
ar
X

iv
:2

30
6.

10
12

4v
1

 [
cs

.L
O

]
 1

6
Ju

n
20

23

Towards an induction principle for nested data types

Peng Fu and Peter Selinger

Dalhousie University

Abstract

A well-known problem in the theory of dependent types is how to handle so-called nested data types.

These data types are difficult to program and to reason about in total dependently typed languages such

as Agda and Coq. In particular, it is not easy to derive a canonical induction principle for such types.

Working towards a solution to this problem, we introduce dependently typed folds for nested data types.

Using the nested data type Bush as a guiding example, we show how to derive its dependently typed fold

and induction principle. We also discuss the relationship between dependently typed folds and the more

traditional higher-order folds.

1 Introduction

Consider the following list data type and its fold function in Agda [1].

data List (a : Set) : Set where

nil : List a

cons : a -> List a -> List a

foldList : ∀ {a p : Set} -> p -> (a -> p -> p) -> List a -> p

foldList base step nil = base

foldList base step (cons x xs) = step x (foldList base step xs)

The keyword Set is a kind that classifies types. The function foldList has two implicitly quantified type
variables a and p. In Agda, implicit arguments are indicated by braces (e.g., {a}), and can be omitted.

The function foldList is defined by structural recursion and is therefore terminating. Agda’s termination
checker automatically checks this. Once foldList is defined, we can use it to define other terminating func-
tions such as the following mapList and sumList. This is similar to using the iterator to define terminating
arithmetic functions in System T [6, §7].

mapList : ∀ {a b : Set} -> (a -> b) -> List a -> List b

mapList f ℓ = foldList nil (λ a r -> cons (f a) r) ℓ

sumList : List Nat -> Nat

sumList ℓ = foldList zero (λ x r -> add x r) ℓ

When defining the mapList function, if the input list is empty, then we just return nil, so the first argu-
ment for foldList is nil. If the input list is of the form cons a as, we return cons (f a) (mapList f as),
so the second argument for foldList is (λ a r -> cons (f a) r), where r represents the result of the
recursive call mapList f as. The function sumList is defined similarly, assuming a natural numbers type
Nat with zero and addition.

We can generalize the type of foldList to obtain the following induction principle for lists.

1

http://arxiv.org/abs/2306.10124v1

indList : ∀ {a : Set} {p : List a -> Set} ->

(base : p nil) ->

(step : (x : a) -> (xs : List a) -> p xs -> p (cons x xs)) ->

(ℓ : List a) -> p ℓ

indList base step nil = base

indList base step (cons x xs) = step x xs (indList base step xs)

We can see that the definition of indList is almost the same as that of foldList. Compared to the type
of foldList, the type of indList is more general as the kind of p is generalized from Set to List a -> Set.
We call p a property of lists. The induction principle indList states that to prove a property p for all lists,
one must first prove that nil has the property p, and then assuming that p holds for any list xs as the
induction hypothesis, prove that p holds for cons x xs for any x.

We can now use the induction principle indList to prove that mapList has the same behavior as the
usual recursively defined mapList’ function.

mapList’ : ∀ {a b : Set} -> (a -> b) -> List a -> List b

mapList’ f nil = nil

mapList’ f (cons x xs) = cons (f x) (mapList’ f xs)

lemma-mapList : ∀ {a b : Set} -> (f : a -> b) -> (ℓ : List a) ->

mapList f ℓ == mapList’ f ℓ

lemma-mapList f ℓ =

indList {p = λ y -> mapList f y == mapList’ f y} refl

(λ x xs ih -> cong (cons (f x)) ih) ℓ

In the proof of lemma-mapList, we use refl to construct a proof by reflexivity and cong to construct a
proof by congruence. The latter is defined such that cong f is a proof of x == y -> f x == f y. The key
to using the induction principle indList is to specify which property of lists we want to prove. In this case
the property is (λ y -> mapList f y == mapList’ f y).

To summarize, the fold functions for ordinary data types (i.e., non-nested inductive data types such as
List and Nat) are well-behaved in the following sense. (1) The fold functions are defined by well-founded
recursion. (2) The fold functions can be used to define a range of terminating functions (including maps).
(3) The types of the fold functions can be generalized to the corresponding induction principles.

