symmetric monoidal category equipped
with a contravariant, identity-on-objects, involutive functor such that for all mor-
phism f : A → B, we have f† : B → A. Moreover, the dagger functor is required
to be compatible with the symmetric monoidal structure [24].

Definition 1. By a reversible subcategory of M, we mean a dagger symmetric
monoidal category R, together with an identity-on-objects, faithful, symmetric
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(strong) monoidal functor I : R → M. We usually regard I as an inclusion
functor, i.e., we regard R as a subcategory of M.

A morphism f of R is called unitary if f ◦ f† = id and f† ◦ f = id. Note
that we do not require all morphisms of R to be unitary. Thus, our notion of
reversible morphism means a morphism that has an adjoint, not necessarily an
inverse.

The dagger functor provides a semantics for the operation of reversing a
quantum circuit. In order to capture the notion of control and with-computed,
we define a notion of controllable category.

Definition 2. Let R be a dagger symmetric monoidal category. By a control-
lable category of R, we mean a dagger symmetric monoidal category N with the
same objects as R, and equipped with the following structure:

(a) For all A,B ∈ N, a function − • − : R(B,A) ×N(A,A) → N(B,B) (also
denoted by withComputed) such that:

id • h = h

(g1; g2) • h = g1 • (g2 • h).

(g1 ⊗ g2) • (h1 ⊗ h2) = (g1 • h1)⊗ (g2 • h2)

(g • h)† = g • h†

(b) For all S,A ∈ N, a function controlS : N(A,A) → N(A ⊗ S,A ⊗ S) such
that the following hold:

controlS(idA) = idA⊗S

A⊗ I A⊗ I

A A

ρ

controlI(h)

ρ

h

A⊗ (B ⊗ C) A⊗ (B ⊗ C)

(A⊗B)⊗ C (A⊗B)⊗ C

α

controlB⊗C(h)

α

controlC(controlB(h))

A⊗ (B ⊗ C) A⊗ (B ⊗ C)

A⊗ (C ⊗B) A⊗ (C ⊗B).

A⊗γ

controlB⊗C(h)

A⊗γ

controlC⊗B(h)

(c) An identity-on-objects, strict dagger symmetric monoidal functor G : N → R
such that

G(g • h) = g;G(h); g†



14 Peng Fu, Kohei Kishida , Neil J. Ross, and Peter Selinger

Remarks.

– The functor G gives an intended interpretation for the with-computed func-
tion. It captures the common quantum computation pattern g;h; g†.

– The functor G preserves the equalities of condition (a). For example, G(id •
h) = id;G(h); id† = G(h). Note that we do not require g•idA = idB , because
this would imply g; g† = g; idA; g

† = G(g • idA) = G(idB) = idB , which is
not an assumption we make for R. For similar reasons, we do not require
g • (h1;h2) = (g • h1); (g • h2).

– In (b), one might have expected us to also require the following properties.
However, in the intended interpretation, these properties do not hold “on the
nose” (up to literal equality of circuits) because controlling a circuit can insert
additional controlled swap gates, which may end up in different places on the
left- and right-hand side. Instead, the properties only hold up to equivalence
of circuits. That is, if there is a given interpretation functor J : M → Q as
in Section 3.1, we can define f ∼ g to mean J(I(G(f))) = J(I(G(g))). In
that case, it makes sense to require the following properties.

controlS(h; g) ∼ controlS(h); controlS(g),where g, h ∈ N(A,A).

controlS(h
†) ∼ controlS(h)

†

controlS(g • h) ∼ (g ⊗ idS) • controlS(h)

The last equation formalizes the idea that to control a with-computed circuit
g • h, it suffices to control the circuit h in the middle.

An intended model for N can be constructed as follows: Let M be a sym-
metric monoidal category of syntactic quantum circuit diagrams, with objects
such as Qubit and Bit, and morphisms that are freely generated by some set
of primitive gates. Suppose, as is usual in quantum circuits, that some distin-
guished subset of the primitive gates is reversible, i.e., to each such reversible
primitive gate G, another primitive gate G† has been associated. Let R be the
subcategory of M that is generated by the reversible gates. Also suppose that
certain distinguished ones of the reversible gates are controllable, i.e., for a con-
trollable primitive gate G : A → A, there an associated controllable primitive
gate CG : A⊗Qubit → A⊗Qubit. Let N be a category with the same objects
as R. The morphisms in N are freely generated by generators of two colors, say
red and green. Each reversible primitive gate is a red generator of N, and each
controllable primitive gate is a green generator of N. (Therefore, there are two
different colored versions of each primitive controllable gate in N). All morphisms
in N are reversible, and reversing does not change color. The control function
adds controls to the green generators. The with-computed function takes any
morphism g of R and any morphism f of N, and produces g; f ; g†, where g and
g† have been colored red. The functor G is the forgetful functor that forgets the
colors.
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3.3 A categorical semantics for reversing and control

We now assume that we are given three small categories M, R, and N as specified
in the previous section. The categorical semantics, type system and the oper-
ational semantics are all parameterized by the categories N,R and M. These
three categories lack the necessary structures to interpret a programming lan-
guage. We therefore define a category A below, in which the typing rules can be
interpreted as morphisms.

Definition 3. A category A is a model for Proto-Quipper with reversing, control
and with-computed if it is equipped with the following structure.

(a) A is symmetric monoidal closed, i.e., it is symmetric monoidal and there is
an adjunction −⊗A ⊣ A ⊸ − for any A ∈ A. We write ϵ : (A ⊸ B)⊗A →
B for the counit of this adjunction.

(b) A has coproducts. Note that the tensor distributes over coproducts, because
−⊗A is a left adjoint.

(c) There is an adjunction p ⊢ ♭ : Set → A where p is a strong monoidal
functor, i.e., p(1) ∼= I and p(X × Y ) ∼= p(X)⊗ p(Y ).

(d) A is equipped with idempotent commutative strong monads T0 and T1 such
that T0T1

∼= T0
∼= T1T0. More specifically, we require the natural maps ηT0B :

T0B → T1T0B and T0ηB : T0B → T0T1B to be isomorphisms. Here, by
idempotent monad we mean that µB : T 2B → TB is an isomorphism. We
write s : TA⊗B → T (A⊗B) for the strength.

(e) There are full and faithful embeddings N↪→A , R↪→KlT1(A), and M↪→KlT0(A).
These embedding functors are strong monoidal. Moreover, the following di-
agram commutes for all S,U ∈ M.

N(S,U) A(S,U)

R(S,U) KlT1(A)(S,U)

M(S,U) KlT0(A)(S,U)

∼=

GSU E

∼=

IS,U L

∼=

Remarks:

– Conditions (a) and (b) are necessary to support higher-order functions in
the language. All models of Proto-Quipper supports conditions (a)-(c).

– Because p : Set → A is a left adjoint and is strong monoidal, we can deduce
that

p(X) ∼= p(
∑
x∈X

1) ∼=
∑
x∈X

p(1) ∼=
∑
x∈X

I.

Due to the adjunction p ⊣ ♭, we also have

Set(X, ♭B) ∼= A(p(X), B) ∼= A(
∑
x∈X

I,B) ∼=
∏
x∈X

A(I,B) ∼= Set(X,A(I,B)).

Therefore by Yoneda’s principle, we have ♭(B) ∼= A(I,B).
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– In condition (d), the monad T0 is intended to represent (via its Kleisli cat-
egory) circuits that are neither reversible nor controllable, and the monad
T1 represents a circuit that is reversible but not controllable. To facilitate
composition of morphisms from different Kleisli categories, we require the
condition T1T0

∼= T0T1
∼= T0, i.e., if a non-controllable circuit is composed

with a non-reversible circuit, then the resulting circuit should be neither
controllable nor reversible.

– Condition (e) expresses the idea that morphisms of ground type in the var-
ious Kleisli categories correspond to morphisms in M, R, and N.

– In condition (e), the functors E : A → KlT1(A) and L : KlT1(A) →
KlT0

(A) are the canonical identity-on-objects functors. Specifically, for any
f ∈ A(A,B), we have E(f) = ηT1 ◦ f ∈ KlT1

(A)(A,B), and for any
f : A → T1B ∈ KlT1

(A), we set L(f) to be

A
f−→ T1B

ηT0

−−→ T0T1B
(T0ηB)−1

−−−−−−→ T0B.

