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Abstract

This paper proposes a new typed lambda-encoding for inductive types which, for Peano numerals, has
the expected time complexities for basic operations like addition and multiplication, has a constant-
time predecessor function, and requires only quadratic space to encode a numeral. This improves on
the exponential space required by the Parigot encoding. Like the Parigot encoding, the new encoding
is typable in System F-omega plus positive-recursive type definitions, a total type theory. The new
encoding is compared with previous ones through a significant case study: mergesort using Braun
trees. The practical runtime efficiency of the new encoding, and the Church and Parigot encodings,
are compared by two translations, one to Racket and one to Haskell, on a small suite of benchmarks.

1 Introduction

The idea of encoding data as functional terms in typed lambda calculus has significant
appeal, as it shows that primitive datatypes are, at least in principle, unnecessary. The
traditional objection to lambda-encoding data in typed lambda calculi has been asymptotic
inefficiencies for the encoded data or the operations on them. The well-known Church
encoding of standard datatypes and natural operations on them can be typed in System F, a
total type theory (all terms are guaranteed to terminate). But operations to extract subdata
from data – like the tail from a list – take time linear in the size of the data. At least for
Peano numerals, this is a provable lower bound (Parigot, 1989). For practical functional
programming, destructors of inductive datatypes should be computed in constant time.
Parigot improved on this situation with an encoding which intrinsically supports recursion,
and has constant-time predecessor (Parigot, 1988). Parigot’s encoding is typable in System
F plus positive-recursive type definitions, which is also a total type theory. It has one major
drawback, however: the size of a numeral n is O(2n).

In this paper, we introduce a new lambda-encoding, called embedded iterators, which
has similar computational properties as Parigot’s, but which requires only O(n2) space to
represent the unary numeral n, while preserving all the expected time complexities for the
basic arithmetic operations (Section 4). If one is willing to accept an increase in the time
complexity for successor from O(1) to O(logn), then this requirement can be reduced to
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O(n logn) for numeral n (Section 4.3). Like the Parigot encoding, the embedded-iterators
encoding is typable in System F extended with global positive-recursive type definitions.
We will first review Church, Scott, and Parigot encodings (Section 3), based on System
Fω with global positive-recursive type definitions (Section 2). Then we will present the
embedded-iterators encoding (Section 4). We will also discuss how to encode some con-
tainer datatypes, which, unlike the situation for numeric data (for which using numeric
representations native to the computing hardware is mandatory for performance), could
actually be useful in practice (Section 5).

The paper’s final contribution is an empirical assessment of these different encoding
schemes. We give a performance comparison of these encodings, using Racket and Haskell
as platforms for efficient execution (Section 6). One interesting finding is that the Parigot
and embedded-iterators encodings perform well in practice, despite the theoretical asymp-
totically greater size of their normal forms. This suggests that typed lambda encodings may
be more suitable for practical use than previously believed.

2 Frec
ω : Fω with Global Positive-Recursive Type Definitions

The Frec
ω type theory we will use in this paper is a version of the well-known Fω system,

which extends the impredicative polymorphism of System F with type-level computation.
Frec

ω system extends Fω with global recursive definitions of types at any kind, where the
defined type symbol can appear only positively in the definition. We call these positive-
recursive type definitions, and define an occurrence to be positive iff it is in the domain
part of an even number of arrow types, and not in the argument part of a type-level
application (see Definition 2.1 below). The latter restriction is to avoid misjudging the
second occurrence of X in (λY : ∗.Y → X) X , for example, as positive. Using global
recursive definitions of types instead of recursive types (µX .T ) we can more easily specify
how to fold and unfold recursive types. The cost is that nested datatypes, like the type of
finitely branching trees, cannot be defined. This limitation could be removed with polarized
kinds, as used by Abel and Matthes for their system Fixω (Abel & Matthes, 2004). Fixω

uses a type-level fixed-point operator instead of recursive type equations.

2.1 Syntax

The following definitions constitute a new formulation of a system in (Fu & Stump, 2014).
The syntax for kinds, types, terms, and contexts is:

Term variables x
Type variables X
Kinds κ ::= ∗ | κ ′→ κ

Types T ::= X | ∀X : κ.T | T1→ T2 | λX : κ1.T | T1 T2

Terms t ::= x | λx : T. t | λX : κ. t | t t ′ | t T | [X!] | [X ]

Contexts Γ ::= · | Γ,x : T | Γ,X : κ | Γ,X : κ 7→ T

The term constructs [X!] and [X ] are for the folding and unfolding, respectively, of recursive
type-definitions. The entry X : κ 7→ T in contexts is for a recursive type definition: X of
kind κ is recursively defined to be T , where T may mention X .
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Pol(X ,X ,0)
X 6≡ Y

Pol(X ,Y,b)
Pol(X ,T1,¬b) Pol(X ,T2,b)

Pol(X ,T1→ T2,b)

Pol(X ,T1,b) X /∈ FV(T2)

Pol(X ,(T1 T2),b)
Pol(X ,T,b)

Pol(X ,(∀Y : κ.T ),b)
Pol(X ,T,b)

Pol(X ,λY : κ.T,b)

Fig. 1. Definition of polarity in Frec
ω

· ok
Γ ` T : ∗ Γ ok

Γ,x : T ok
Γ ok

Γ,X : κ ok

Γ,X : κ ` T : κ Pol(X ,T,0) Γ ok
Γ,X : κ 7→ T ok

(X : κ) ∈ Γ Γ ok
Γ ` X : κ

Γ,X : κ ` T : κ ′

Γ ` λX : κ.T : κ → κ ′

Γ,X : κ ` T : ∗
Γ ` ∀X : κ.T : ∗

Γ ` T : ∗ Γ ` T ′ : ∗
Γ ` T → T ′ : ∗

Γ ` T : κ1→ κ2 Γ ` T ′ : κ1

Γ ` T T ′ : κ2

Fig. 2. Context formation and kinding for Frec
ω

2.2 Classification

Figure 2 gives rules inductively defining the judgments Γ ok, for well-formedness of the
context Γ, and Γ ` T : κ , stating that type T has kind κ in context Γ. We use the following
adaptation of the notion of polarity to restrict type definitions to be positive-recursive.

Definition 2.1 (Polarity)

Let b ∈ {0,1}, and define ¬0 := 1,¬1 := 0. We define relation Pol(X ,T,b) by the rules of
Figure 1. Informally, this means all occurences of X in T have polarity b. We say X occurs
only positively in T if Pol(X ,T,0), and only negatively if Pol(X ,T,1).

Figure 3 gives rules defining the judgment Γ ` t : T , stating that term t has type T in
context Γ. One of the rules uses ∼= for the least congruence relation satisfying the standard
equation for type-level β -equivalence:

(λX : κ.T ) T ′ ∼= [T ′/X ]T

Figure 3 has specialized rules for folding and unfolding recursive type-definitions of sym-
bols X to be types T of kind κ . Because such definitions can be at kinds higher than ∗,
we need to handle arguments to the recursively defined type. We do this by quantifying
over the types which are inputs to X , in the types for [X!] and [X ]. We use κ̄ to denote a
finite, possibly empty sequence of kinds κ1, · · · ,κn. We then use the notation κ̄ → κ ′ for
the right-nested function type κ1→ ··· → κn→ κ ′, which is just κ ′ if κ̄ is empty. Finally,
we write X X̄ for the left-nested application ((X X1) · · ·) Xn, which is just X if X̄ is empty.
Also, assuming X̄ is a sequence of distinct type variables of the same length as κ̄ , ∀X̄ : κ̄. T
denotes ∀X1 : κ1. · · ·∀Xn : κn. T – again, just T if X̄ is empty. Incorporating this sequence
κ̄ into the typing rules for [X!] and [X ] generalizes the simple case where X has kind ∗, and
[X!] and [X ] simply witness the isomorphism between X and T .
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(x : T ) ∈ Γ Γ ok
Γ ` x : T

Γ ` t : (T1→ T2) Γ ` t ′ : T1

Γ ` t t ′ : T2

Γ,x : T1 ` t : T2

Γ ` λx : T1.t : (T1→ T2)