Nested data types [2] are a class of data types that one can define in most functional programming
languages (OCaml, Haskell, Agda). They were initially studied by Bird and Meertens [2]. They have since
been used to represent de Bruijn notation for lambda terms [3], and to give an efficient implementation of
persistent sequences [7]. In this paper, we will consider the following nested data type.

data Bush (a : Set) : Set where

leaf : Bush a

cons : a -> Bush (Bush a) -> Bush a

According to Bird and Meertens [2], the type Bush a is similar to a list where at each step down the list,
entries are bushed. For example, a value of type Bush Nat can be visualized as follows.

bush1 = [4, -- Nat

[8, [5], [[3]]], -- Bush Nat

[[7], [], [[[7]]]], -- Bush (Bush Nat)

[[[], [[0]]]] -- Bush (Bush (Bush Nat))

]

Here, for readability, we have written [x1,...,xn] instead of cons x1 (cons x2 (...(cons xn leaf))).
Unlike ordinary data types such as lists, nested data types are difficult to program with in total functional

programming languages. For example, in the dependently typed proof assistant Coq, the Bush data type is
not definable at all, since it does not pass Coq’s strict positivity test. In Agda, Bush can be defined as a
data type, but writing functions that use this type is not trivial. For example, we must use general recursion
(rather than structural recursion) to define the following hmap function.

2

hmap : ∀ {b c : Set} -> (b -> c) -> Bush b -> Bush c

hmap f leaf = leaf

hmap f (cons x xs) = cons (f x) (hmap (hmap f) xs)

Note that, in contrast to the mapList’ function for lists, this definition is not structurally recursive because
the inner hmap is not applied to a subterm of cons x xs. Therefore, Agda’s termination checker will reject
this definition as potentially non-terminating, unless we specify the unsafe –no-termination flag.

The following function hfold for Bush is called a higher-order fold in the literature (e.g., [4], [8]). Its
definition uses hmap.

hfold : (b : Set -> Set) ->

(ℓ : (a : Set) -> b a) ->

(c : (a : Set) -> a -> b (b a) -> b a) ->

(a : Set) -> Bush a -> b a

hfold b ℓ c a leaf = ℓ a

hfold b ℓ c a (cons x xs) =

c a x (hfold b ℓ c (b a) (hmap (hfold b ℓ c a) xs))

Observe that the type variable b in hfold has kind Set -> Set, unlike the type variable p in foldList,
which has type Set. The higher-order fold hfold presents the following challenges. (1) The definition of
hfold requires the auxiliary function hmap, and hmap cannot easily be defined from hfold. (2) The definition
of hfold, like that of hmap, is not structurally recursive and Agda’s termination checker cannot prove it to
be total. (3) Although it is possible (see below), it is fairly difficult to define functions such as summation
on Bush. (4) Unlike the induction principle for lists, it is not clear how to obtain an induction principle for
Bush from the higher-order fold hfold.

Here is the definition of a function sum that sums up all natural numbers in a data structure of type
Bush Nat. Although sum is not a polymorphic function, it requires an auxiliary function that is polymorphic
and utilizes an argument k that is reminiscent of continuation passing style [9].

sumAux : (a : Set) -> Bush a -> (k : a -> Nat) -> Nat

sumAux =

hfold (λ a -> (a -> Nat) -> Nat)

(λ a k -> zero) (λ a x xs k -> add (k x) (xs (λ r -> r k)))

sum : Bush Nat -> Nat

sum ℓ = sumAux Nat ℓ (λ n -> n)

1.1 Contributions

We present a new approach to defining fold functions for nested data types, which we call dependently typed

folds. For concreteness, we work within the dependently typed language Agda. Dependently typed folds
are defined by well-founded recursion, hence their termination is easily confirmed by Agda. Map functions
and many other terminating functions can be defined directly from the dependently typed folds. Moreover,
the higher-order folds (such as hfold) are definable from the dependently typed folds. In addition, the
definitions of dependently typed folds can easily be generalized to corresponding induction principles. Thus
we can formally reason about programs involving nested data types in a total dependently typed language.
While we illustrate these ideas by focusing on the Bush example, our approach also works for other kinds of
nested data types; see Section 5 for an example.