It can be shown that L is a well-defined symmetric monoidal functor.
– For β ∈ {2, 1, 0}, we write Dβ for N if β = 2; R if β = 1; and M if β = 0.

We also write Tβ for the corresponding monad T2 = id, T1, and T0. We write
α ∧ β = min(α, β).

– For any S,U ∈ obj(M), the map unbox : Dβ(S,U) −→ ♭(S ⊸ TβU) is defined
by

Dβ(S,U)
∼=−→ A(S, TβU)

curry−−−→ A(I, S ⊸ TβU)
∼=−→ ♭(S ⊸ TβU).

– For any S,U ∈ obj(M), the map box : ♭Tα(S ⊸ TβU) −→ Dα∧β(S,U) is
defined by the following commutative diagram.

♭Tα(S ⊸ TβU) Dα∧β(S,U)

Set(1, ♭Tα(S ⊸ TβU))

A(I, Tα(S ⊸ TβU)) A(S, Tα∧βU)

box

∼=

∼=

k

∼=

For any m ∈ A(I, Tα(S ⊸ TβU)), the map k(m) is given by the following
composition.

S
m⊗S−−−→ Tα(S ⊸ TβU)⊗ S

s−→ Tα((S ⊸ TβU)⊗ S)
Tαϵ−−→ TαTβU

∼=−→ Tα∧βU

– Note that box is the inverse of unbox when α = 2.

In Section 6, we will construct a concrete category A based on M,N,R that
will satisfy the above conditions.
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4 A type system for reversing, control and with-computed

In this section, we define the syntax and type system of Proto-Quipper-C, a
version of Proto-Quipper with support for reversing, control and with-computed.
We will show that our type system is sound with respect to the categorical
semantics by interpreting typing judgments as morphisms in the category A
from Definition 3.

We first describe the syntax of the language and the type system. We note
that the syntax of our term language mentions morphisms from the categories
M, N, and R; however, it is still a syntax, not a semantics. Since the purpose of
the language is to compute quantum circuits, there must be some terms in the
language that represent circuits. We represent such terms as circ(C), where C is
a morphism in the appropriate category. This is effectively the same as adding
a constant symbol for every possible circuit.

Definition 4 (Syntax).

Modalities α, β ::= 2 | 1 | 0

Types A,B ::= Unit | Qubit | Bit | Bool | !αA | A ⊸α B

| Circα(S,U) | A⊗B

Parameter Types P,R ::= Unit | Bool | !αA | Circα(S,U) | P ⊗R

Simple Types S,U ::= Unit | Qubit | Bit | S ⊗ U

Terms M,N ::= c | x | λx.M | MN | Unit | circ(C) | apply(M,N)

| lift M | boxUM | (M,N) | let (x, y) = N in M

| forceM | reverseM | controlSM

| withComputedM N

Simple Terms a, b ::= ℓ | Unit | (a, b)
Contexts Γ ::= · | x : A,Γ | ℓ : Qubit, Γ | ℓ : Bit, Γ

Parameter contexts Φ ::= · | x : P,Φ.

Label Contexts Σ ::= · | ℓ : Qubit, Σ | ℓ : Bit, Σ

Values V ::= x | ℓ | λx.M | lift M | circ(C) | (V, V ′) | unit
Circuits C,D ∈ N(JSK, JUK) | R(JSK, JUK) | M(JSK, JUK)

The syntax is similar to the one specified in [9], except for the highlighted
terms and types. The symbol c is used for constant symbols, such as True and
False for the type Bool, as well as other appropriate constants. For space rea-
sons, we omit a comprehensive treatment of sum types. The values of parameter
types can be duplicated or discarded, whereas the values simple types are sim-
ple terms, which are resources. They cannot be freely duplicated nor discarded.
A simple term consists of a tuple of labels, which are pointers to places in a
quantum circuit where gates can be attached. Unlike variables, labels cannot be
substituted, and they can only have type Qubit or Bit. We call a typing con-
text that contains only labels a label context (denoted by Σ). We call a typing
context that contains only parameter types a parameter context (denoted by Φ).
The modality is represented by a number in the lattice 2 > 1 > 0, where α = 0
indicates non-reversible and non-controllable; α = 1 indicates reversible but not
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controllable; and α = 2 indicates controllable and reversible. The modality in
the type !αA means that when its value is forced, it may append a gate that
has modality α to the then-current circuit. Similarly, the modality in the type
A ⊸α B indicates that when its value is applied to an argument, it may ap-
pend a gate that has modality α. We also add a modality to the circuit type
Circα(S,U), indicating the corresponding property (e.g., reversibility) of its cir-
cuit values. We include the terms reverseM , controlSM , and withComputedM N
for reversing, control and the with-computed operation. For a simple type S,
we write JSK to denote the object corresponding to S in the category M (note
that obj(M) = obj(N) = obj(R)). The term circ(C) is a value of a circuit type,
where C is a morphism from N, R or M.

Recall that we write α∧ β to denote the greatest lower bound, or min(α, β).
And we write Dα to mean M if α = 0, and R if α = 1, and N if α = 2. The
following is the definition of the typing rules.

Definition 5 (Typing rules).

Φ, x : A ⊢2 x : A
var

ℓ : Qubit | Bit ⊢2 ℓ : Qubit | Bit
label

Γ ⊢β M : !αA

Γ ⊢α∧β force M : A
force

Φ, Γ1 ⊢α1 M : A Φ, Γ2 ⊢α2 N : B

Φ, Γ1, Γ2 ⊢α1∧α2 (M,N) : A⊗B
pair

Γ, x : A ⊢α M : B

Γ ⊢2 λx.M : A ⊸α B
lambda

Φ, Γ1 ⊢α1 M : A ⊸β B Φ, Γ2 ⊢α2 N : A

Φ, Γ1, Γ2 ⊢α1∧α2∧β MN : B
app

Γ ⊢α M : !β(S ⊸γ U)

Γ ⊢α boxS M : Circβ∧γ(S,U)
box

Φ, Γ1 ⊢α M : Circγ(S,U) Φ, Γ2 ⊢β N : S

Φ, Γ1, Γ2 ⊢α∧β∧γ apply(M,N) : U
apply

C ∈ Dα(JSK, JUK)

Φ ⊢2 circ(C) : Circα(S,U)
circ

Γ ⊢α M : Circ2(U,U)

Γ ⊢α controlSM : Circ2(U ⊗ S,U ⊗ S)

Φ ⊢α M : A

Φ ⊢2 liftM : !αA
lift

Φ, Γ1, x : A, y : B ⊢α1 M : C Φ, Γ2 ⊢α2 N : A⊗B

Φ, Γ1, Γ2 ⊢α1∧α2 let (x, y) = N in M : C

Γ ⊢α M : Circγ(S,U) γ > 0

Γ ⊢α reverseM : Circγ(U, S)

Φ, Γ1 ⊢α M : Circγ(U, S) γ > 0
Φ, Γ2 ⊢β N : Circ2(S, S)

Φ, Γ1, Γ2 ⊢α∧β withComputedM N : Circ2(U,U)

Remarks:

– Typing judgments are of the form Γ ⊢α M : A. Here, the modality α asserts
that when evaluating the term M , a gate of modality α may be appended
to the current circuit.

– Since a value cannot append any gates, it does not change the current circuit
state. Therefore values always have modality 2, i.e., Γ ⊢2 V : A.

– The lambda and lift rules store the modality α of M in the respective types
A ⊸α B and !αA.
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– In the rules app, force, and apply, the modality in the types !αA and A ⊸α B
affects the modality of the current term.

– A controllable circuit always has the type Circ2(S, S) for some simple type
S. It cannot have type Circα(S, T ) where α ̸= 2 or S ̸= T .

– The typing rule for with-computed requires the term N to be a controllable
circuit, whereas the term M only needs to be reversible. The resulting term
withComputedM N is again a controllable circuit.

– In the typing rule box, the modalities β, γ jointly determine the modality of
the circuit type.