Γ ` t : T1 Γ ` T1 ∼= T2

Γ ` t : T2

Γ ` t : ∀X : κ.T Γ ` T ′ : κ

Γ ` t T ′ : [T ′/X ]T
Γ,X : κ ` t : T X /∈ FVar(Γ)

Γ ` λX : κ.t : ∀X : κ.T

X : (κ̄ →∗) 7→ T ∈ Γ Γ ok Γ ` T̄ : κ̄

Γ ` [X ] : ∀X̄ : κ̄. T X̄ → X X̄

X : (κ̄ →∗) 7→ T ∈ Γ Γ ok

Γ ` [X!] : ∀X̄ : κ̄. X X̄ → T X̄

Fig. 3. Typing for Frec
ω

|λx : T.t| = λx.|t| |λX : κ.t| = |t|
|t t ′| = |t| |t ′| |t T | = |t|
|[X!]| = λx.x |x| = x
|[X ]| = λx.x

Fig. 4. Erasure to untyped lambda calculus

2.3 Strong Normalization

In Appendix C of (Fu & Stump, 2014), the following theorem is proved for a more declar-
ative formulation of Frec

ω : folding and unfolding of recursive types take place as part of
a nonalgorithmic definitional equality, and the system is a type-assignment system (so the
only term constructs are those of pure untyped lambda calculus). Similarly to the proof
in (Abel & Matthes, 2004), a complete lattice (JκK,⊆κ ,∩κ) is defined, for each kind κ .
For the base case, (J∗K,⊆∗,∩∗) is the set of reducibility candidates ordered by inclusion,
with intersection for the meet operation. These lattices allow the interpretation of positive-
recursive type definitions via fixed points. The erasure |t| is defined in Figure 4. Erasure
eliminates [X!] and [X ], so Frec

ω does not need reduction or equivalence rules relating these
constructs.

Theorem 2.1
Γ ` t : T implies that |t| is strongly normalizing (no infinite reduction sequence from |t|).

2.4 Implementation

We have implemented Frec
ω in a tool called fore, available from the Software section of the

first author’s web page. fore is written in the dependently typed functional programming
language Agda, version 2.4.2.2 (Norrell & the Agda Development Team, 2014). Agda
compiles to Haskell, which enables fore to execute reasonably efficiently. fore includes
support for non-recursive term- and type definitions, with the latter unfolded automatically
as needed during type checking. Types can be positively recursively defined with the
keyword rec. fore also uses Unicode symbols for λ , ∀, and→. The distinction between
term and type variables is implemented by consulting the context to see whether the
variable is declared to have a type or a kind. So a lexical distinction between term and
type variables is not required.
fore includes a type checker for an algorithmic adaptation of Frec

ω . In particular, one
has to eliminate the otherwise nondeterministically applicable conversion rule, in favor
of sometimes reducing computed types to head normal form. This is possible, thanks to
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confluence and strong normalization of type-level reduction (which is just that of simply
typed lambda calculus). The examples in the rest of the paper have all been type-checked
with fore. The fore tool can translate input programs written in the fore input syntax to
either Haskell or Racket.

Agda supports verification of pure functional programs via dependent types and the
Curry-Howard isomorphism. While we have not attempted to verify deep properties like
type preservation for our type checker with respect to the operational semantics of Racket
or Haskell – which would be a major undertaking – we have used Agda’s verification
capabilities in the course of our development to improve the quality of our tool. One
example theorem we have proved is correctness of an algorithm for inserting a minimal
set of disambiguating parentheses into terms to be printed back to the user. We have also
expressed some simple data structure invariants using dependent types.

3 Previous Lambda Encodings

In this section we recall the Church, Scott, and Parigot encodings of natural numbers in
Frec

ω . The Church encoding, of course, requires only System F (a subsystem of Frec
ω ),

while the other two do require positive-recursive type definitions. Type-level λ -abstraction
is not needed for these encodings, but is required for container types (see Section 5).
This section will consider just unary (aka Peano) natural numbers, via their fore input
sources. We elide the definitions of basic non-recursive datatypes for pair types, sum types,
booleans, the unit type, and a maybe type. Because these are not recursive, the different
lambda-encodings all agree for them.

3.1 The Church encoding

The Church encoding represents each natural number n as its own iterator λ s.λ z.sn z,
where sn z is meta-notation for (s · · ·(s z)), with n copies of s (Church, 1941). Böhm and
Berarducci showed how to type these in System F (Böhm & Berarducci, 1985). In the
notation of fore, the (non-recursive) definitions for the type CNat of Church numerals and
the constructors CZero (for 0) and CSuc (for successor) are these, where each definition
lists the defined symbol, its classifier (type or kind), and then the term or type it is defined
to equal.

CNat : * =

∀ X : * , (X → X) → X → X .

Czero : CNat =

λ X : * , λ s : X → X , λ z : X , z .

Csuc : CNat → CNat =

λ n : CNat , λ X : * , λ s : X → X , λ z : X , s (n X s z) .

It is convenient also to define Cone for 1:

Cone : CNat =

λ X : * , λ s : X → X , λ z : X , s z .

Iterative versions of addition, multiplication, and exponentiation are defined this way:
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Cadd : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , n CNat Csuc m .

Cmult : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , n CNat (Cadd m) Czero .

Cexp : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , n CNat (Cmult m) Cone .

Alternative clever definitions of these are attributed to Rosser (Barendregt, 1985):

CaddR : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , λ X : * , λ s : X → X , λ z : X ,

n X s (m X s z).

CmultR : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , λ X : * , λ s : X → X , λ z : X ,

n X (m X s) z .

CexpR : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , λ X : * ,

n (X → X) (m X) .

We will evaluate both sets of definitions in Section 6. See (Hinze, 2005) for a study of how
the different definitions can be derived from alternative specifications of the operations.

The definition of predecessor in the Church encoding provably requires linear time (Parigot,
1989). The standard algorithm is due to Kleene. Informally, one iterates the function
(x,m) 7→ (m,m+1) starting from (0,0). After n+1 iterations, the result is (n,n+1), and
hence the predecessor is available as the first component of the pair (and after 0 iterations
0 is still the cut-off predecessor). Subtraction is then just iterated predecessor.

3.2 The Scott encoding

In a total type theory, the Scott encoding is of limited use, because unlike the Church
encoding, Scott-encoded data do not intrinsically support iteration or recursion. So the
operations on Scott-encoded data do not appear to be definable without a more general
recursion operator, which is not available in a total type theory. Nevertheless, the Scott
encoding is a stepping stone to the Parigot encoding, so we include the definitions here.
See page 504 of (Curry et al., 1972) for the attribution to Scott.

rec SNat : * =

∀ X : * , (SNat → X) → X → X .

Szero : SNat =

[SNat] λ X : * , λ s : SNat → X , λ z : X , z .

Ssuc : SNat → SNat =

λ n : SNat , [SNat] λ X : * , λ s : SNat → X , λ z : X , s n .

Note the use of the fold operator [SNat] to map terms of the following type to SNat:

∀ X : * , (SNat → X) → X → X
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The essential difference with the Church encoding is that the abstracted successor s
takes in not the type parameter X as its input, but rather SNat. This necessitates the use
of a recursive type definition for SNat, since SNat appears on the right-hand side of the
definition. That occurrence is positive, though, and so is allowed in Frec

ω . We see from
the definition of Ssuc (successor) that each non-zero numeral n+ 1 is represented in the
encoding by applying the abstracted successor s to the predecessor n.

3.3 The Parigot encoding

Parigot introduced an encoding of numerals which in a sense combines the Church and
Scott encodings (indeed, Parigot numerals are sometimes also called Church-Scott numer-
als) (Parigot, 1988). Where the Church encoding represents numerals as their own iterators,
the Parigot encoding represents them as their own recursors. Here are the basic definitions,
which as for the Scott encoding require a positive-recursive definition for the type for
numerals:

rec PNat : * =

∀ X : * , (PNat → X → X) → X → X .

Pzero : PNat =

[ PNat ] λ X : * , λ s : PNat → X → X , λ z : X , z .

Psuc : PNat → PNat =

λ n : PNat , [ PNat ] λ X : * , λ s : PNat → X → X , λ z : X ,

s n ([PNat !] n X s z) .