2 Dependently typed fold for Bush

Let us continue the consideration of the Bush data type. The following is the result of evaluating hmap f bush1,
where bush1 is the data structure defined in the introduction, and f : Nat -> b for some type b.

3

[f 4, -- b

[f 8, [f 5], [[f 3]]], -- Bush b

[[f 7], [], [[[f 7]]]], -- Bush (Bush b)

[[[], [[f 0]]]] -- Bush (Bush (Bush b))

]

To motivate the definition of the dependently typed fold below, we first consider the simpler question of
how to define a map function for Bush by structural recursion. The reason our definition of hmap in the
introduction was not structural is that in order to define the map function for Bush Nat, we need to already
have the map functions defined for Bushn Nat = Bush (Bush (. . . (Bush Nat))) for all n ≥ 0, which seems
paradoxical. Our solution is to define a general map function for Bushn, for all n ≥ 0. First we define a
type-level function NTimes such that NTimes n b = bn:

NTimes : (n : Nat) -> (b : Set -> Set) -> Set -> Set

NTimes zero b a = a

NTimes (succ n) b a = b (NTimes n b a)

We can now define the following map function for Bushn:

nmap : ∀ {a b : Set} -> (n : Nat) -> (a -> b) ->

NTimes n Bush a -> NTimes n Bush b

nmap zero f x = f x

nmap (succ n) f leaf = leaf

nmap (succ n) f (cons x xs) =

cons (nmap n f x) (nmap (succ (succ n)) f xs)

Note that nmap 1 corresponds to the map function for Bush a. The recursive definition of nmap is well-
founded because all the recursive calls are on the components of the constructor cons. The Agda termination
checker accepts this definition of nmap.

We are now ready to introduce the dependently typed fold. The idea is to define the fold over the type
NTimes n Bush simultaneously for all n.

nfold : (p : Nat -> Set) ->

(ℓ : (n : Nat) -> p (succ n)) ->

(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->

(a : Set) -> (z : a -> p zero) ->

(n : Nat) -> NTimes n Bush a -> p n

nfold p ℓ c a z zero x = z x

nfold p ℓ c a z (succ n) leaf = ℓ n

nfold p ℓ c a z (succ n) (cons x xs) =

c n (nfold p ℓ c a z n x) (nfold p ℓ c a z (succ (succ n)) xs)

The dependently typed fold nfold captures the most general form of computing/traversal on the type
NTimes n Bush a. Similarly to nmap, the definition of nfold is well-founded. Note that unlike the hfold in
the introduction, this definition of fold does not require a map function to be defined first. In fact, nmap is
definable from nfold:

nmap : ∀ {a b : Set} -> (n : Nat) -> (a -> b) ->

NTimes n Bush a -> NTimes n Bush b

nmap {a} {b} n f ℓ =

nfold (λ n -> NTimes n Bush b) (λ n -> leaf) (λ n -> cons) a f n ℓ

We can also prove that nmap 1 satisfies the defining properties of hmap from the introduction. Let
hmap’ = nmap 1.

4

lemma-nmap : ∀ {a b : Set} -> (f : a -> b) -> (m n : Nat) ->

(x : NTimes (add m n) Bush a) ->

nmap (add m n) f x == nmap m (nmap n f) x

lemma-nmap f zero n x = refl

lemma-nmap f (succ m) n leaf = refl

lemma-nmap f (succ m) n (cons x xs) =

cong2 cons (lemma-nmap f m n x) (lemma-nmap f (succ (succ m)) n xs)

hmap-leaf : ∀ {a b : Set} -> (f : a -> b) -> hmap’ f leaf == leaf

hmap-leaf f = refl

hmap-cons : ∀ {a b : Set} -> (f : a -> b) -> (x : a) ->

(xs : Bush (Bush a)) ->

hmap’ f (cons x xs) == cons (f x) (hmap’ (hmap’ f) xs)

hmap-cons f x xs = cong (cons (f x)) (lemma-nmap f 1 1 xs)

Many other terminating functions can also be conveniently defined in term of nfold. For example, the
summation of all the entries in Bush Nat and the length function for Bush can be defined as follows:

sum : Bush Nat -> Nat

sum =

nfold (λ n -> Nat) (λ n -> zero) (λ n -> add) Nat (λ x -> x) 1

length : (a : Set) -> Bush a -> Nat

length a =

nfold (λ n -> Nat) (λ n -> zero) (λ n r1 r2 -> succ r2)

a (λ x -> zero) 1

Note that this definition of sum is much more natural and straightforward than the one we gave in the
introduction.