– We often write Σ ⊢ a : S for Σ ⊢2 a : S. Moreover, for Σ ⊢ a : S, there is an
obvious interpretation JaK : JΣK → JSK as an isomorphism in M, R or N.

– In the circ rule, the modality of the Circ-type depends on which category
the circuit is coming from. Since C is a morphism in M, R or N, it is a fairly
low-level rule. Programmers usually do not need to write the circuit value
explicitly. Rather, they can use a set of builtin gates, which may be bound
to identifiers in a pre-loaded library, to write programs of a circuit type.

4.1 Interpretation

We will interpret the typing rules in the model A from Definition 3. The following
is the interpretation for types.

Definition 6.
JQubitK = Qubit
JA⊗BK = JAK ⊗ JBK
JCircα(S,U)K = pDα(JSK, JUK)
J!αAK = p♭TαJAK
JA ⊸α BK = JAK ⊸ TαJBK

We will interpret a typing context Γ as a tensor product of all of its objects
(denoted by JΓ K). Each valid typing judgment Γ ⊢α M : A will be interpreted as
a morphism in the Kleisli category of Tα. The interpretation of typing judgements
is given by the following definition.

Definition 7. For Γ ⊢α M : A, we define JMK : JΓ K → TαJAK in A by induc-
tion on the typing rules. Here, we only give some important cases. The remaining
typing rules can be interpreted similarly.

– Case
Γ ⊢α M : !α1(S ⊸α2 U)

Γ ⊢α boxSM : Circα1∧α2(S,U)

We define JboxSMK to be

JΓ K
JMK−−−→ Tαp♭Tα1

(JSK ⊸ Tα2
JUK) Tαpbox−−−−→ TαpD

α1∧α2(JSK, JUK).
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– Case
C ∈ Dα(JSK, JUK)

Φ ⊢2 circ(C) : Circα(S,U)

Since C : JSK → JUK is a morphism in Dα, we define JΦ ⊢2 circ(C) :
Circα(S,U)K as the following composition, where 1C : 1 → Dα(JSK, JUK)
such that 1C(∗) = C and discard = p!X , !X ∈ Set(X, 1).

JΦK discard−−−−→ p1
p1C−−→ pDα(JSK, JUK).

– Case
Γ ⊢α M : Circ2(U,U)

Γ ⊢α controlSM : Circ2(U ⊗ S,U ⊗ S)

By the induction hypothesis, we have JMK : JΓ K → TαpN(JSK, JSK). Using
the function controlJSK : N(JUK, JUK) → N(JUK ⊗ JSK, JUK ⊗ JSK), we define
JcontrolSMK to be the following.

JΓ K
JMK−−−→ TαpN(JUK, JUK)

Tαp(controlJSK)−−−−−−−−−→ TαpN(JUK ⊗ JSK, JUK ⊗ JSK)

– Case
Γ1 ⊢α M : Circγ(U, S) γ > 0
Γ2 ⊢β N : Circ2(S, S)

Γ1, Γ2 ⊢α∧β withComputedMN : Circ2(U,U)

Suppose α = β = γ = 2 and Γ1 ⊢2 M : Circ2(U, S). By the induction
hypothesis, we have

pGU,S ◦ JMK : JΓ1K → pN(JUK, JSK) → pR(JUK, JSK),

JNK : JΓ2K → pN(JSK, JSK).
Using the function withComputed : R(JUK, JSK)×N(JSK, JSK) → N(JUK, JUK),
we define JwithComputedMNK to be the following.

JΓ1K ⊗ JΓ2K
(pGU,S◦JMK)⊗JNK−−−−−−−−−−−−→ pR(JUK, JSK)⊗ pN(JSK, JSK)

p(withComputed)−−−−−−−−−−→ pN(JUK, JUK)
Suppose α = β = 2, γ = 1 and Γ1 ⊢2 M : Circ1(U, S). By the induction
hypothesis, we have

JMK : JΓ1K → pR(JUK, JSK),

JNK : JΓ2K → pN(JSK, JSK).
We define JwithComputedMNK to be the following.

JΓ1K⊗JΓ2K
JMK⊗JNK−−−−−−→ pR(JUK, JSK)⊗pN(JSK, JSK)

p(withComputed)−−−−−−−−−−→ pN(JUK, JUK)

The remaining cases (e.g. when α, β ̸= 2) are similar.

Theorem 1. If Σ ⊢2 a : S, then JaK : JΣK → JSK is an isomorphism.

Proof. This is by induction on the derivation of Σ ⊢2 a : S.

Since N ↪→ A and JΣK, JSK ∈ N, we have JaK ∈ A(JΣK, JSK) ∼= N(JΣK, JSK) =
R(JΣK, JSK) = M(JΣK, JSK).
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5 Operational semantics

In this section, we will define a big-step, call-by-value operational semantics for
Proto-Quipper-C. Like the syntax and the type system, the operational seman-
tics is parameterized by the triple of categories M, R, and N. Specifically, the
operational semantics is defined on configurations that are pairs (C,M), where
M is a term and C : JSK → JΣK is the current circuit state, which is a morphism
in M, R or N.

5.1 The operational semantics

Definition 8 (Operational semantics).

(C1,M) ⇓ (C2, λx.M
′)

(C2, N) ⇓ (C3, V )
(C3, [V/x]M

′) ⇓ (C4, V
′)

(C1,MN) ⇓ (C4, V
′)

app

(C,M) ⇓ (C′, lift M ′)
(C′,M ′) ⇓ (C′′, V )

(C, force M) ⇓ (C′′, V )
force

(C,N) ⇓ (C′, (V1, V2))
(C′, [V1/x, V2/y]M) ⇓ (C′′, V )

(C, let (x, y) = N in M) ⇓ (C′′, V )
let

(C,M) ⇓ (C′, V1)
(C′, N) ⇓ (C′′, V2)

(C, (M,N)) ⇓ (C′′, (V1, V2))
pair

(C,M) ⇓ (C′, lift M ′)
gen(S) = (a,Σ)

(JaK†,M ′ a) ⇓ (D, b)

(C, boxS M) ⇓ (C′, circ(JbK ◦D))
box

(C1,M) ⇓ (C2, circ(D))
(C2, N) ⇓ (C3, V )

gen(codomain(D)) = (b,Σ)
C′ = append(C3, D, V, b)

(C1, apply(M,N)) ⇓ (C′, b)
apply

(C,M) ⇓ (C′, circ(D))

(C, reverseM) ⇓ (C′, circ(D†))
rev

(C,M) ⇓ (C′, circ(D))

(C, controlSM) ⇓ (C′, circ(controlJSKD))
ctrl

(C′,M) ⇓ (C′′, circ(D1))
(C,N) ⇓ (C′, circ(D2))

α = mode(D1)

(C,withComputedM N) ⇓ (C′′, circ(Gα(D1) •D2))
wc

Remarks.

– The app, force, let and pair rules are standard. They do not directly modify
the underlying circuit state.

– In the box rule, we write gen(S) = (a,Σ) to indicate the generation of a
set of fresh labels a such that Σ ⊢ a : S and JaK : JΣK → JSK. Suppose the
codomain of D is JΣ′K and Σ′ ⊢ b : U . Thus

JSK D−→ JΣ′K
JbK−−→ JUK

is a morphism in M, R or N.
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– In the wc rule, we write mode(f) = 0 if a morphism f belongs to the category
M, mode(f) = 1 if f belongs to the category R, and mode(f) = 2 if f belongs
to the category N.

– In the apply rule, suppose domain(D) = JSK and codomain(D) = JUK. So
gen(U) = (b,Σ) implies that Σ ⊢ b : U and JbK : JΣK → JUK. Note that
V and S uniquely determine a label context Σ′

1, which is a subset of labels
in the codomain of C3. We write C ′ = append(C3, D, V, b) to mean that C ′

is obtained via composing (JbK† ◦ D ◦ JV K) : JΣ′
1K → JΣK with C3 : JSK →

JΣ′
1K ⊗ JΣ′

2K (illustrated by the following diagram).

C3

JbK† ◦D ◦ JV K

This composition is always possible, even when they belong to different cat-
egories. E.g., if (JbK† ◦ D ◦ JV K) ∈ N and C3 ∈ M, we can apply the func-
tor I ◦ G to (JbK† ◦ D ◦ JV K) before the composition. Thus mode(C ′) =
mode(C3) ∧mode(JbK† ◦D ◦ JV K).