In the definition of Psuc (successor), we see that the abstracted s is applied both to the
predecessor number n as in the Scott encoding, and also to an application of n to X s z,
as in the Church encoding. For this application of n, we first unfold the type PNat of
n using our unfold operator [PNat !]. The dual use of the predecessor is the strength
of the Parigot encoding, because numerals both intrinsically support recursion and allow
constant-time access to subdata. It is also the source of two serious weaknesses:

• Unlike in the Church and Scott encodings, the size of a numeral n in normal form is
exponential in n.

• The representation is not adequate, in the sense that there are closed normal forms
of type PNat which do not represent any unary number, because the Scott part of the
encoding and the Church part are out of sync. An example is a term like

λ X : * , λ s : PNat → X → X , λ z : X , s Pzero (s Pzero z)

Here are the definitions of one, addition, multiplication, and exponentation:

Pone : PNat =

[ PNat ] λ X : * , λ s : PNat → X → X , λ z : X , s Pzero z .

Padd : PNat → PNat → PNat =

λ n : PNat , λ m : PNat , [PNat!] n PNat (λ P : PNat , Psuc) m .

Pmult : PNat → PNat → PNat =

λ n : PNat , λ m : PNat , [PNat!] n PNat (λ P : PNat , Padd m) Pzero .

Pexp : PNat → PNat → PNat =

λ n : PNat , λ m : PNat , [PNat!] n PNat (λ P : PNat , Pmult m) Pone .
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Constant-time predecessor and subtraction by iterated predecessor are easily defined (though
see the next section for an important twist):

Ppred : PNat → PNat =

λ n : PNat , [PNat!] n PNat (λ P : PNat , λ d : PNat , P) Pzero .

Psubtract : PNat → PNat → PNat =

λ n : PNat , λ m : PNat , [PNat!] m PNat (λ P : PNat , Ppred) n .

3.4 The Parigot encoding for call-by-value reduction

Parigot designed the preceding encoding so that the predecessor operation would take con-
stant time. And so indeed it does, if one is using call-by-name or normal-order reduction,
for example. But if one uses call-by-value – the reduction strategy employed by widely
used functional programming languages like OCaml and Racket – then predecessor is
not a constant-time operation, because Ppred (defined just above) still works by iterating
with the number n of which the predecessor is desired. The function that is being iterated,
namely λ P : PNat , λ d : PNat , P, does not need to use the result d of iteration;
it just immediately returns the predecessor P which the number n passes to it. But with call-
by-value reduction, that result d of iteration will still be computed before it is discarded
by the iterated function. So in call-by-value reduction, the Parigot encoding does not
have constant-time predecessor. Note that here we are speaking of call-by-value reduction
for pure untyped lambda (for the erasures of the terms), where the values are the λ -
abstractions. For an example: let us write ň for the erasure (to untyped lambda calculus)
of Parigot-encoded natural number n, and (ambiguously) Ppred for the erasure of Ppred
as defined above. Then we have this example call-by-value reduction (writing n for the
n-fold composition of ):

Ppred 2̌  3

(λP.λd.P) 1̌ ((λP.λd.P) 0̌ 0̌)  
(λd.1̌) ((λP.λd.P) 0̌ 0̌)  3

1̌

The point is that the last shown step is reducing the argument ((λP.λd.P) 0̌ 0̌) to a value
v before discarding it when reducing (λd. 1̌) v. This leads to O(n) call-by-value steps to
reduce Ppred ň, instead of O(1) steps.

This problem can be easily remedied, however, using the following alternative definition
for the type Pnat of Parigot-encoded numerals:

rec PNat : * = ∀ X : * , (PNat → (unit → X) → X) → X → X .

Compare this with the type from the previous section:

rec PNat : * = ∀ X : * , (PNat → X → X) → X → X .

The only difference is that we are specifying that the iterated function will be called not
with the result (of type X) of iteration with the predecessor, but with a function of type
unit → X. This is just a thunk which, when called with the trivial value triv of type
unit, will return the result of iteration with the predecessor. So if one does not wish to use
this result, as we do not in the case of Ppred, then it will not be computed in call-by-value
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reduction. This change for more efficient call-by-value reduction is easily accommodated
in the definitions of the basic arithmetic operations, which we omit for space reasons. It is
also preferable to use the following similarly modified definition for booleans:

Bool : * = ∀ X : * , (unit → X) → (unit → X) → X .

true : Bool = λ X:*, λx:unit → X, λy:unit → X, x triv.

false : Bool = λ X:*, λx:unit → X, λy:unit → X, y triv .

Note that this definition actually guards the cases, as one would if implementing an if-
then-else construct in a call-by-value language. It would also be reasonable to do this for
similar arguments in other datatypes, like the occurrence of X corresponding to the zero
case in the above definition of PNat. We have not found this necessary for our examples.

3.5 Abstract Comparison

We can compare the three previous encodings abstractly, by assuming that F is a type-
level function which uses its argument only in positive positions. Then as explained also
by Wadler (Philip Wadler, 1990), the Church encoding of µX .F X is the type µC F defined
by

µC F = ∀X : ∗,(F X → X)→ X

The Scott encoding is the type µS F positive-recursively defined by

µS F = ∀X : ∗,((F (µS F))→ X)→ X

Finally, the Parigot encoding is the type µP F positive-recursively defined by

µP F = ∀X : ∗,((F ((µP F)×X))→ X)→ X

The examples considered above are intuitionistically equivalent versions of these types.
For example, according to the above abstract scheme, if we denote λX : ∗.(1+X) as FNat ,
then the Church encoding for the type µX .1+X of the natural numbers is µC FNat defined
as

∀X : ∗,(1+X → X)→ X

This is intuitionistically equivalent to the type traditionally used, which we saw above:

∀X : ∗,(X → X)→ X → X

This version is more convenient to use, because it does not contain an embedded sum type.

4 The Embedded Iterators Encoding for Peano Numerals

Our new encoding, which we show first for Peano numerals, relies on the Church encoding
as defined in Section 3.1. Like the Parigot encoding, we combine Church and Scott as-
pects of numerals: numerals should intrinsically support iteration (Church), and also allow
constant-time access to subdata (Scott). But we do this in a different way from the Parigot
encoding. The crude starting point for the idea is to note that if we just had a pair of a
Church numeral and a Scott numeral both representing n, then we could both iterate with
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n and obtain the predecessor of n in constant time. But this simple idea would not allow us
to get the predecessor of the predecessor of n in constant time.

We extend the above simplistic idea recursively as follows. Each encoded numeral n
will either be represented by a trivial value for zero or else by a n-deep right-nesting of
(Church-encoded) pairs, ending in the trivial value for zero. The first component of the
first pair is Church-encoded n, and for a pair k levels deep, the first component will be
Church-encoded n− k. So iterators for all the numbers from n down to 0 are embedded
in the representation of n, and embedded-iterators numerals can be seen as lists of Church
numerals (and this can be generalized to other datatypes). Informally, a number like 3 will
be represented as follows, where here and subsequently, we use ṅ as mathematical notation
for Church-encoded n:

(3̇,(2̇,(1̇,0)))

The size of this term is quadratic in n, unlike the Parigot encoding, which is exponential
in n. But similarly to the Parigot encoding, with this representation one always has access
to an iterator ṁ for a successor number m = n+ 1, as well as to the predecessor numeral
(ṅ,(. . . ,0)). Accessing the components of a Church-encoded pair takes constant time, so
the predecessor can be obtained in constant time. Abstractly, if F uses its argument only
positively, and writing (as above) µC F for the type ∀X : ∗,(F X → X)→ X of the Church
encoding of µX .F X , then our encoding of µX .F X is the type µSF F positive-recursively
defined by:

µSF F = F((µC F)× (µSF F))

As above, we will make use of types which are intuitionistically equivalent to those pre-
scribed by this abstract scheme. For the leading example of natural numbers, which we
will see in more detail in the next section, we have F(X) = 1+X , and so

Nat = 1+(CNat×Nat)

The embedded-iterators encoding bears a passing resemblance to a definition of numerals
due to Barendregt, where the interpretation of n + 1 is the pair (False,n) (Barendregt,
1985). In the embedded-iterators encoding, this is (ṅ,n) (although Barendregt’s encoding
cleverly avoids the need for a sum type).