3 Induction principle for Bush

While there is no obvious induction principle corresponding to the higher-order fold hfold, we can easily
generalize the dependently typed fold nfold to obtain an induction principle for Bush. The following function
ind is related to nfold in the same way that the induction principle for List is related to its fold function.

ind : ∀ {a : Set} -> {p : (n : Nat) -> NTimes n Bush a -> Set} ->

(base : (x : a) -> p zero x) ->

(ℓ : (n : Nat) -> p (succ n) leaf) ->

(c : (n : Nat) -> (x : NTimes n Bush a) ->

(xs : NTimes (succ (succ n)) Bush a) ->

p n x -> p (succ (succ n)) xs -> p (succ n) (cons x xs)) ->

(n : Nat) -> (xs : NTimes n Bush a) -> p n xs

ind base ℓ c zero xs = base xs

ind base ℓ c (succ n) leaf = ℓ n

ind base ℓ c (succ n) (cons x xs) =

c n x xs (ind base ℓ c n x) (ind base ℓ c (succ (succ n)) xs)

Observe that ind follows the same structure as nfold. The type variable p is generalized to a predicate
of kind (n : Nat) -> NTimes n Bush a -> Set. The type of ind specifies how to prove by induction
that a property p holds for all members of the type NTimes n Bush a. More specifically, for the base case,
we must show that p holds for any x of type NTimes zero Bush a (which equals a), hence p zero x. For
the leaf case, we must show that p holds for leaf of type NTimes (succ n) Bush a. For the cons case, we

5

assume as the induction hypotheses that p holds for some x of type NTimes n Bush a and some xs of type
NTimes (succ (succ n)) Bush a, and then we must show that p holds for cons x xs.

With ind, we can now prove properties of nmap. For example, the following is a proof that nmap has the
usual identity property of functors.

nmap-id : ∀ {a : Set} -> (n : Nat) -> (y : NTimes n Bush a) ->

nmap n (id a) y == y

nmap-id {a} n y =

ind {a} {λ n xs -> nmap n (id a) xs == xs} (λ x -> refl) (λ n -> refl)

(λ n x xs ih1 ih2 -> cong2 cons ih1 ih2) n y

We note that the usual way of proving things in Agda is by recursion, relying on the Agda termination
checker to prove termination. Our purpose here, of course, is to illustrate that our induction principle is
strong enough to prove many properties without needing Agda’s recursion. Nevertheless, the above proof is
equivalent to the following proof by well-founded recursion.

nmap-id’ : ∀ {a : Set} -> (n : Nat) -> (y : NTimes n Bush a) ->

nmap n (id a) y == y

nmap-id’ zero y = refl

nmap-id’ (succ n) leaf = refl

nmap-id’ (succ n) (cons x y) =

cong2 cons (nmap-id’ n x) (nmap-id’ (succ (succ n)) y)

The first two clauses of nmap-id’ correspond to the two arguments (λ n -> refl) for nmap-id. The
recursive calls nmap-id’ n x and nmap-id’ (succ (succ n)) y in the definition of nmap-id’ correspond
to the inductive hypotheses ih1 and ih2 in nmap-id.

4 Higher-order folds and dependently typed folds

Comparing nfold, the dependently typed fold that was defined in Section 2, to hfold, the higher-order
fold defined in the introduction, we saw that nfold does not depend on nmap, and nmap can be defined
from nfold. We also saw that the termination of nfold is obvious and that it can be used to define other
terminating functions.

In this section, we will show the hfold is actually equivalent to nfold in the sense that they are definable
from each other.