– In the rev and ctrl rules, the morphism D is reversed/controlled using the
reverse/control function from the category it belongs to. If D is not a mor-
phism in R or N, respectively, then it will cause a runtime error. The type
preservation property (Theorem 2) will ensure that there are no such runtime
errors.

– In the wc rule, if α = 2, then Gα = G : N → R, and if α = 1 then
Gα = id : R → R. All the other cases are runtime errors, which are prevented
by our type system via type preservation (Theorem 2).

In order to formulate type preservation, we first define a notion of well-typed
configuration.

Definition 9 (Well-typed configuration). We define a well-typed configura-
tion ⊢α∧β (C,M) : A;Σ′ to mean: mode(C) = α, C ∈ Dα(JSK, JΣ′′K⊗JΣ′K) and
Σ′′ ⊢β M : A. We also write mode(M) = β.

Theorem 2 (Type preservation). Suppose ⊢α∧β (C,M) : A;Σ′ and (C,M) ⇓
(C ′, V ), where mode(C) = α,mode(M) = β. We have ⊢α∧β (C ′, V ) : A;Σ′,
where mode(C ′) = α ∧ β and mode(V ) = 2.

Proof. The proof is by induction on the derivation of (C,M) ⇓ (C ′, V ).

Example. Consider the configuration

(idI , boxS lift(λx.let(a1, a2) = x in apply(circ(CNOT), (a2, a1)))),

where S = Qubit⊗Qubit and CNOT : Qubit⊗Qubit → Qubit⊗Qubit is a
morphism in N, where the second qubit of the CNOT is the control qubit. Using
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the box rule, we first call gen(S), which returns a pair of fresh labels (ℓ1, ℓ2) and
a label context Σ = ℓ1 : Qubit, ℓ2 : Qubit. Then we evaluate

(J(ℓ1, ℓ2)K†, (λx.let(a1, a2) = x in apply(circ(CNOT), (a2, a1))))(ℓ1, ℓ2))

to
((J(ℓ1, ℓ2)K†, apply(circ(CNOT), (ℓ2, ℓ1))).

Then by the apply rule, it is evaluated to

((J(ℓ3, ℓ4)K† ◦ CNOT ◦ J(ℓ2, ℓ1)K ◦ J(ℓ1, ℓ2)K†), (ℓ3, ℓ4)),

where gen(codomain(CNOT)) = gen(S) returns fresh labels (ℓ3, ℓ4) and a label
context Σ′ = ℓ3 : Qubit, ℓ4 : Qubit. Therefore by the box rule, we eventually
obtain

(idI , circ((J(ℓ3, ℓ4)K ◦ J(ℓ3, ℓ4)K† ◦ CNOT ◦ J(ℓ2, ℓ1)K ◦ J(ℓ1, ℓ2)K†)).

Note that J(ℓ3, ℓ4)K ◦ J(ℓ3, ℓ4)K† = idS and J(ℓ2, ℓ1)K ◦ J(ℓ1, ℓ2)K† = γ : Qubit ⊗
Qubit → Qubit⊗Qubit. Thus, the final value is

(idI , circ(CNOT ◦ γ)).

Remark. The morphism γ comes from the symmetric monoidal structure on N,
and its effect is to switch two wires without inserting an explicit swap gate (it
is, for example, the same as the interpretation of the function f in Section 2.1).
Only if we later control the circuit circ(CNOT ◦ γ), this morphism γ will be
replaced by a controlled swap gate, just like circuit (b) in Section 2.1).

5.2 Soundness of operational semantics

We now prove that the operational semantics is sound with respect to the cate-
gorical model A (Definition 3). To do so, we first interpret a well-typed config-
uration as a morphism in A.

Definition 10. Suppose ⊢α∧β (C,M) : A;Σ′, where mode(C) = α,C ∈ Dα(JSK,
JΣ′′K ⊗ JΣ′K) and Σ′′ ⊢β M : A. We define J(C,M)K : JSK → Tα∧β(JAK ⊗ JΣ′K)
to be the following composition (note that Tα ◦ Tβ

∼= Tα∧β):

JSK C−→ Tα(JΣ′′K ⊗ JΣ′K)
Tα(JMK⊗JΣ′K)−−−−−−−−−→ Tα(TβJAK ⊗ JΣ′K)

Tαs−−→ TαTβ(JAK ⊗ JΣ′K)
∼=−→ Tα∧β(JAK ⊗ JΣ′K).

Since we have the embedding Dα ↪→ KlTα
(A), the morphism C : JSK → JΣ′′K⊗

JΣ′K ∈ Dα corresponds to a morphism JSK → Tα(JΣ′′K ⊗ JΣ′K) in A, which is
also denoted by C.

Theorem 3 (Soundness of the evaluation). If ⊢α∧β (C,M) : A;Σ′ and
(C,M) ⇓ (C ′, V ), then J(C,M)K = J(C ′, V )K.
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Proof. The proof is by induction on (C,M) ⇓ (C′, V ). Here we only prove the
cases for control and with-computed. See Appendix B for more details.

– Case
(C,M) ⇓ (C ′, circ(D))

(C, controlSM) ⇓ (C ′, circ(controlJSKD))
ctrl

• Suppose C : JSK → JΣ′′K ⊗ JΣ′K ∈ N and Σ′′ ⊢2 M : Circ2(U,U). By
the induction hypothesis and type preservation (Theorem 2), we have
J(C,M)K = J(C ′, circ(D))K and Σ ⊢2 (C ′, circ(D)) : Circ2(U,U) : Σ′,
where ⊢2 circ(D) : Circ2(U,U). So

JSK C−→ JΣ′′K ⊗ JΣ′K
JMK⊗JΣ′K−−−−−−−→ pN(JUK, JUK)⊗ JΣ′K

= JSK C′

−→ I ⊗ JΣ′K
p1D⊗JΣ′K−−−−−−→ pN(JUK, JUK)⊗ JΣ′K.

The above equality implies the following.

JSK C−→ JΣ′′K ⊗ JΣ′K
JMK⊗JΣ′K−−−−−−−→ pN(JUK, JUK)⊗ JΣ′K

p(controlJSK)⊗JΣ′K
−−−−−−−−−−−−→ pN(JUK ⊗ JSK, JUK ⊗ JSK)⊗ JΣ′K

= JSK C′

−→ I ⊗ JΣ′K
p1D⊗JΣ′K−−−−−−→ pN(JUK, JUK)⊗ JΣ′K

p(controlJSK)⊗JΣ′K
−−−−−−−−−−−−→ pN(JUK ⊗ JSK, JUK ⊗ JSK)⊗ JΣ′K.

Thus J(C, controlSM)K = J(C ′, circ(controlJSK(D)))K.
• Now suppose C ∈ M(JSK, JΣ′′K⊗ JΣ′K) and Σ′′ ⊢1 M : Circ2(U,U). By

the induction hypothesis, we have J(C,M)K = J(C ′, circ(D))K, i.e.,

JSK C−→ T0(JΣ′′K ⊗ JΣ′K)
T0(JMK⊗JΣ′K)−−−−−−−−−→ T0(T1pN(JUK, JUK)⊗ JΣ′K)

T0s−−→ T0(pN(JUK, JUK)⊗ JΣ′K)

= JSK C′

−→ T0(I ⊗ JΣ′K)
T0(p1D⊗JΣ′K)−−−−−−−−−→ T0(pN(JUK, JUK)⊗ JΣ′K).

The above equality implies the following.

JSK C−→ T0(JΣ′′K ⊗ JΣ′K)
T0(JMK⊗JΣ′K)−−−−−−−−−→ T0(T1pN(JUK, JUK)⊗ JΣ′K)

T0s−−→ T0(pN(JUK, JUK)⊗ JΣ′K)
T0(p(controlJSK)⊗JΣ′K)
−−−−−−−−−−−−−−→ T0(pN(JUK ⊗ JSK, JUK ⊗ JSK)⊗ JΣ′K)

= JSK C′

−→ T0(I ⊗ JΣ′K)
T0(p1D⊗JΣ′K)−−−−−−−−−→ T0(pN(JUK, JUK)⊗ JΣ′K)

T0(p(controlJSK)⊗JΣ′K)
−−−−−−−−−−−−−−→ T0(pN(JUK ⊗ JSK, JUK ⊗ JSK)⊗ JΣ′K).