It is important to note that like the Parigot encoding, the embedded-iterators encoding is
not adequate: Frec

ω can assign the type µSF FNat to terms like (3̇,(3̇,(3̇,0))), which do not
follow the intended structure for the encoding. This limitation could possibly be resolved
with dependent typing, though this remains to future work.

4.1 The type and constructors for numerals

The type we will use for numerals in our encoding is:

rec SFNat : * = ∀ X : *, (CNat → SFNat → X) → X → X .

This is intuitionistically equivalent to the type which the abstract scheme above dictates:

rec D : * = sum unit (pair CNat D) .

Informally, D requires that every number is either an inject-left of a unit value or inject-
right of a pair of a Church-encoded natural number and another D. Our definition of SFNat
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accomplishes the same thing, since it requires one to provide an X value for the case where
the number is zero, and a function taking in a CNat and a SFNat (equivalent to taking in a
pair of the two) and returning an X. So SFNat is just an optimized version of D.

The above definition of SFNat resembles the definition for the Scott encoding:

rec SNat : * = ∀ X : * , (SNat → X) → X → X .

The difference is that in the successor case, an value of type SFNat has access to a CNat

given the Church-encoding of the same number. This CNat can be used to do iteration,
something that is not possible intrinsically with the Scott-encoded numeral.

The definition of zero erases to the same term as for the Church- and Parigot-encodings:

SFzero : SFNat =

[SFNat] λ X : *, λ s : CNat → SFNat → X , λ z : X , z .

We can easily also define one:

SFone : SFNat =

[SFNat] λ X : *, λ s : CNat → SFNat → X , λ z : X ,

s Cone SFzero .

Note that we are applying s to Cone as well as to SFZero. This fits with our plan of having
the encoding for nonzero n contain ṅ, as well as the encoding of the predecessor of n.
Subsequent numerals m = n+1 have the form:

λX : ∗,λ s : CNat→ SFNat→ X ,λ z : X ,s ṁ n̂

where we are writing n̂ to indicate the embedded-iterators encoding of n. Each numeral m
is encoded by a term which contains the Church-encodings of m down to 0. Hence, each
encoding needs only quadratic space. Here is the definition of successor:

SFsuc : SFNat → SFNat =

λ n : SFNat ,

[SFNat!] n SFNat

(λ c : CNat, λ p : SFNat,

[SFNat] λ X : *, λ s : CNat → SFNat → X, λ z : X ,

s (Csuc c) n)

SFone .

This term unfolds the definition of SFNat so that it can apply n to the result type SFNat and
a value for s (from the definition of the SFNat type) and a value for z. The value for s is a
function which takes in the Church-encoded version c of n, and the predecessor numeral p.
It returns a new numeral (starting from the fold [SFnat]) where the s function is applied
to the successor of c (which yields the Church-encoding for the successor of the numeral
represented by n) and also n itself, which, of course, is the predecessor of the new numeral.

Constant-time predecessor is very easy to define, since we must just return the predeces-
sor number in the successor case, and zero in the zero case:

SFpred : SFNat → SFNat =

λ n : SFNat ,

[SFNat!] n SFNat (λ c : CNat, λ s : SFNat, s) SFzero.
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Note that unlike with the Parigot encoding, this predecessor operation is constant-time
regardless of whether reduction is call-by-name (or normal-order) or call-by-value. To see
this, let us temporarily write SFpred for the erasure of SFpred as just defined, and n̂ for
the embedded-iterators encoding of natural number n. Then all β -reduction sequences for
SFpred m̂, where m = n+1, have length independent of m. Here is one:

SFpred m̂  
m̂ (λc.λ s.s) 0̂  
(λ z.(λc.λ s.s) ṁ n̂) 0̂  3

n̂

O(1) reduction steps for predecessor regardless of strategy is a further benefit of the em-
bedded iterators encoding.

4.2 Basic arithmetic operations

Armed with zero, one, successor, and predecessor, the other basic arithmetic operations
follow a simple pattern: there is a case for when the parameter of iteration is zero, and
then in the other case, we extract the embedded Church numeral and use it to carry out the
iteration. Here is the definition of addition:

SFadd : SFNat → SFNat → SFNat =

λ n : SFNat , λ m : SFNat ,

[SFNat!] n SFNat

(λ c : CNat, λ p : SFNat , c SFNat SFsuc m)

m.

The parameter of iteration is n. We must first unfold the type SFNat, and then apply the
result to result type SFNat, the case for when n is a successor number, and the case for
when it is zero. The case for the successor number takes in the Church-encoded version c

of n, together with the predecessor p. The latter is ignored, since we just need to use c to
iterate the successor function SFsuc starting from the second input numeral m. The terms
for multiplication and exponentiation follow this pattern also, and using our constant-time
predecessor function, subtraction is defined similarly, by iterating SFpred (code omitted).

4.3 Further reducing the space required

Instead of storing Church-encoded unary numerals throughout the SFNat, we can store
Church-encoded binary numerals, for significant space savings. Binary numerals can be
Church-encoded as proposed by Mogensen (Mogensen, 2001). We think of binary numer-
als as having three constructors: for the empty binary numeral, for prepending a 0 bit to a
binary numeral, and for prepending a 1 bit to a binary numeral. So the type is:

BNat : * = ∀ X : *, (X → X) → (X → X) → X → X.

It is a routine if tedious exercise to implement the operation Bsuc which, given a binary
numeral representing n, returns a new binary numeral representing n+1. To define iterative
operations like addition, we also need a function BtoCNat which can convert a binary
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number to a unary one, which can then be used for iteration. Armed with these functions
(code omitted), we can modify the definition of SFNat from the previous section, so that
each number n is represented as (b(n),(b(n−1), . . . ,b(0))), where b(x) is a binary number
representing x. The required space becomes O(ΣN

i=0(log2 i)), which is O(n log2(n)). Some
crucial definitions are:

rec SFNat : * = ∀ X : *, (BNat → SFNat → X) → X → X .

SFsuc : SFNat → SFNat =

λ n : SFNat ,

[SFNat!] n SFNat

(λ c : BNat, λ p : SFNat,

[SFNat] λ X : *, λ s : BNat → SFNat → X, λ z : X ,

s (Bsuc c) n)

SFone .

The cost of SFsuc is now O(logn) given an SFNat representing n, because we must call
Bsuc (successor on binary numbers) on the embedded binary numeral c. Our previous
iterative operations on SFNat are adapted to the version using binary numerals, by calling
BtoCNat on the embedded numeral. For example, here is the code for addition:

SFadd : SFNat → SFNat → SFNat =

λ n : SFNat , λ m : SFNat ,

[SFNat!] n SFNat

(λ c : BNat, λ s : SFNat ,

BtoCNat c SFNat SFsuc m)

m.

4.4 Comparing the sizes of normal forms

Figure 5 shows the sizes of normal forms for the first few numerals. These sizes were
computed by normalizing the numerals and counting the number of subterms, in fore. We
see the predicted exponential blow-up for the sizes of Parigot-encoded numerals, and the
space savings obtained by using binary instead of unary embedded iterators (“Stump Fu”
versus “Stump Fu (bnats)” in the figure).

5 Lambda-Encoding Container Datatypes

In this section, we consider lambda-encoding for polymorphic lists using the Church,
Parigot, and embedded-iterators encodings. We have chosen to implement mergesort using
a form of Braun tree (cf. (Okasaki, 1997)) as an intermediate data structure. Braun trees
provide a very simple form of balanced binary tree, which is a convenient fit for the recur-
sive subdivision of the input list which mergesort employs. Furthermore, they constitute a
second, nonlinear, example of a container datatype.

In Section 6 we will evaluate the versions of mergesort on call-by-value Church- and
Parigot-encoded data structures, but for simplicity we present here mergesort on the stan-
dard versions of these encodings, from Sections 3.1 and 3.4 (which do not augment types
with unit → in various places). In all cases, we will be sorting lists of elements of type A
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Fig. 5. Comparison of sizes of normal forms for numerals with different encodings

using a given comparator function of type A → A → bool, which returns true if the
first element should be treated as less than or equal to the second, and hence closer to the
front of the sorted list; and false otherwise.