4.1 Defining hfold from nfold

Using nfold, it is straightforward to define hfold, because the latter is essentially the former instantiated
to the case n = 1.

hfold : (b : Set -> Set) ->

(ℓ : (a : Set) -> b a) ->

(c : (a : Set) -> a -> b (b a) -> b a) ->

(a : Set) -> Bush a -> b a

hfold b ℓ c a x =

nfold (λ n -> NTimes n b a) (λ n -> ℓ (NTimes n b a))

(λ n -> c (NTimes n b a)) a (λ x -> x) 1 x

We can prove that this version of hfold satisfies the defining properties of the version of hfold that was
defined in the introduction (and therefore the two definitions agree). Since the proof of hfold-cons is rather
long, we have omitted it, but the full machine-checkable proof can be found at [5].

6

hfold-leaf : (a : Set) -> (p : Set -> Set) ->

(ℓ : (b : Set) -> p b) ->

(c : (b : Set) -> b -> p (p b) -> p b) ->

hfold p ℓ c a leaf == ℓ a

hfold-leaf a p ℓ c = refl

hfold-cons : (a : Set) -> (p : Set -> Set) ->

(ℓ : (b : Set) -> p b) ->

(c : (b : Set) -> b -> p (p b) -> p b) ->

(x : a) -> (xs : Bush (Bush a)) ->

hfold p ℓ c a (cons x xs)

== c a x (hfold p ℓ c (p a) (hmap (hfold p ℓ c a) xs))

hfold-cons a p ℓ c x xs = ...

4.2 Defining nfold from hfold

The other direction is much trickier. In attempting to define nfold from hfold, the main difficulty is
that we must supply a type function b : Set -> Set to hfold, and this b should somehow capture the
quantification over natural numbers. Ideally, we would like to define b such that bn a = pn for all n and
some suitable a. However, this is clearly impossible, because p is an arbitrary type family, which can be
defined so that p 0 = p 1 but p 1 6= p 2. This would imply a = b a but b a 6= b2 a, a contradiction.

Surprisingly, it is possible to work around this by arranging things so that there is a canonical function
bn a → pn, rather than an equality. This is done by defining the following rather unintuitive type-level
function PS.

PS : (p : Nat -> Set) -> Set -> Set

PS p A = (n : Nat) -> (A -> p n) -> p (succ n)

The type PS p is special because there is a map NTimes n (PS p) a → p n.

PS-to-P : (p : Nat -> Set) -> (a : Set) -> (z : a -> p zero) ->

(n : Nat) -> NTimes n (PS p) a -> p n

PS-to-P p a z zero x = z x

PS-to-P p a z (succ n) hyp = hyp n ih

where

ih : NTimes n (PS p) a -> p n

ih = PS-to-P p a z n

So if we set b = PS p, we have the promised canonical map bn a → pn. We can pass this b to hfold to go
from Bush a to PS p a.

fold-PS : (p : Nat -> Set) ->

(ℓ : (n : Nat) -> p (succ n)) ->

(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->

(a : Set) -> Bush a -> PS p a

fold-PS p ℓ c =

hfold (PS p) (λ a n tr -> ℓ n)

(λ a x xs n tr -> c n (tr x) (xs (succ n) (λ f -> f n tr)))

Now, provided that we are able to lift the function Bush a -> PS p a to its nth iteration, i.e., to a function
of type NTimes n Bush a -> NTimes n (PS p) a, then we will be able to define the dependently typed
fold via the following.

7

nfold’ : (p : Nat -> Set) ->

(ℓ : (n : Nat) -> p (succ n)) ->

(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->

(a : Set) -> (z : a -> p zero) ->

(n : Nat) -> NTimes n Bush a -> p n

nfold’ p ℓ c a z n x = PS-to-P p a z n (lift n x)

where

lift : (n : Nat) -> NTimes n Bush a -> NTimes n (PS p) a

lift n x =

liftNTimes Bush (PS p) (λ a b -> hmap) n (fold-PS p ℓ c) a x

The liftNTimes function can indeed be defined by induction on natural numbers.

liftNTimes : (b c : Set -> Set) ->

(∀ x y -> (x -> y) -> (b x -> b y)) ->

(n : Nat) -> (∀ a -> b a -> c a) ->

(a : Set) -> NTimes n b a -> NTimes n c a

liftNTimes b c m zero f a x = x

liftNTimes b c m (succ n) f a x =

f (NTimes n c a)

(m (NTimes n b a) (NTimes n c a) (liftNTimes b c m n f a) x)

Finally, we can prove that the function nfold’ that we just defined behaves identically to the nfold that
was defined in Section 2. Again, since the proof is rather long and uses several lemmas, we do not reproduce
it here. The machine-checkable proof can be found at [5].

theorem : ∀ p ℓ c a z n x ->

nfold p ℓ c a z n x == nfold’ p ℓ c a z n x

theorem p ℓ c a z n x = ...