By the naturality of the strength s, we have

J(C, controlSM)K = J(C ′, circ(D))K.
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– Case
(C,M) ⇓ (C ′, circ(D1))
(C ′, N) ⇓ (C ′′, circ(D2))

α = mode(D1)

(C,withComputedM N) ⇓ (C ′′, circ(Gα(D1) •D2))
wc

• Suppose α = 1, i.e., G = id, mode(C) = 2, C ∈ N(JSK, JΣ′′
1 K ⊗ JΣ′′

2 K ⊗
JΣ′K), Σ′′

1 ⊢2 N : Circ2(S
′, S′) and Σ′′

2 ⊢2 M : Circ1(U, S
′) . By the in-

duction hypothesis, we have J(C,M)K = J(C ′, circ(D1))K and J(C ′, N)K =
J(C ′′, circ(D2))K. Thus we have

JSK C−→ JΣ′′
1 K⊗ JΣ′′

2 K⊗ JΣ′K
JMK⊗JΣ′′

2 K⊗JΣ′K−−−−−−−−−−−→ pR(JUK, JS′K)⊗ JΣ′′
2 K⊗ JΣ′K

= JSK C′

−→ I ⊗ JΣ′′
2 K⊗ JΣ′K

p1D1
⊗JΣ′′

2 K⊗JΣ′K
−−−−−−−−−−−→ pR(JUK, JS′K)⊗ JΣ′′

2 K⊗ JΣ′K

and

JSK C′

−→ JΣ′′
2 K ⊗ JΣ′K

JNK⊗JΣ′K−−−−−−→ pN(JS′K, JS′K)⊗ JΣ′K

= JSK C′′

−−→ I ⊗ JΣ′K
p1D2

⊗JΣ′K
−−−−−−−→ pN(JS′K, JS′K)⊗ JΣ′K.

We want to show J(C,withComputedM N)K = J(C ′′, circ(D1 •D2))K, i.e.,

JSK C−→ JΣ′′
1 K ⊗ JΣ′′

2 K ⊗ JΣ′K
JMK⊗JNK⊗JΣ′K−−−−−−−−−−→

pR(JUK, JSK)⊗pN(JSK, JSK)⊗JΣ′K
p(withComputed)⊗JΣ′K−−−−−−−−−−−−−−→ pN(JUK, JUK)⊗JΣ′K

= JSK C′′

−−→ I ⊗ JΣ′K
p1D1•D2

⊗JΣ′K
−−−−−−−−−→ pN(JUK, JUK)⊗ JΣ′K.

This is the case by the induction hypotheses and withComputed ◦(1D1
⊗

1D2
) = 1D1•D2

.

6 A concrete model for reversing and control

In this section, we will show how to use the categories N, R, and M to construct a
category A that satisfies the conditions of Definition 3. Our construction is based
on enriched categories (see Appendix A for some background on enrichment).
We first define a category of trisets.

Definition 11. The category of trisets is defined as follows:

– An object X is a tuple (X0, X1, X2, f1 : X1 → X0, f2 : X2 → X1), where
X0, X1, X2 are sets and f1, f2 are functions.
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– A morphism from (X0, X1, X2, f1, f2) to (Y0, Y1, Y2, g1, g2) is a commutative
diagram of the following form.

X2 Y2

X1 Y1

X0 Y0

h2

f2 g2

h1

f1 g1

h0

Remarks.

– Let 3 denote the diagram 0 → 1 → 2 and let 2 denote the diagram 0 → 1.
The category of trisets is the presheaf category Set3

op

. We refer to the
objects of Set3

op

as trisets. We often write A = (X0, X1, X2) for the triset
(X0, X1, X2, f1, f2). In this case, we further write A0 for X0, A1 for X1, etc.

– In analogy with trisets, we call objects in the presheaf category Set2
op

bisets.
Objects in Set2

op

are of the form (X0, X1, f : X1 → X0) and morphisms in
Set2

op

are commutative squares.
– Since Set3

op

is a presheaf category, it is cartesian closed, and thus self-
enriched. That is, the hom-object Set3

op

(A,B) in Set3
op

is the exponential
A ⇒ B, where A ⇒ B is the triset given by (A ⇒ B)0 = Set(A0, B0),
(A ⇒ B)1 = Set2

op

((A0, A1), (B0, B1)), and (A ⇒ B)2 = Set3
op

(A,B).
– We often write V3 for Set3

op

, V2 for Set2
op

, and V1 for Set.
– We write |V3|(A,B) for the set of morphisms from the triset A to the triset

B, to distinguish it from the triset of morphisms, which is written V3(A,B).
– The category V2 is also V3 enriched, since V2(A,B) corresponds to the triset

(V2(A,B)0,V2(A,B)1,V2(A,B)1).

Similarly, Set is V3-enriched because Set(A,B) corresponds to the triset

(Set(A,B),Set(A,B),Set(A,B)).

Definition 12. We define the following functors.

– U0 : Set3
op

→ Set, defined by U0(X0, X1, X2) = X0.
– ∆0 : Set → Set3

op

, defined by ∆0(X) = (X0, X0, X0).
– U1 : Set3

op

→ Set2
op

, defined by U1(X0, X1, X2) = (X0, X1).
– ∆1 : Set2

op

→ Set3
op

, defined by ∆1(X0, X1) = (X0, X1, X1).

We have adjunctions U0 ⊣ ∆0 and U1 ⊣ ∆1. These adjunctions give rise to
monads T0 = ∆0U0 and T1 = ∆1U1 on Set3

op

. The action of these monads on
objects is given below.

T1(X0, X1, X2, f1, f2) = (X0, X1, X1, f1, id).



Proto-Quipper with Reversing and Control 27

T0(X0, X1, X2, f1, f2) = (X0, X0, X0, id, id).

It is easy to verify that both T0 and T1 are idempotent monads and satisfy

T1T0

ηT1

∼= T0

T0η
T1

∼= T0T1.

Definition 13. We define the triset-enriched category D by:

– obj(D) = obj(M) = obj(R) = obj(N).
– For any A,B ∈ D, the hom-object D(A,B) is the following triset, where

G : N → R and I : R → M are inclusion functors.

N(A,B)

R(A,B)

M(A,B)

GAB

IAB

The enriched category D is symmetric monoidal, but not closed. For this
reason, we define the following category D via the enriched Yoneda embedding.

Definition 14. We define D to be the triset-enriched functor category VDop

3 .

The monads T1, T0 and the functors U0, U1, ∆0, ∆1 are V3-enriched. Hence,
they can all be lifted to D.

Definition 15. We define the following V3-enriched functors.

T 0 : D → D defined by T 0(F ) = T0 ◦ F,
T 1 : D → D defined by T 1(F ) = T1 ◦ F,
U0 : D → VDop

1 defined by U0(F ) = U0 ◦ F,
U1 : D → VDop

2 defined by U1(F ) = U1 ◦ F,
∆0 : VDop

1 → D defined by ∆0(F ) = ∆0 ◦ F,
∆1 : VDop

2 → D defined by ∆1(F ) = ∆1 ◦ F.

Note that U0 ⊣ ∆0, U1 ⊣ ∆1, T 0 = ∆0U0, and T 1 = ∆1U1.

Definition 16. We define C to be the biset-enriched category whose objects are
those of M and whose hom-objects are given, for any A,B ∈ C, by the biset
C(A,B) = (M(A,B),R(A,B), jAB). We further define the biset-enriched func-
tor category C = VCop

2 .

Consider a V3-functor H : Dop → V3. For every object A ∈ D, there is an
object H(A) ∈ V3, and for every A,B ∈ D, there is the following morphism in
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V3.
N(B,A) V3(HA,HB)2

R(B,A) V3(HA,HB)1

M(B,A) V3(HA,HB)0

H2

H1

H0

Therefore, H induces a V2-functor H1 : Cop → V2 such that H1A = (HA)1 ∈ V2

and H1
AB = (H0, H1) : C(B,A) → V2(H

1A,H1B). Similarly, H induces a V1-
functor H0 : Mop → V1 such that H0A = (HA)0 and H0

AB = H0 : M(B,A) →
V1(H

0A,H0B).

