
LAMBDA ENCODINGS IN TYPE THEORY

by

Peng Fu

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

August 2014

Thesis Supervisor: Associate Professor Aaron Stump

Copyright by
PENG FU

2014
All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Peng Fu

has been approved by the Examining Committee for the thesis
requirement for the Doctor of Philosophy degree in Computer
Science at the August 2014 graduation.

Thesis Committee:

Aaron Stump, Thesis Supervisor

Cesare Tinelli

Kasturi R. Varadarajan

Ted Herman

Douglas W. Jones

To my mother Chen Xingzhen.

ii

ACKNOWLEDGEMENTS

I would like to thank first of all my thesis advisor, Prof. Aaron Stump. Five

years ago when I applied for graduate school, I asked him for recommendation on

books in logic. He suggested Girard’s proofs and types to me. It is not an ordinary

book in logic and it introduces me to the Girard’s works on System F, and the

wonderful world of type theory and lambda encodings. I am also very grateful for

his advice and support during my graduate study. The vivid discussions with him

on research will be at a special place in my memory. I would also like to thank

Prof. Cesare Tinelli. Even we have not have a chance yet to collaborate on research,

I learned a lot of interesting things in automated reasoning from him in the CLC

seminar, some of which even found their connections in this dissertation. Next, I

would like to thank my dissertation committee, Prof. Kasturi Varadarajan, Prof.

Ted Herman and Prof. Douglas Jones, for their time, patience and many interesting

discussions on my research and thesis topic. I would also want to take this opportunity

to thank Prof. Gregory Landini from the department of philosophy, I learn Frege and

Russell’ works and approach to foundations of mathematics from him. I also learned

how to derive strong induction from weak induction from his class on mathematical

logic. It would become obvious to see the philosophy origins of the last two Chapters of

this dissertation. I spent four semesters in mathematics department, I am very proud

of myself on being one of the students in Prof. Frauke Bleher’s algebra classes. I hope

that one day I can apply the knowlege I learned from algebra in my research. I am

iii

glad that I have the opportunity to learn Haskell programming and discussed some of

language implementation issues with Garrin Kimmell. I am very fortunate to have the

opportunity to meet and discuss research idea with Prof. Tim Sheard, KiYung Ahn,

Nathan Collins from Portland State University; Prof. Stephanie Weirich, Vilhelm

Sjöberg, Chris Casinghino from University of Pennsylvania. I am very grateful to

have the opportunity to interact with my fellow labmates at lab 317, I would like

to mention Harley Eades, Tianyi Liang, Duckki Oe, Ryan McCleeary and Andrew

Reynolds. On a more personal side, I am a long term inhabitant of the main library

in University of Iowa, part of the research in this dissertation is done in the space

generously provided by the library, not to mention about the 66 books that I borrowed

from the library. I also want to thank my friend Wang Tianfeng in China, who

encouraged me to apply to the graduate school in United States. Finally and most

importantly, I would like to thank my mother Chen Xingzhen, for her unconditional

love and supports through out all these years. And my uncle Chen Xuxiang, who

always encourages me to learn and explore. My graduate study would not be possible

without their help.

iv

TABLE OF CONTENTS

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

2 PRELIMINARIES . 6

2.1 Abstract Reduction System . 6
2.2 Lambda Encodings . 7

2.2.1 Church Encoding . 8
2.2.2 Scott Encoding . 8
2.2.3 Parigot Encoding . 9

2.3 Confluence . 10
2.4 Tait-Martin Löf’s Method . 12
2.5 Hardin’s Interpretation Method 15

3 CONFLUENCE OF LAMBDA-MU CALCULUS 17

3.1 Lambda-Mu Calculus . 17
3.2 A Fail Attempt to Prove Confluence of Lambda-Mu Calculus . . 19
3.3 Confluence of Local Lambda-Mu Calculus 21

4 AN ATTEMPT TO EXPRESSIVE TYPE THEORY THROUGH IN-
TERNALIZATION . 28

4.1 Backgrounds . 28
4.2 The Base system FΠ . 29

4.2.1 Interpretation of Types in FΠ 31
4.2.2 Type Soundness . 32

4.3 Internalized Structure . 32
4.3.1 Reflective Relational Sentence-D 33
4.3.2 Elimination Relation-E 34
4.3.3 Interpretation-I . 35
4.3.4 Soundness Properties . 35

4.4 Internalized System . 37
4.5 Examples . 38

4.5.1 Subtyping . 39
4.5.2 Term Equality and Term-Type Inhabitation 41

4.6 Summary . 44

v

5 LAMBDA ENCODINGS WITH DEPENDENT TYPES 46

5.1 Introduction . 46
5.2 Overview of System S . 49

5.2.1 Induction Principle . 50
5.2.2 The Notion of Contradiction 52

5.3 System S . 54
5.4 Lambda Encodings in S . 57

5.4.1 Natural Numbers . 57
5.4.2 Vector Encoding . 59

5.5 Metatheory . 60
5.5.1 Strong Normalization . 61
5.5.2 Confluence Analysis . 64
5.5.3 Morph Analysis . 65

5.6 0 6= 1 in S . 68
5.7 Summary . 69

6 LAMBDA ENCODING WITH COMPREHENSION 71

6.1 Frege’s System F . 73
6.2 System G . 76

6.2.1 Consistency of System G 78
6.2.2 Preservation Theorem for G[p] 81

6.3 A Polymorphic Dependent Type System G[t] 85
6.4 Proving Peano’s Axioms . 89
6.5 Reasoning about Programs . 93
6.6 Termination Analysis in System G 99