5 Nested data types beyond Bush

So far, we have focused on the Bush type, but our approach works for arbitrary nested data types, including
ones that are defined by mutual recursion. To illustrate this, consider the following pair of mutually recursive
data types:

data Bob (a : Set) : Set

data Dylan (a b : Set) : Set

data Bob a where

robert : a -> Bob a

zimmerman : Dylan (Bob (Dylan a (Bob a))) (Bob a) -> Bob (Dylan a a) -> Bob a

data Dylan a b where

duluth : Bob a -> Bob b -> Dylan a b

minnesota : Dylan (Bob a) (Bob b) -> Dylan a b

As usual, the higher-order fold is easy to define. There are two separate such folds, one for Bob and one for
Dylan:

8

hfold-bob : (bob : Set -> Set) ->

(dylan : Set -> Set -> Set) ->

(rob : ∀ a -> a -> bob a) ->

(zim : ∀ a -> dylan (bob (dylan a (bob a))) (bob a) -> bob (dylan a a) -> bob a) ->

(dul : ∀ a b -> bob a -> bob b -> dylan a b) ->

(min : ∀ a b -> dylan (bob a) (bob b) -> dylan a b) ->

∀ a -> Bob a -> bob a

hfold-dylan : (bob : Set -> Set) ->

(dylan : Set -> Set -> Set) ->

(rob : ∀ a -> a -> bob a) ->

(zim : ∀ a -> dylan (bob (dylan a (bob a))) (bob a) -> bob (dylan a a) -> bob a) ->

(dul : ∀ a b -> bob a -> bob b -> dylan a b) ->

(min : ∀ a b -> dylan (bob a) (bob b) -> dylan a b) ->

∀ a b -> Dylan a b -> dylan a b

The dependent fold requires some explanation. Recall that for Bush, the only type expressions of interest
were of the form Bushn a, so we used the natural number n to index these types. In the more general case,
we must consider more complicated type expressions such as Dylan (Bob a) (Dylana b). Therefore, we need
to replace the natural numbers with a custom type. We define a type BobDylanIndex, which represents
expressions built up from type variables and the type constructors Bob and Dylan.

data BobDylanIndex : Set where

varA : BobDylanIndex

varB : BobDylanIndex

BobC : BobDylanIndex -> BobDylanIndex

DylanC : BobDylanIndex -> BobDylanIndex -> BobDylanIndex

We can then give an interpretation function for these type expressions. This plays the role that NTimes
played in the Bush case:

I : (Set -> Set) -> (Set -> Set -> Set) -> Set -> Set -> BobDylanIndex -> Set

I bob dylan a b varA = a

I bob dylan a b varB = b

I bob dylan a b (BobC expr) = bob (I bob dylan a b expr)

I bob dylan a b (DylanC expr1 expr2) = dylan (I bob dylan a b expr1) (I bob dylan a b expr2)

For example, if
i = DylanC (BobC varA) (DylanC varA varB),

then
I bob dylan a b i = dylan (bob a) (dylan a b).

The dependent fold is defined simultaneously for Bob and Dylan, and in fact for all type expressions that are
built from Bob and Dylan. Its type is the following:

nfold : (p : BobDylanIndex -> Set) ->

(rob : ∀ a -> p a -> p (BobC a)) ->

(zim : ∀ a -> p (DylanC (BobC (DylanC a (BobC a))) (BobC a))

-> p (BobC (DylanC a a)) -> p (BobC a)) ->

(dul : ∀ a b -> p (BobC a) -> p (BobC b) -> p (DylanC a b)) ->

(min : ∀ a b -> p (DylanC (BobC a) (BobC b)) -> p (DylanC a b)) ->

(a b : Set) ->

(baseA : a -> p varA) ->

(baseB : b -> p varB) ->

(∀ i -> I Bob Dylan a b i -> p i)

9

Note that although the types Bob and Dylan are complicated, the corresponding nfold can be systemati-
cally derived from their definition. Moreover, as in the case of Bush, the higher-order folds and the dependent
fold are definable in terms of each other. In addition, the induction principle, which generalizes nfold, can
be easily defined. Full details can be found in the accompanying code [5].