Theorem 4. (a) The V3-monads T 0, T 1 are idempotent, strong commutative
monads, and

T 0 ◦ T 1

(T 0η
T1 )−1

∼= T 0

ηT1

∼= T 1 ◦ T 0.

(b) VDop

2
∼= VCop

2 .
(c) VDop

1
∼= VMop

1 .

Proof. (a) By the definition of T 0 and T 1, the fact that T0 and T1 are idem-
potent, and the fact that T1T0

∼= T0
∼= T0T1. The proof of commutative

strength is similar to the one in [8].
(b) We first define a V3-functor Ω : VCop

2 → VDop

2 . Let F ∈ Cop → V2. We can
define Ω(F ) = F̂ ∈ Dop → V2, where F̂ (A) = F (A) and F̂AB : D(B,A) →
V2(F (A), F (B)) is given by FAB : C(B,A) → V2(F (A), F (B)) via the fol-
lowing diagram.

N(B,A) V2(FA,FB)1

R(B,A) V2(FA,FB)1

M(B,A) V2(FA,FB)0

F 1
AB◦GBA

GBA id

F 1
AB

F 0
AB

For all F,H : Cop → V2, and for all A ∈ C(or D), we have V2(FA,HA) =
V2(F̂ (A), Ĥ(A)), which induces a map ΩFH : VCop

2 (F,H) → VDop

2 (F̂ , Ĥ).
We now define the V3-functor Ω−1 : VDop

2 → VCop

2 . For any F ∈ Dop →
V2. We can define Ω−1(F ) = F 1 ∈ Cop → V2. For any A ∈ C(or D),
we have V2(FA,HA) ∼= V2(F

1A,H1A). Therefore there is a map Ω−1
FH :

VDop

2 (F,H) → VCop

2 (F 1, H1).
(c) Similar to the argument in (b).

The following theorem shows that Kleisli morphisms in D correspond to
morphisms in VCop

2 and VMop

1 .
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Theorem 5. (a) For any H,L ∈ D, we have D(H,T 1L) ∼= VCop

2 (H1, L1).
(b) For any H,L ∈ D, we have D(H,T 0L) ∼= VMop

1 (H0, L0).

Proof. (a) D(H,T 1L) = D(H,∆1U1L) ∼= VDop

2 (U1H,U1L) ∼= VCop

2 (H1, L1).
(b) D(H,T 0L) = D(H,∆0U0L) ∼= VDop

1 (U0H,U0L) ∼= VMop

1 (H0, L0).

We write V (D) for the underlying (ordinary) category of D. The objects of
V (D) are the same as those of D. A morphism f : A → B ∈ V (D) is an element
in the set |V3|(1,D(A,B)). Similarly, for a V3-functor such as T 0 : D → D, we
write V T 0 : V (D) → V (D) for the underlying functor of T 0.

Theorem 6. There are strong monoidal embedding functors ϕ2 : N ↪→ V (D), ϕ1 :
R ↪→ KlV T 1

V (D), ϕ0 : M ↪→ KlV T 0
V (D) such that the following diagram com-

mutes.
N V (D)

R KlV T 1
(V (D))

M KlV T 0
(V (D))

G

ϕ2

E1

I

ϕ1

E0

ϕ0

Note that E1(A) = A,E1(f) = ηV T 1 ◦ f , and E0(A) = A,E0(f) = ηV T 0 ◦ f .

Proof. See Appendix C

We are now ready the state the following main theorem.

Theorem 7. The category A = V (D) is a model for Proto-Quipper with re-
versing and control in the sense of Definition 3 (a)-(e).

Proof. (a) V (D) is symmetric monoidal closed because of D, where tensor prod-
ucts are given by Day’s convolution [5].

(b) V (D) has coproducts because D is the enriched Yoneda embedding of D.
(c) We define p(X) =

∑
x∈X I : Set → V (D) and ♭(A) = V (D)(I, A) : V (D) →

Set. We then have the adjunction p ⊣ ♭ because

V (D)(pX,B) = V3(1,D(pX,B)) ∼= V3(1,D(
∑
x∈X

I,B))

∼= V3(1,
∏
x∈X

D(I,B)) ∼=
∏
x∈X

V3(1,D(I,B))

∼= Set(X,V (D)(I,B)) = Set(X, ♭(B))

(d) By Theorem 4 (a).
(e) By Theorem 6.
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7 Conclusion

In this paper, we showed how to extend Proto-Quipper with reversing, control,
and the with-computed operation. Our language is parameterized by three cat-
egories M, R, and N, which correspond to general quantum circuits, reversible
circuits, and controllable circuits, respectively. We defined a type system that
uses modalities to distinguish the different types of circuits. We provided an
operational and a denotational semantics for the language; the latter takes the
form of an abstract categorical model in which our modalities are represented by
monads. We proved that the operational semantics is sound with respect to the
categorical model. We also constructed a concrete categorical model from the
given categories N,R and M, using triset-enriched categories. Lastly, we gave
some examples of reversing, control and with-computed in Proto-Quipper.

There are many possible directions for future work. For example, in this pa-
per, we only considered the modalities of reversibility and controllability. But
it seems that our construction of the type system and its categorical seman-
tics would easily generalize from a three element set to an arbitrary poset of
modalities. Introducing additional modalities might be useful for characterizing
additional properties of gates. Although we have implemented a type inference
algorithm, we did not formally study its properties. Another challenge for future
work is to combine modalities with dependent types. Although our software im-
plementation does support both modalities and dependent types, we have not
considered a formal semantics for combining them.
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A Background on enriched categories

Definition 17. Let V be a monoidal category. A V-enriched category B is given
by the following:

– A class of objects, also denoted B.
– For any A,B ∈ B, an object B(A,B) in V.
– For any A ∈ B, a morphism uA : I → B(A,A) in V, called the identity on

A.
– For any A,B,C ∈ B, a morphism cA,B,C : B(A,B) ⊗B(B,C) → B(A,C)

in V, called composition.
– The composition and identity morphisms must satisfy suitable diagrams in

V (see e.g., [16] and [3]).

Remarks.

– Many concepts from the theory of non-enriched categories can be generalized
to the enriched setting. For example, V-functors, V-natural transformations,
V-adjunctions, and the V-Yoneda embedding are all straightforward gener-
alizations of their non-enriched counterparts. We refer the reader to [16] and
[3] for comprehensive introductions. Symmetric monoidal categories can also
be generalized to the enriched setting.

– When we speak of a map f : A → B in a V-enriched category B, we mean a
morphism of the form f : I → B(A,B) in V. Furthermore, when g : B → C
is also a map in B, we write g ◦ f : A → C as a shorthand for

I
f⊗g→ B(A,B)⊗B(B,C)

c→ B(A,C).

– A V-enriched category B gives rise to an ordinary (non-enriched) cate-
gory V (B), called the underlying category of B. The objects of V (B) are
the objects of B and the hom-sets of V (B) are defined as V (B)(A,B) =
V(I,B(A,B)), for any A,B ∈ V (B). Similarly, a V-functor F : B → B
gives rise to a functor V F : V (B) → V (B) and a V-natural transformation
α : F → G gives rise to a natural transformation V α : V F → V G.

B Proof of Theorem 3

Theorem 8 (Soundness of the evaluation). If ⊢α∧β (C,M) : A;Σ′ and
(C,M) ⇓ (C ′, V ), then J(C,M)K = J(C ′, V )K.