6.6.1 Preliminary . 99
6.6.2 Head Normalization . 100
6.6.3 Leibniz Equality in G . 102

6.7 Summary . 103

7 IMPLEMENTATION AND FUTURE IMPROVEMENTS 104

7.1 The Gottlob System . 104
7.2 The Implemented Features of Gottlob 106
7.3 Future Improvements . 110

BIBLIOGRAPHY . 112

vi

1

CHAPTER 1

INTRODUCTION

Lambda encodings (such as Church encoding, Scott encoding and Parigot

encoding) are methods to represent data in lambda calculus. Curry-Howard corre-

spondence relates the formulas and proofs in intuitionistic logics to the types and

programs in typed functional programming languages. Roughly speaking, Type the-

ory (Intuitionistic Type Theory) formulates the intuitionistic logic in the style of typed

functional programming language. This dissertation investigates the mechanisms to

support lambda encodings in type theory. Type theory, for example, Calculus of

Constructions (CC) does not directly support inductive data because the induction

principle for the inductive data is proven to be not derivable. Thus inductive data

together with inductive principle are added as primitive to CC, leading to several

nontrivial extensions, e.g. Calculus of Inductive Constructions. In this dissertation,

we explore alternatives to incorporate inductive data in type theory. We propose to

consider adding an abstraction construct to the intuitionistic type to support lambda-

encoded data, while still be able to derive the corresponding induction principle. The

main benefit of this approach is that we obtain relatively simple systems, which are

easier to analyze and implement.

1.1 Motivation

Inductively defined data type (inductive data), together with the pattern match-

ing mechanism, are commonly used in theorem proving and functional programming.

2

Most typed functional programming languages and theorem provers (Haskell, OCaml,

Agda [8], Coq [49], TRELLYS [30], [10]) support them as primitives. Usually, the

concepts of inductive data and program are separated, one can only perform pattern

matching on inductive data. In lambda calculus however, there are no distinctions

between program and data. For example, for Church numeral 2, it can be used as

a higher order function that takes in a function f and a data b as arguments, then

applying f to b twice.

From the programming language design perspective, inductive datatype and

pattern matching increase the complexity of desgin, analysis and implementation of

the language. For example, the pattern matching case-expression is considered the

most complicated part of the Haskell core language 1. Despite this complication,

there are two main reasons that the language designers choose primitive data type

over lambda encoding.

1. Defining function by recursion seems more natural compare to defining function

by iteration. For example, defining subdata accessor with pattern matching is

almost trivial while it is a challenging programming task for Church encoding

scheme [12].

2. Primitive data type and pattern matching fit well with Hindley-Milner poly-

morphic type inference ([28], [35]), which is a key component for most static

typed functional languages. With Scott encoding and Parigot encoding scheme,

1http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType

3

it is not clear how to directly achieve decidable type inference.

We counter the first reason with Scott encoding scheme. It is well know that

primitive data type and pattern matching can be reduced to Scott encoded data and

recursive definitions in a direct way ([37], [16]) and subdata accessor can be defined

easily with Scott encoding using recursion. For the second reason, we can use a surface

language for type inference while use lambda calculus with recursive definitions as

the untyped core language. Since type inference/checking never interfere with the

actual execution of the program, it only affects how the program is written, once a

program is accepted by the type checker, we can translate it to lambda calculus and

execute it. So we think that the primitive data and pattern matching in a functional

language can be reasonably reduced to lambda calculus with Scott encoding, which

simplifies the execution model for the language. We implement these ideas in Gottlob

(see Chapter 7), which empirically shows that these ideas are reasonable.

If one wants to design an interactive theorem prover based on intuitionistic

type theory à la Martin-Löf [33], then it is desirable to interpret the inhabitant of the

type D → D as a total function on inductive datatype D. This is hard to achieve

with Scott encoding, since each Scott-encoded data contains a piece of its subdata,

one would need recursive type definition to type these data and operations. It is well

known every type is inhabited once we admit unrestrictive recursive type definition2.

Church encoding may be more suitable for the intuitionistic typing, it is already

typable in System F. Besides the efficiency issue we mentioned before, there are three

2Certain restrictions are possible to retain totality, see [40], [43] and [34].

4

problems that prevent Church encoding from being adopted in interactive theorem

provers based on intuitionistic types.

1. One can not construct a proof of 0 6= 1 with Church encoding [51].

2. Induction principle is not derivable in extensions of System F such as Calculus

of Construcitons (CC) [20].