Before we consider the different implementations based on lambda-encodings, let us
look at an implementation of the same algorithm in Agda. This will help make the basic
ideas of the algorithm clear, as the version in Agda is much more concise and readable, due
to Agda’s pattern matching and type inference. While the Frec

ω code for these algorithms
is much more complex, the reader is asked to bear in mind that Frec

ω should not be directly
compared to Agda: Frec

ω could serve as the core language for a tool with similar features
as Agda, where much of the information could likewise be inferred and elided. Like Frec

ω ,
Agda statically enforces termination of all programs.

5.1 Mergesort in Agda

The following code is included as a file mergeSort.agda in the fore distribution (see
the README file for instructions on how to check this with Agda). Here, we will look at
a simply typed version of the code, where the only property being statically enforced by
Agda is termination. For a version of Braun trees where the balancing property is statically
enforced, see lib/braun-tree.agda in the fore distribution.

The module defined in mergeSort.agda is parametrized by a type A, and an ordering
_<A_ on that type. The definition of the Braun type, together with the braunInsert func-
tion for inserting a node, is given in Figure 6. Inserting a node uses the fundamental insight
embodied in Braun trees, which is an elegant way to maintain the balancing property of the
tree. This property says that for every node in the tree, the left and right subtrees have the
same number of elements, or else the left subtree has exactly one more element than the
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data Braun(A : Set) : Set where

braunLeaf : A → Braun A

braunNode : Braun A → Braun A → Braun A

braunInsert : {A : Set} → A → Braun A → Braun A

braunInsert a (braunLeaf a’) = braunNode (braunLeaf a) (braunLeaf a’)

braunInsert a (braunNode l r) = braunNode (braunInsert a r) l

listToBraunTree : {A : Set} → A → L A → Braun A

listToBraunTree a [] = braunLeaf a

listToBraunTree a (a’ :: as) = braunInsert a (listToBraunTree a’ as)

Fig. 6. Agda code for Braun trees

merge : {A : Set} → (A → A → B) → L A → L A → L A

merge _ [] ys = ys

merge _ xs [] = xs

merge cmp (x :: xs) (y :: ys) =

if cmp x y then x :: (merge cmp xs (y :: ys))

else y :: (merge cmp (x :: xs) ys)

mergeSorth : {A : Set} → (A → A → B) → Braun A → L A

mergeSorth _ (braunLeaf a) = [ a ]

mergeSorth cmp (braunNode l r) =

merge cmp (mergeSorth cmp l) (mergeSorth cmp r)

mergeSort : {A : Set} → (A → A → B) → L A → L A

mergeSort _ [] = []

mergeSort cmp (a :: as) = mergeSorth cmp (listToBraunTree a as)

Fig. 7. Agda code for merge sort using Braun trees

right. To maintain this property when inserting into a braunNode, we insert into the right
subtree, and then swap right and left subtrees. If the sizes of the original left and right sub-
trees were equal, then the size of the new left subtree will be one greater than the size of the
right. If the size of the original left was one greater than that of the original right, the sizes
of the new left and right will be equal. Thus, the balancing property is maintained. (Again,
in lib/braun-tree.agda, dependent types are used to enforce this statically, but here we
just use a simply typed version.) Figure 6 also includes a function listToBraunTree for
converting a list to a Braun tree by iterating braunInsert. braunInsert runs in O(log2 n)
time for a tree of size n, due to the balancing property of Braun trees. listToBraunTree
then runs in O(n log2 n) time. The code for mergeSort is then given in Figure 7. This
function first constructs a Braun tree for the input list (using listToBraunTree), and then
calls mergeSorth. This function recursively sorts the subtrees of an input braunNode, and
then calls merge. As noted above, Agda is able to confirm statically that these functions
are terminating on all inputs.
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Braun : * → * =

λ A:*, ∀ X:*, (A → X) → (X → X → X) → X.

braunLeaf : ∀ A:*, A → Braun A =

λ A:*, λ a:A,

λ X:*, λ l:A → X, λ n:X → X → X,

l a.

braunNode : ∀ A:*, Braun A → Braun A → Braun A =

λ A:*, λ L:Braun A, λ R:Braun A,

λ X:*, λ l:A → X,

λ n:X → X → X,

n (L X l n) (R X l n).

braunInsert : ∀ A:*, A → Braun A → Braun A =

λ A:*, λ a:A, λ b:Braun A,

b (pair (Braun A) (Braun A))

(λ aa : A, mkpair (Braun A) (Braun A)

(braunLeaf A aa)

(braunNode A (braunLeaf A a) (braunLeaf A aa)))

(λ pL : pair (Braun A) (Braun A), λ pR : pair (Braun A) (Braun A),

pL (pair (Braun A) (Braun A))

(λ L : Braun A, λ iL : Braun A,

pR (pair (Braun A) (Braun A))

(λ R : Braun A, λ iR : Braun A,

mkpair (Braun A) (Braun A)

(braunNode A L R)

(braunNode A iR L))))

(Braun A)

(λ b : Braun A, λ ib : Braun A , ib).

Fig. 8. Church-encoded Braun trees

5.2 Mergesort for Church-encoded lists

The fore code for Braun trees is shown in Figure 8. Recall from the previous section that
when inserting a value a into a Braun tree which is a node, we insert a into the right subtree,
but then reverse left and right subtrees. This means that we need access to the unmodified
left subtree of Braun tree b, during the course of inserting an element into b. Since we
cannot obtain subtrees in constant-time with the Church encoding, the implementation
in Figure 8 iteratively computes a pair consisting of the modified and the unmodified
versions of the input Braun tree. The modified version has the element a inserted, while the
unmodified one does not. This approach takes O(n) time to insert an element into a Braun
tree of size n, instead of the O(log2(n)) required with constant-time access to the subtrees.
So we can certainly expect a performance penalty from this step, compared to the Parigot
and embedded-iterators encodings.

The type for lists, the definitions of the constructors, and the definition of a function to
build a singleton list containing a given element a are as expected for the Church encoding,
so we elide the definitions. Additionally, we need a function to convert a list to a Braun
tree. Since Braun trees as we have defined them above are non-empty, listToBraunTree
must be given an element a of type A, as well as a list of As. We then iteratively call
braunInsert, starting with a call to braunLeaf as the base case:

listToBraunTree : ∀ A:*, A → List A → Braun A =
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λ A:*, λ a:A, λ l:List A,

l (Braun A)

(λ a : A, λ r : Braun A, braunInsert A a r)

(braunLeaf A a).

If braunInsert had time complexity O(log2(n)) in the size n of the Braun tree, then
listToBraunTree would have complexity O(n log2(n)). But since braunInsert takes
O(n) with the Church encoding, this listToBraunTree function requires quadratic time.

We need functions head and tail for obtaining the head and tail, respectively, of a
non-empty list. We elide these definitions for space reasons. As for predecessor and indeed
all functions returning immediate subdata, tail must be computed by iteration with the
Church encoding. For head, we use a maybe type to return just the head of the list, if the
list is not empty, and nothing otherwise.