Proof. – Case
(C,M) ⇓ (C ′, lift M ′)
gen(S) = (a,Σ′′)

(JaK†,M ′ a) ⇓ (D, b)

(C, boxSM) ⇓ (C ′, circ(JbK ◦D))
box

Suppose ⊢2 (C, boxSM) : Circ0(S,U);Σ′. This implies that C ∈ N(JSK, JΣ′
1K⊗

JΣ′
2K) and Σ′

1 ⊢2 boxSM : Circ0(S,U). Thus Σ′
1 ⊢2 M : !0(S ⊸2 U),
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C ′ ∈ N(JSK, JΣ′
2K), and ⊢0 M ′ : S ⊸2 U . By the induction hypothesis,

J(C,M)K = J(C ′, liftM ′)K and J(JaK†,M ′a)K = J(D, b)K. Thus we have

JSK C−→ JΣ′
1K ⊗ JΣ′

2K
JMK⊗JΣ′

2K−−−−−−−→ p♭T0(JSK ⊸ JUK)⊗ JΣ′
2K

= JSK C′

−→ I ⊗ JΣ′
2K

pδJM ′K⊗JΣ′
2K−−−−−−−−−→ p♭T0(JSK ⊸ JUK)⊗ JΣ′

2K

and

I ⊗ JSK
I⊗JaK†−−−−→I ⊗ JΣ′′K

JM ′K⊗JaK−−−−−−→ T0(JSK ⊸ JUK)⊗ JSK
s−→ T0(JSK ⊸ JUK ⊗ JSK) T0ϵ−−→ T0JUK

=

I ⊗ JSK
JM ′K⊗JSK−−−−−−→T0(JSK ⊸ JUK)⊗ JSK

s−→ T0(JSK ⊸ JUK ⊗ JSK) T0ϵ−−→ T0JUK

(∗)
=

JSK D−→ T0JΣ3K
T0JbK−−−→ T0JUK.

Moreover, JC, boxSMK =

JSK C−→JΣ′
1K ⊗ JΣ′

2K
JMK⊗JΣ′

2K−−−−−−−→ p♭T0(JSK ⊸ JUK)⊗ JΣ′
2K

pbox−−−→ pM(JSK, JUK)⊗ JΣ′
2K

=

JSK C′

−→I ⊗ JΣ′
2K

pδJM ′K⊗JΣ′
2K−−−−−−−−−→ p♭T0(JSK ⊸ JUK)⊗ JΣ′

2K
pbox−−−→ pM(JSK, JUK)⊗ JΣ′

2K.

So we just need to show

I
pδJM ′K−−−−→ p♭T0(JSK ⊸ JUK) pbox−−−→ pM(JSK, JUK) = I

p1JbK◦D−−−−−→ pM(JSK, JUK).

In other words, we need to show JbK ◦ D = box(δJM ′K). It suffices to show
they are equal in A. This is true by definition of box and (∗).

– Case
(C1,M) ⇓ (C2, circ(D))

(C2, N) ⇓ (C3, V )
gen(codomain(D)) = (b,Σ′′′)
C ′ = append(C3, D, V, b)

(C1, apply(M,N)) ⇓ (C ′, b)
apply
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Suppose Σ ⊢0 (C1, apply(M,N)) : U ;Σ′, where C1 ∈ R(JSK, JΣ′′K ⊗ JΣ′K),
Σ′′ ⊢0 apply(M,N) : U , Σ′′

1 ⊢0 M : Circ1(S,U) and Σ′′
2 ⊢1 N : S and

Σ′′ = Σ′′
1 ⊗ Σ′′

2 . By the induction hypothesis, we know that J(C1,M)K =
J(C2, circ(D))K and J(C2, N)K = J(C3, V )K. Thus

JSK C1−−→ T1(JΣ′′
1 K ⊗ JΣ′′

2 K ⊗ JΣ′K)
T1(JMK⊗JΣ′′

2 K⊗JΣ′K)−−−−−−−−−−−−−−→ T1(T0pN(JSK, JUK)⊗ JΣ′′
2 K ⊗ JΣ′K)

T1s−−→ T1T0(pN(JSK, JUK)⊗ JΣ′′
2 K ⊗ JΣ′K)

∼=−→ T0(pN(JSK, JUK)⊗ JΣ′′
2 K ⊗ JΣ′K)

=

JSK C2−−→ T0(JΣ′′
2 K ⊗ JΣ′K)

T0(p1D⊗JΣ′′
2 K⊗JΣ′K)−−−−−−−−−−−−−−→ T0(pN(JSK, JUK)⊗ JΣ′′

2 K ⊗ JΣ′K)

and

JSK C2−−→ T0(JΣ′′
2 K ⊗ JΣ′K)

T0(JNK⊗JΣ′K)−−−−−−−−−→ T0(T1JSK ⊗ JΣ′K)
T0s−−→ T0T1(JSK ⊗ JΣ′K)

∼=−→ T0(JSK ⊗ JΣ′K)

=

JSK C3−−→ T0(JΣ′′′
2 K ⊗ JΣ′K)

T0(JV K⊗JΣ′K)−−−−−−−−−→ T0(JSK ⊗ JΣ′K).

We want to show that J(C1, apply(M,N))K = J(C ′, b)K, where C ′ = append(C3, D, V, b)
is the following morphism in M.

JSK C3−−→ JΣ′′′
2 K ⊗ JΣ′K

JV K⊗JΣ′K−−−−−−→ JSK ⊗ JΣ′K
G(D)⊗JΣ′K−−−−−−−→ JUK ⊗ JΣ′K

JbK†⊗JΣ′K−−−−−−→ JΣ′′′K ⊗ JΣ′K.

Since M ↪→ KlT0(A) and N ↪→ A, the corresponding morphism in A is

JSK C3−−→ T0(JΣ′′′
2 K ⊗ JΣ′K)

T0(JV K⊗JΣ′K)−−−−−−−−−→ T0(JSK ⊗ JΣ′K)
T0(D⊗JΣ′K)−−−−−−−−→ T0(JUK ⊗ JΣ′K)

T0(JbK†⊗JΣ′K)−−−−−−−−−→ T0(JΣ′′′K ⊗ JΣ′K).

We have RHS =

JSK C3−−→ T0(JΣ′′′
2 K ⊗ JΣ′K)

T0(JV K⊗JΣ′K)−−−−−−−−−→ T0(JSK ⊗ JΣ′K)
T0(D⊗JΣ′K)−−−−−−−−→ T0(JUK ⊗ JΣ′K)

and LHS =

JSK C1−−→ T1(JΣ′′
1 K ⊗ JΣ′′

2 K ⊗ JΣ′K)
T1(JMK⊗JNK⊗JΣ′K)−−−−−−−−−−−−−→ T1(T0pN(JSK, JUK)⊗ T1JSK ⊗ JΣ′K)
T1s−−→ T1T0(pN(JSK, JUK)⊗ T1JSK ⊗ JΣ′K) T0s−−→ T0T1(pN(JSK, JUK)⊗ JSK ⊗ JΣ′K)
T0(unbox⊗JSK⊗JΣ′K)−−−−−−−−−−−−−→ T0(p♭(JSK ⊸ JUK)⊗ JSK ⊗ JΣ′K)
T0(force⊗JSK⊗JΣ′K)−−−−−−−−−−−−→ T0((JSK ⊸ JUK)⊗ JSK ⊗ JΣ′K)

T0(ϵ⊗JΣ′K)−−−−−−−→ T0(JUK ⊗ JΣ′K)
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=

JSK C2−−→ T0(JΣ′′
2 K ⊗ JΣ′K)

T0(p1D⊗JNK⊗JΣ′K)−−−−−−−−−−−−−→ T0(pN(JSK, JUK)⊗ T1JSK ⊗ JΣ′K)
T0s−−→ T0T1(pN(JSK, JUK)⊗ JSK ⊗ JΣ′K)
T0(unbox⊗JSK⊗JΣ′K)−−−−−−−−−−−−−→ T0(p♭(JSK ⊸ JUK)⊗ JSK ⊗ JΣ′K)
T0(force⊗JSK⊗JΣ′K)−−−−−−−−−−−−→ T0((JSK ⊸ JUK)⊗ JSK ⊗ JΣ′K)

T0(ϵ⊗JΣ′K)−−−−−−−→ T0(JUK ⊗ JΣ′K)

=

JSK C3−−→ T0(JΣ′′′
2 K ⊗ JΣ′K)

T0(p1D⊗JV K⊗JΣ′K)−−−−−−−−−−−−−→ T0(pN(JSK, JUK)⊗ JSK ⊗ JΣ′K)
T0(unbox⊗JSK⊗JΣ′K)−−−−−−−−−−−−−→ T0(p♭(JSK ⊸ JUK)⊗ JSK ⊗ JΣ′K)
T0(force⊗JSK⊗JΣ′K)−−−−−−−−−−−−→ T0((JSK ⊸ JUK)⊗ JSK ⊗ JΣ′K)

T0(ϵ⊗JΣ′K)−−−−−−−→ T0(JUK ⊗ JΣ′K).