6 Discussion

We think that the equivalence of hfold and nfold is both surprising and useful. The reason it is surprising is
because it was informally believed among researchers that hfold is too abstract for most useful programming
tasks. The reason it is potentially useful is that in the context of some dependently typed programming
languages or proof assistants (such as Coq), when the user writes a data type declaration, the system should
automatically derive the appropriate folds and induction principles for the data type. In the case of nested
data types, there is currently no universally good way to do this (which is presumably one of the reasons Coq
does not support the Bush type). Now on the one hand, we have nfold, which is a practical programming
primitive, but its type is not easy to generate from a user-defined data type declaration. For example, even
stating the type of nfold requires a reference to an ancillary data type, which is Nat in the case of Bush
but can be more complicated for a general nested type. On the other hand, we have hfold, which is not
very practical, but its type can be easily read off from a data type declaration. The fact that we have shown
nfold to be definable in terms of hfold suggests a solution to this problem: given a data type declaration,
the system can generate its corresponding hfold, and then the user can follow a generic recipe to derive the
more useful nfold.

7 Conclusion and future work

Using Bush as an example, we showed how to define dependently typed folds for nested data types. Unlike
higher-order folds, dependently typed folds can be used to define maps and other terminating functions,
and they have analogous induction principles, similar to the folds for ordinary data types. We showed how
to reason about programs involving nested data types in Agda. Last but not least, we also showed that
dependently typed folds and higher-order folds are mutually definable. This has some potential applications
in implementations of dependent type theories, because given a user-defined nested data type, the corre-
sponding higher-order fold can be automatically generated, and then the user can derive the more useful
dependent fold by following a generic recipe. All of our proofs are done in Agda, without using any unsafe
flag.

Our long term goal is to derive induction principles for any algebraic data type (nested or non-nested).
There is still a lot of work to be done. In this paper, we only showed how to get the dependently typed fold
and induction principle for the single example of Bush. Although our approach also works for other nested
data types, we have not yet given a formal characterization of dependently typed folds and their induction
principles in the general case. Another research direction is to study the direct relationship between the
induction principles (derived from dependently typed folds) and higher-order folds. In the Bush example, it
corresponds to asking if we can define ind from hfold, possibly with some extra properties that can also be
read off from the data type definition.

Acknowledgements

We thank the referees for their thoughtful comments. This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and by the Air Force Office of Scientific Research under
Award No. FA9550-21-1-0041.

10

References

[1] Agda documentation. https://agda.readthedocs.io/, accessed: 2022-02-15

[2] Bird, R., Meertens, L.: Nested datatypes. In: Mathematics of program construction. pp. 52–67. Springer
(1998)

[3] Bird, R., Paterson, R.: De Bruijn notation as a nested datatype. Journal of functional programming
9(1), 77–91 (1999)

[4] Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of Computing 11(2),
200–222 (1999)

[5] Fu, P., Selinger, P.: Agda code accompanying this paper (2023), available as ancillary material from this
paper’s arXiv page

[6] Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and types, vol. 7. Cambridge University Press Cambridge
(1989)

[7] Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure. Journal of functional
programming 16(2), 197–217 (2006)

[8] Johann, P., Ghani, N.: Initial algebra semantics is enough! In: International Conference on Typed
Lambda Calculi and Applications. pp. 207–222. Springer (2007)

[9] Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci. 1, 125–159 (1975)

11

https://agda.readthedocs.io/

	Introduction
	Contributions

	Dependently typed fold for Bush
	Induction principle for Bush
	Higher-order folds and dependently typed folds
	Defining hfold from nfold
	Defining nfold from hfold

	Nested data types beyond Bush
	Discussion
	Conclusion and future work