Using tail, we can now define the crucial helper function merge, in Figure 9. merge
takes in the comparator function and two lists assumed to be sorted, and returns the merged
sorted result. In some cases merge will make recursive calls with the first list decreased,
when the head of the first list is less than or equal to the head of the second; and in some
cases, the first list will not decrease, but the second will (when the head of the second list
is less than the head of the first). To do this in a terminating way, we follow the approach
used in the Coq standard library (Sorting/Mergesort.v) (The Coq development team,
2014), and use a nested iteration. We have an outer iteration on the first list, for the cases
where the first list will be decreased; and an inner iteration on the second list for the cases
where the first list is unchanged but the second decreases. The code is rendered a little
more verbose by the need to analyze the maybe value returned by head. But let us look at
this code at the heart of the function:

cmp a b (List A)

(Cons A a (outer pa lb))

(Cons A b (inner pb))))

In the surrounding context, we have:

• outer : List A → List A → List A, for making the outer recursive call when
the first list will decrease,

• inner : List A → List A, for making the inner recursive call when the first
list will stay the same and the second will decrease,

• a : A, the head of the first list,
• b : A, the head of the second list,
• pa : List A, the tail of the first list,
• lb : List A, the second list,
• pb : List A, the tail of the second list

So the central code of merge, displayed above, is returning a as the head of the result list
with a call to outer as the tail, in case a is less than or equal to b; and b as the head and
a call to inner as the tail otherwise. Due to the repeated use of tail in each iteration,
merge takes quadratic time in the sum of the sizes of the input lists. Thankfully, the code
for mergeSort is then straightforward; see Figure 10.
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merge : ∀ A:*, (A → A → Bool) → List A → List A → List A =

λ A:*, λ cmp : A → A → Bool, λ la : List A,

la (List A → List A → List A)

(λ a : A, λ outer : List A → List A → List A,

λ la : List A, λ lb : List A,

head A la (List A)

(λ ha : A,

lb (List A → List A)

(λ b : A, λ inner : List A → List A,

λ lb : List A,

head A lb (List A)

(λ hb : A,

cmp ha hb (List A)

(Cons A ha (outer (tail A la) lb))

(Cons A hb (inner (tail A lb))))

la)

(λ lb:List A, la)

lb)

lb)

(λ la : List A, λ lb : List A, lb)

la.

Fig. 9. Merge function for Church-encoded lists

mergeSort : ∀ A:*, (A → A → Bool) → List A → List A =

λ A:*, λ cmp : A → A → Bool, λ la : List A,

head A la (List A)

(λ a : A,

listToBraunTree A a (tail A la)

(List A)

(singleton A)

(λ la : List A, λ lb : List A,

merge A cmp la lb))

(Nil A) .

Fig. 10. Mergesort function for Church-encoded lists

5.3 Mergesort for Parigot-encoded lists

We now redo the work of the previous section, using the Parigot encoding. Braun trees and
the braunInsert function are defined in Figure 11. The type constructor Braun is defined
recursively, as always for Parigot-encoded recursive datatypes, so that the subtrees (of type
Braun A) can be input arguments to the second function required by the definition of
Braun. Fold and unfold operations [Braun] A and [Braun!] A, respectively, are used
in the constructors. The code for braunInsert is much simpler than the version for
Church-encoded Braun trees (Figure 8 above), because we no longer need to compute
the unmodified Braun tree along with the modified one. The unmodified subtrees L and R

are already available with the Parigot encoding, and the modified subtrees iL and iR are
available as the results of iteration.

The definitions for lists, their constructors, and the listToBraunTree function are then
completely as expected for the Parigot encoding, so we elide the definitions. The code in
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rec Braun : * → * =

λ A:*, ∀ X:*, (A → X) → (Braun A → Braun A → X → X → X) → X.

braunLeaf : ∀ A:*, A → Braun A =

λ A:*, λ a:A,

[Braun] A λ X:*, λ l:A → X,

λ n:Braun A → Braun A → X → X → X,

l a.

braunNode : ∀ A:*, Braun A → Braun A → Braun A =

λ A:*, λ L:Braun A, λ R:Braun A,

[Braun] A λ X:*, λ l:A → X,

λ n:Braun A → Braun A → X → X → X,

n L R ([Braun!] A L X l n) ([Braun!] A R X l n).

braunInsert : ∀ A:*, A → Braun A → Braun A =

λ A:*, λ a:A, λ b:Braun A,

[Braun!] A b (Braun A)

(λ aa : A, braunNode A (braunLeaf A a) (braunLeaf A aa))

(λ L : Braun A, λ R : Braun A, λ iL : Braun A, λ iR : Braun A,

braunNode A iR L) .

Fig. 11. Parigot-encoded Braun trees

merge : ∀ A:*, (A → A → Bool) → List A → List A → List A =

λ A:*, λ cmp : A → A → Bool, λ la : List A,

[List!] A la (List A → List A)

(λ a : A, λ laa : List A, λ outer : List A → List A,

λ lb : List A,

[List!] A lb (List A)

(λ b : A, λ lbb : List A, λ inner : List A,

cmp a b (List A)

(Cons A a (outer (Cons A b lbb)))

(Cons A b inner))

(Cons A a laa))

(λ lb : List A, lb).

Fig. 12. Mergesort with the Parigot encoding

Figure 12 for merge is much more straightforward than for Church-encoded lists. merge is
greatly simplified by the fact that the Parigot encoding makes the tails of the lists available
while iterating. This allows us to simplify the types of outer and inner, so that now
outer just takes in the second list (instead of the first and the second), and inner does
not require any lists at all, but instead is just the iterative result of merging the tail of the
second list with the first list unchanged. The code for mergeSort reveals no new matters
of interest, so it is elided.

5.4 Mergesort for lists with the embedded-iterators encoding

Finally, let us consider mergesort for the embedded-iterators encoding. Our Braun trees
will embed Church numerals for the height of the node, at each node. This is sufficient
for iterating through both subtrees of the tree separately. Similarly, our lists will embed
Church numerals for the length of the list.
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Braun trees are defined in Figure 13. We define a helper function getBraunCNat to get
the Church-encoded numeral for the height of the given Braun tree. The braunInsert

function requires some explanation. To insert an element into a Braun tree, we will need
to make a number of recursive calls, corresponding to the height of the tree. So we use
getBraunCNat to get this height, and then use it to iteratively construct a function of type
Braun A → Braun A. In each case of that iterative construction, we must analyze the
input Braun tree b. When we are in the successor case of our iteration, b must be a proper
node (not a leaf). Unfortunately, as we do not have any dependent typing in Frec

ω , the type
system cannot discern this invariant, and so we must include code for the impossible off-
case (labeled “% should not happen”) where b is a leaf. Something similar happens
in the zero case of our iteration on the height of the Braun tree. In the successor case,
where we have analyzed b and found it to be a node, we can call the function r which we
iteratively computed for the predecessor of the depth of the node. We call this on the right
subtree, which, as with the Scott and Parigot encodings, is available at this point with our
embedded-iterators encoding.

The definition of the List datatype using the embedded-iterators encoding is:

rec List : * → * =

λ A:*, ∀ X:*, (CNat → A → List A → X) → X → X.

The first argument of a list as described by this definition is a function which will be given
the head and tail of the list (of types A and List A), but also a Church-encoded natural
number for the length of the list (i.e., one plus the length of the tail), which can be obtained
with an elided helper function getLen. We also elide definitions of the list constructors
and the listToBraunTree function, as these reveal no new issues.

Finally, we can implement the merge and mergesort functions, shown in Figure 14. For
merge, we get the embedded lengths of the input lists la and lb, and sum them using the
Rosser addition function CaddR on CNats. This will allow us to recurse as deeply into the
two input lists as might be necessary. Using the sum of the lengths, we iteratively construct
a function taking in two input lists la and lb, analyzing them both, and performing the
comparison with cmp on their heads as in the previous implementations. We use r to
make recursive calls with the tail pa of la and lb, or else la and the tail pb of lb. For
mergeSort, we use a beta-redex to introduce a name b for the Braun tree we get from
listToBraunTree A a laa. We call getBraunCNat to get the embedded depth of this
Braun tree, from which we iteratively construct a function from Braun A to List A. In
both the successor and the step cases, the terms we are using to construct this function
analyze the input Braun tree x. Again, we have some off cases which cannot happen, but
cannot be statically ruled out. The code uses merge to combine the results r L and r R of
recursively sorting the left and right subtrees of x; and in the case where Braun tree x has
depth 0 and is hence a leaf, just returning a singleton list.