So we just need to show

JSK D−→ JUK

=

I ⊗ JSK 1D−−→ pN(JSK, JUK)⊗ JSK
p unbox⊗JSK−−−−−−−−→ p♭(JSK ⊸ JUK)⊗ JSK

force⊗JSK−−−−−−→ (JSK ⊸ JUK)⊗ JSK ϵ−→ JUK.

This is true because LHS =

I ⊗ JSK
curry(D)⊗JSK−−−−−−−−−→ (JSK ⊸ JUK)⊗ JSK ϵ−→ JUK

and RHS =

I ⊗ JSK
p(δcurry(D))⊗JSK−−−−−−−−−−−→ p♭(JSK ⊸ JUK)⊗ JSK
force⊗JSK−−−−−−→ (JSK ⊸ JUK)⊗ JSK ϵ−→ JUK

and we have force ◦ pδ = id.

C Proof of Theorem 6

Theorem 9. There are strong monoidal embedding functors ϕ2 : N ↪→ V (D), ϕ1 :
R ↪→ KlV T 1

V (D), ϕ0 : M ↪→ KlV T 0
V (D) such that the following diagram com-
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mutes.
N V (D)

R KlV T 1
(V (D))

M KlV T 0
(V (D))

G

ϕ2

E1

j

ϕ1

E0

ϕ0

Note that E1(A) = A,E1(f) = ηV T 1 ◦ f , and E0(A) = A,E0(f) = ηV T 0 ◦ f .

Proof. The functor ϕ2 : N ↪→ V (D) is given by

N
∼=−→ V (D)

V y2−−→ V (D),

where y2 : D ↪→ D is the enriched Yoneda embedding. Since V y2 is a strong
monoidal functor, ϕ2 is strong monoidal.

To define the functor ϕ1 : R ↪→ KlV T 1
(V (D)), we first define ϕ1(A) =

D(−, A) for any A ∈ R on objects. On morphisms, we define ϕ1 : R(A,B) →
KlV T 1

(V (D))(ϕ1(A), ϕ1(B)) by the following composition of isomorphisms:

R(A,B)
∼=−→ V (C)(A,B)

V y1→ V (C)(y1A, y1B)
=−→ V (VDop

2 )(ŷ1A, ŷ1B)
=−→ V (VDop

2 )(U1D(−, A), U1D(−, B))
∼=−→ V (D)(D(−, A), T1D(−, B))
=−→ KlV T 1

(V (D))(D(−, A),D(−, B)),

where y1 : C ↪→ C is the enriched-Yoneda embedding. Here ϕ1 is strong monoidal
because U1 and y1 are strong monoidal.

To define the functor ϕ0 : M ↪→ KlV T 0
(V (D)), we first define ϕ0(A) =

D(−, A) on objects. On morphisms, we define ϕ0 : M(A,B) → KlT 0
(V (D))(ϕ0(A), ϕ0(B))

by the following composition of isomorphisms:

M(A,B)
y0→ VMop

1 (y0A, y0B)
=−→ VDop

1 (ŷ0A, ŷ0B))
=−→ VDop

1 (U0D(−, A), U0D(−, B))
∼=−→ VDop

3 (D(−, A), T 0D(−, B))
=−→ KlV T 0

(V (D))(D(−, A),D(−, B)),
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where y0 : M ↪→ VMop

1 is the Yoneda embedding. The functor ϕ1 is strong
monoidal because U0 and y0 are strong monoidal.

Now we need to show that the functor diagram commutes. Since G, j, E1,
and E0 are identity on objects, we just need to show that the following diagram
commutes for any S,U ∈ N.

N(S,U) V (D)(S,U)

R(S,U) KlV T 1
(V (D))(S,U)

M(S,U) KlV T 0
(V (D))(S,U)

G

ϕ2

E1

j

ϕ1

E0

ϕ0

Let f ∈ N(S,U), Ω1 : C
∼=−→ VDop

2 (Theorem 4 (b)) and θ1 : VDop

2 (U1F,U1G)
∼=−→

D(F, T1G). We write (f,G(f), jG(f)) for the corresponding map of f in V (D)(S,U).
We have the following:

ϕ−1
1 E1(ϕ2(f)) = V y−1

1 V Ω−1
1 V θ−1

1 V ηT 1V y2(f,G(f), jG(f))

= V y−1
1 V Ω−1

1 V U1V y2(f,G(f), jG(f))

= V y−1
1 V Ω−1

1 V U1VD(−, (f,G(f), jG(f)))

= V y−1
1 VC(−, (G(f), jG(f)))

= G(f).

Let g ∈ R(S,U), Ω0 : VMop

1

∼=−→ VDop

1 (Theorem 4 (c)) and θ0 : VDop

1 (U0F,U0G)
∼=−→

D(F, T0G). We write (g, j(g)) for the corresponding map of g in V (C)(S,U). We
have the following:

ϕ−1
0 E0ϕ1(g) = V y−1

0 V Ω−1
0 V θ−1

0 V ηT 0V θ1V Ω1V y1(g, j(g))

= V y−1
0 V Ω−1

0 V U0V θ1V Ω1V y1(g, j(g))

= V y−1
0 V Ω−1

0 V U0V θ1V Ω1VC(−, (g, j(g)))

= V y−1
0 M(−, j(g))

= j(g).

D Programs for CCZ

cnot_circuit : !(Qubit * Qubit * Qubit ->
Qubit * Qubit * Qubit * Qubit * Qubit * Qubit * Qubit)

cnot_circuit input =
let (x, y, z) = input
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t0 = Init0 ()
t1 = Init0 ()
t2 = Init0 ()
t3 = Init0 ()
(t0, y) = CNot t0 y
(t0, x) = CNot t0 x
(t1, z) = CNot t1 z
(t1, x) = CNot t1 x
(t2, z) = CNot t2 z
(t2, y) = CNot t2 y
(t3, t2) = CNot t3 t2
(t3, x) = CNot t3 x

in (x, y, z, t0, t1, t2, t3)

box_cnot_circuit : Circ(Qubit * Qubit * Qubit,
Qubit * Qubit * Qubit * Qubit * Qubit * Qubit * Qubit)

box_cnot_circuit = boxCirc cnot_circuit

parallel_T : !(Qubit * Qubit * Qubit * Qubit * Qubit * Qubit * Qubit ->
Qubit * Qubit * Qubit * Qubit * Qubit * Qubit * Qubit)

parallel_T input =
let (a0, a1, a2, a3, a4, a5, a6) = input
in (TGate a0, TGate a1, TGate a2,

TGate_Inv a3, TGate_Inv a4, TGate_Inv a5, TGate a6)

box_parallel_T : Circ(Qubit * Qubit * Qubit * Qubit * Qubit * Qubit * Qubit,
Qubit * Qubit * Qubit * Qubit * Qubit * Qubit * Qubit)

box_parallel_T = boxCirc parallel_T

my_ccz : Circ(Qubit * Qubit * Qubit, Qubit * Qubit * Qubit)
my_ccz = withComputed box_cnot_circuit box_parallel_T

cnot_circuit_rev : !(Qubit * Qubit * Qubit * Qubit * Qubit * Qubit * Qubit ->
Qubit * Qubit * Qubit)

cnot_circuit_rev = unbox (reverse (boxCirc cnot_circuit))

my_ccz’ : Circ(Qubit * Qubit * Qubit, Qubit * Qubit * Qubit)
my_ccz’ =

boxCirc $ \ input ->
cnot_circuit_rev (parallel_T (cnot_circuit input))

-- The following gives rise to a typing error.
ctrl_my_toffoli’ : Circ(Qubit * Qubit * Qubit * Qubit,

Qubit * Qubit * Qubit * Qubit)
ctrl_my_toffoli’ = control my_ccz’
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