5.5 Discussion

Of the three implementations above, the one using Church-encoded data structures (Braun
trees and lists) is the least satisfactory. We are forced into several inefficient computations,
which are also complicated to implement. The function for inserting data into a Braun tree
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rec Braun : * → * =

λ A:*, ∀ X:*, (A → X) → (CNat → Braun A → Braun A → X) → X.

getBraunCNat : ∀ A:*, Braun A → CNat =

λ A:*, λ b:Braun A,

[Braun!] A b CNat

(λ a : A, Czero)

(λ c : CNat, λ l : Braun A, λ r : Braun A, c).

braunLeaf : ∀ A:*, A → Braun A =

λ A:*, λ a:A,

[Braun] A λ X:*, λ l:A → X,

λ n:CNat → Braun A → Braun A → X, l a.

braunNode : ∀ A:*, Braun A → Braun A → Braun A =

λ A:*, λ L:Braun A, λ R:Braun A,

[Braun] A λ X:*, λ l:A → X,

λ n:CNat → Braun A → Braun A → X,

(n (Csuc (getBraunCNat A L)) L R).

braunPair : ∀ A:*, A → A → Braun A =

λ A:*, λ a:A, λ aa : A, braunNode A (braunLeaf A a) (braunLeaf A aa).

braunInsert : ∀ A:*, A → Braun A → Braun A =

λ A:*, λ a:A, λ b:Braun A,

getBraunCNat A b (Braun A → Braun A)

(λ r : Braun A → Braun A,

λ b : Braun A,

[Braun !] A b (Braun A)

(λ aa : A , braunPair A a aa) % should not happen

(λ q : CNat, λ L : Braun A, λ R : Braun A,

braunNode A (r R) L))

(λ b : Braun A,

[Braun !] A b (Braun A)

(λ aa : A , braunPair A a aa)

(λ q : CNat , λ L : Braun A, λ R : Braun A ,

L)) % should not happen

b .

Fig. 13. Braun trees with the embedded-iterators encoding

simultaneously computes the modifed (data inserted) and unmodified Braun tree, so that
it can rebuild the entire tree, including modified and unmodified subtrees. This increases
the asymptotic time complexity of this function from logarithmic to linear – a serious
performance penalty. Also, we have to use an iterative tail function, which increases the
asymptotic time-complexity of the merge function from linear to quadratic.

The embedded-iterators encoding does not incur penalties in asymptotic time-complexity.
But it suffers from the fact that iteration and analysis of data are separate, and so in several
situations we find we are in an analysis case (e.g., the input list is empty) which cannot
happen due to the iteration case we are in (e.g., the length of the input list is non-zero).
This requires us to include dummy code for those off cases. Dependent types (not available
in Frec

ω ) might allow us to drop them.
The implementation with Parigot-encoded data structures is superior. Since analysis and

iteration happen simultaneously with the Parigot encoding, we do not have off cases as in
the embedded-iterators encoding. The code is the simplest of the three implementations,
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merge : ∀ A:*, (A → A → Bool) → List A → List A → List A =

λ A:*, λ cmp : A → A → Bool, λ la : List A, λ lb : List A,

CaddR (getLen A la) (getLen A lb) (List A → List A → List A)

(λ r : List A → List A → List A,

λ la : List A, λ lb : List A,

[List!] A la (List A)

(λ ca : CNat, λ a : A, λ pa : List A,

[List!] A lb (List A)

(λ cb : CNat, λ b : A, λ pb : List A,

cmp a b (List A)

(Cons A a (r pa lb))

(Cons A b (r la pb)))

la)

lb)

(λ la : List A, λ lb : List A, Nil A) % la and lb are Nil

la lb.

mergeSort : ∀ A:*, (A → A → Bool) → List A → List A =

λ A:*, λ cmp : A → A → Bool, λ la : List A,

[List!] A la (List A)

(λ i : CNat, λ a : A, λ laa : List A,

(λ b : Braun A,

getBraunCNat A b (Braun A → List A)

(λ r : Braun A → List A,

λ x : Braun A,

[Braun!] A x (List A)

(singleton A) % should not happen

(λ q : CNat, λ L : Braun A, λ R : Braun A,

merge A cmp (r L) (r R)))

(λ x : Braun A,

[Braun !] A x (List A)

(singleton A)

(λ q : CNat , λ L : Braun A, λ R : Braun A ,

Nil A)) % should not happen

b)

(listToBraunTree A a laa))

(Nil A).

Fig. 14. Merge sort with the embedded-iterators encoding

and has the expected asymptotic time-complexities. The only concern generally is the
exponential size of normal forms for the Parigot encoding. But as we will see next, this
actually does not occur in practice with efficient implementations of lambda calculus.

6 Performance Comparison

In this section, we present empirical data obtained with Racket Version 6.0.1 (Flatt & PLT,
2010) and the ghc implementation, version 7.6.3, of Haskell, to compare the runtime per-
formance of the above lambda encodings. We compare wallclock times for the encodings
on three families of benchmarks:

• computing 2n
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• computing x− x where x is defined to be 2n (in Racket this means 2n will be com-
puted once, not twice); since subtraction is defined as iterated predecessor, this tests
the cost of computing predecessor for an encoding

• running merge sort on a list of length 2n, obtained by concatenating the list of the
first eight Parigot-encoded numerals, 2n−3 times.

All tests were run on a standard laptop computer with a 1.60GHz Intel Core 2 Duo
processor with 128Kb L1 cache, 3072Kb L2 cache, and 5GB main memory, running
Ubuntu Linux version 12.04.

6.1 Experiments using Racket

Our fore implementation can emit erased Frec
ω terms in Racket syntax. The erasure is a

slightly optimized version of the function given earlier (Figure 4): the fold and unfold
operations are eliminated completely where they are applied. For one example, the Racket
definition emitted by fore for the basic version of addition on Church-encoded numerals
is:

(define Cadd (lambda (n) (lambda (m) ((n Csuc) m))))

To run the tests, we invoke Racket on the Racket source files generated by fore.
Figure 15 shows the times in seconds required for computing 2n, for even values of n

from 10 to 22, for all different encodings we considered above. In this and in all subsequent
figures, we have shaded the first encoding in each group with diagonal hatching, to help
make the starting point of the group visually distinct. Our benchmark families all increase
exponentially in the difficulty required for a standard implementation, as a function of a
parameter n plotted on the x-axis. So we will use a log scale for the y-axis.

In Figure 15, we see that the Rosser definition (“Church R” in the Figure) of expo-
nentiation on Church-encoded numerals is superior to the others by a notable margin.
There is some benefit to using the call-by-value version of the Parigot encoding. Notice
that as predicted above, Racket does not actually require exponential space in practice to
store Parigot-encoded numbers. If it did, the memory required to store 222 would vastly
exceed the physical memory of the test computer (indeed, of all computers in existence),
and the benchmarks would not complete execution. We will consider this point further
below (Section 6.4). The embedded-iterators encoding is slightly slower, and embedded-
iterators with compressed iterators is much slower. We do not consider this last alternative
in subsequent tests, due to its poor performance here.

Figure 16 shows the results for the subtraction test (x− x where x is 2n, and we perform
that exponentiation only once). As expected, the Church and unmodified Parigot encoding
are very slow with respect to the call-by-value Parigot encoding and to the embedded
iterators (Stump-Fu) encoding.

Figure 17 shows the results for the mergesort test in Racket. We use a version of the
Church encoding modified for call-by-value reduction, similarly to the way the Parigot
encoding is modified as described in Section 3.4. Without a call-by-value version of the
booleans, for example, algorithms like merging two sorted lists take exponential time,
because using an unmodified Church boolean (the result of comparing the two heads of the
lists) to select between two alternatives will evaluate both, with call-by-value reduction.
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Fig. 15. Comparison of different encodings for the exponentiation test, using Racket
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Fig. 16. Comparison of different encodings for the subtraction test (x− x where x is 2n), using
Racket

Even so, the performance is much worse than for call-by-value Parigot, which is much
better than the embedded-iterators encoding on this benchmark. We will see a different
situation when we repeat this test in Haskell.
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Fig. 17. Comparison of different encodings for the test with mergesort, using Racket

6.2 Experiments using Haskell

Using Haskell’s higher-rank polymorphism and its newtype mechanism for introducing
recursive types with a sole constructor, we can type-check all the above lambda-encodings
in Haskell. Because Haskell’s directly supports only predicative polymorphism, newtype
must be used to wrap higher-rank types for instantiation of universally quantified type vari-
ables. A similar mechanism in Clean was used in a recent similar study (Koopman et al.,
2014). We must use newtype even for the translations of non-recursive types like CNat,
because of the restriction to predicative polymorphism. So we use alternative versions of
the fore source files for Church-encoded data, where all types are recursively defined. We
declare CNat as a recursive type in fore:

rec CNat : * = ∀ x : * , (x → x) → x → x .

Then fore compiles this to the following Haskell newtype declaration:

newtype CNat =

FoldCNat { unfoldCNat :: forall (x :: *) . (x -> x) -> x -> x}

Uses of fold and unfold operations in the fore code are then translated to calls to FoldCNat
and unfoldCNat, respectively. For example, the fore definition of successor

csuc : CNat → CNat =

λ n : CNat ,

[CNat] λ x : * , λ s : x → x , λ z : x ,

s ([CNat!] n x s z) .

is translated to the following Haskell code:
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Fig. 18. Comparison of different encodings for the exponentiation test, using Haskell

csuc :: CNat -> CNat

csuc =

(\ n -> (FoldCNat (\ s -> (\ z -> (s ((((unfoldCNat n) s) z)))))))

We first use ghc to compile the Haskell source files generated by fore, and then run the
generated executables. Note that care must be taken to force Haskell’s lazy evaluation to
execute the test. We do this by printing a value which ensures computation of the result.

Figure 18 compares the wallclock time for the different encodings, for the exponenti-
ation test. The times for computing small powers, like 210, are measured at 0 seconds.
For larger powers, we see Church, Church with Rosser definitions, and Parigot at about
the same times. Embedded iterators and embedded iterators with compressed iterators are
slower and much slower, respectively. The results are consistent with those from Racket.

Figure 19 shows the rest of the subtraction test. As expected, Parigot and embedded
iterators are much faster than the asymptotically less efficient Church version. Similar
results appear for the sorting test, in Figure 20. Interestingly, here embedded iterators does
not lag behind Parigot, as we saw it did with Racket. This suggests embedded iterators may
be more performant with lazy evaluation than with eager evaluation.

6.3 Comparing with native implementations

Having compared the different encodings using two different efficient implementations of
lambda calculus, we cannot help but be curious: how do the lambda encodings compare
against native sorting functions in Racket and Haskell? For Racket, we will compare with
the native sort function provided by Racket, running (of course) on native Racket lists.
For Haskell, we will use Data.List.sort, from the base package that ships with ghc,
again operating on native Haskell lists. The data are still Parigot-encoded natural numbers,
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exponent Church Parigot Stump Fu

8 0 0 0
9 0.01 0 0
10 0.04 0 0
11 0.18 0 0
12 0.94 0 0
13 5.13 0 0.01
14 32.9 0.1 0.02
15 183.39 0.3 0.05

Fig. 19. Comparison of different encodings for the subtraction test, using Haskell

exponent for list size Church Parigot Stump Fu

7 0 0 0
8 0.01 0 0
9 0.04 0 0
10 0.16 0 0.01
11 0.66 0 0.02
12 3.03 0.02 0.08
13 15.05 0.04 0.24
14 75.93 0.1 0.5
15 399.67 0.23 1.09

Fig. 20. Comparison of different encodings for the sorting test, using Haskell

and the comparator function is the same as above, except wrapped to produce results of
the type expected by the native sorting function. The rather surprising results is shown in
Figure 21. For the larger list sizes (e.g., 222 = 4194304), the sorting function using CBV
Parigot-encoded lists is significantly faster, by two or three times, compared to the native
Racket implementation. Parigot lags native Haskell by roughly an order of magnitude.

It has been observed in practice that for lists with many repeated elements, the widely
used quicksort algorithm can suffer performance degradation.1 Figure 22 shows the wall-
clock times for a second sorting test, for Racket only, where the lists to be sorted consist
of pseudo-randomly generated native numbers, and the maximum number requested from
the pseudo-random generator is twice the length of the list. Here we see Racket’s sorting
function on native Racket lists pulling far ahead of mergesort with Braun trees on lists
encoded with CBV Parigot (e.g., 20 times faster for the largest test, 22, that could be
completed by the lambda-encodings implementation, without exceeding 4GB memory).
Thus, the positive results of Figure 21 compared to Racket may be an artifact of the
particular form of lists to sort, or sorting algorithm.

6.4 Discussion of performance of Parigot encoding

It may be surprising that both Racket and Haskell have no problem computing with Parigot-
encoded data whose normal forms would be, if computed out in full in pure lambda calcu-
lus, of beyond astronomical size. But neither Racket nor Haskell implements β -reduction

1 Thanks to Algorithms colleague Kasturi Varadarajan for pointing this out.
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Fig. 21. Comparison of call-by-value Parigot in Racket (P Racket), native Racket (N Racket),
Parigot in Haskell (P Haskell), and native Haskell (N Haskell), on the first sorting test (long list
of small numbers)

in a strict sense. They implement optimized versions of β -reduction, in both cases using
sharing of common subterms (Felleisen et al., 2009; Jones, 1987). It is interesting to
contrast these results with normal-order (i.e., leftmost) reduction, for example for terms
of the form Padd N Pzero, where N is a Parigot-encoded natural number. Consider the
case where N is Parigot-encoded two (let us call it Ptwo). Then we have this normal-order
reduction sequence for the erased terms, where we introduce definitions for certain terms
as we go, with equality steps:

Padd Ptwo Pzero  2

Ptwo (λP. Psuc) Pzero =

Ptwo S Pzero  2

S Pone (S Pzero Pzero)  
Psuc (S Pzero Pzero) =

Psuc Q  
λ s.λ z.s Q (Q s z)  4

λ s.λ z.s Pone (Q s z)  4

λ s.λ z.s Pone (Pone s z)  2

λ s.λ z.s Pone (s Pzero z)

This is a total of sixteen steps, and indeed, with the normal-order evaluator include
in fore, we have observed that the number of steps to normalize Padd N Pzero using
normal-order reduction is exactly 2n+2, where N is the Parigot representation of n. The
offending step is the one shown above where redex Q is duplicated. This will not happen
in either Racket or Haskell. In Racket, call-by-value reduction will first reduce Q to a value.
In Haskell, call-by-need reduction will share Q, and only compute its normal form once.
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Fig. 22. Comparison of call-by-value Parigot and native Racket on the second sorting test (native
integers from a range twice the length of the list)

7 Conclusion

This paper has introduced a new lambda encoding, called the embedded-iterators encoding,
which has the expected asymptotic complexities for all basic operations on Peano numbers
– including constant time for predecessor – but requires only quadratic space to repre-
sent each number. This improves substantially on the Parigot encoding, which requires
exponential space for each numeral. Like the Parigot encoding, the embedded-iterators
encoding is typable in Frec

ω , an extension of System Fω with global positive-recursive type
definitions. This extension preserves strong normalization of the type theory, so all oper-
ations defined in this paper are statically confirmed by our fore implementation of Frec

ω

to be terminating. We also considered in detail how to implement a nontrivial algorithm –
mergesort using Braun trees – with the Church, Parigot, and embedded-iterators encodings.

Finally, these encodings were evaluated using both eager (Racket) and lazy (Haskell)
evaluation on a small suite of nontrivial benchmarks. The results generally have the Parigot
encoding as the most performant with both eager and lazy evaluation, except for the
exponentiation benchmark, where the Church encoding, particularly with Rosser’s clever
definitions of the basic operations, is significantly faster. The embedded-iterators encoding
lags far behind the Parigot encoding on the mergesort benchmark with eager evaluation,
but with lazy evaluation in Haskell, it scales similarly. Thus, if the size of normal forms
is an important consideration, and if one is using lazy evaluation, we have seen empirical
evidence that the new embedded-iterators encoding is currently the best lambda encoding
available in total type theory.

If one wishes to use lambda-encoded data structures in practice, then designing op-
timizations specifically for improving runtime performance of lambda-encoded data is
important future work. Another important direction is to improve dependently typed pro-
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gramming with lambda encodings. Previous work showed how to define types like the
natural numbers as their own dependent iterators (i.e., induction principles) (Fu & Stump,
2014). The next step is to extend the type theory to allow lifting term-level lambda-encoded
data to the type level, for type-level computation and generic programming.

Acknowledgments. The authors thank the anonymous JFP referees for very helpful
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