3. Computing type from data is not possible with Church encoding.

For the first problem, we propose to change the notion of contradiction, and

we show how to prove 0 6= 1 with this new notion of contradiction. For the second

problem, we propose a new type construct called self types to derive induction princi-

ple. We will cover these two topics in depth in Chapter 5. For the third problem, we

think it is a fundamental problem for Church encoding in intuitionistic type theory

due to the Girard’s paradox [24]: in order to compute type from Church numerals,

we would need to impredicative polymorhism at kind level, which is known to be

inconsistent. One common practice to avoid this kind of problem is adopting infinite

predicative hierarchy, which is beyond the scope of this dissertation.

The dissertation first describes fundamental concepts (Chapter 2) such as

lambda encodings, abstract rewrite system and confluence. Then we discuss the

confluence problem for lambda-mu calculus (Chapter 3). In Chapter 4, we show a

limited way to construct expressive type theory based on the notion of internalization.

System S is presented in Chapter 5, we introduce self type construct and use it to

derive induction principle. Metatheorems such as consistency and type preservation

5

are proved. In Chapter 6, System G is presented, which is based on interpreting the

iota-binder as set abstraction. Unlike System S, G does not require recursive defini-

tion to describe induction principle, this simplifies the meta-theoretic property of G.

We show that G is consistent and we demonstrate some applications and some special

properties of G. Finally, Chapter 7 discusses the design and implemented features of

Gottlob. The logic of Gottlob is an extension of G. Future improvements of Gottlob

are also discussed.

6

CHAPTER 2

PRELIMINARIES

In this Chapter, we first introduce abstract reduction system. Then, we re-

view three lambda encoding schemes, namely, Church encoding, Scott encoding and

Parigot encoding. Finally, we discuss the confluence property, which is a key property

for abstract reduction system, including lambda calculus.

2.1 Abstract Reduction System

Definition 1. An abstract reduction system R is a tuple (A, {→i}i∈I), where A is a

set and →i is a binary relation(called reduction) on A indexed by a finite nonempty

set I.

In an abstract reduction system R, we write a →i b if a, b ∈ A satisfy the

relation →i. For convenient, →i denotes a subset of A × A such that (a, b) ∈→i if

a→i b.

Definition 2. Given abstract reduction system (A, {→i}i∈I), the reflexive transitive

closure of →i is written as �i or
∗→i, is defined by:

• m�i m.

• m�i n if m→i n.

• m�i l if m�i n, n�i l.

Definition 3. Given abstract reduction system (A, {→i}i∈I), the convertibility rela-

tion =i is defined as the equivalence relation generated by →i:

7

• m =i n if m�i n.

• n =i m if m =i n.

• m =i l if m =i n, n =i l.

Definition 4. We say a is reducible if there is a b such that a →i b. So a is in

i-normal form if and only if a is not reducible. We say b is a normal form of a with

respect to →i if a�i b and b is not reducible. a and b are joinable if there is c such

that a�i c and b�i c. An abstract reduction system is strongly normalizing if there

are no infinite reduction path.

2.2 Lambda Encodings

We use x, y, z, s, n, x1, x2, ... to denote individual variable, t, t′, a, b, t1, t2, ... to

denote term, ≡ to denote syntactic equality. [t′/x]t to denote substituting the variable

x in t for t′. The syntax and reduction for lambda calculus is given as following.

Definition 5 (Lambda Calculus).

Term t ::= x | λx.t | t t′

Reduction (λx.t)t′ →β [t′/x]t

For example, (λx.x x)(λx.x x), λy.y are concrete terms in lambda calculus.

For a term λx.t, we call λ the binder, x is binded , called bind variable. If a variable

is not binded, we say it is a free variable. We will treat terms up to α-equivalence,

meaning, for any term t, one can always rename the binded variables in t. So for

example, λx.x x is the same as λy.y y, and λx.λy.x y is the same as λz.λx.z x.

(λx.λy.x y)((λz.z)z1) →β (λx.λy.x y)z1 →β λy.z1 y is a valid reduction sequence in

8

lambda calculus. Note that for reader’s convenient we underline the part we are going

to carry out the reduction(we will not do this again) and we call the underline term

redex. For a comprehensive introducton on lambda calculus, we refer to [5].

2.2.1 Church Encoding

Definition 6 (Church Numeral).

0 := λs.λz.z

S := λn.λs.λz.s(n s z)

So 1 := S 0 ≡ (λn.λs.λz.s(n s z))(λs.λz.z) →β λs.λz.s((λs.λz.z)s z) →β

λs.λz.s z. Note that the last part of above reductions occur underneath the lambda

abstractions. Similarly 2 := S (S 0)→∗β λs.λz.s s z.

Informally, we can interpret lambda term as both data and function, so instead

of thinking Church numeral 2 as data, one can think of it as a higher order function

h, which take in a function f and a data a as arguments, then apply the function

f to a two times. We define iterator It n f t := n f t. So It 0 f t =β t and

It (S u) f t =β f(It u f t). Then we can use iterator to define Plus n m := It n S m.

2.2.2 Scott Encoding

Definition 7 (Scott Numeral).

0 := λs.λz.z

S := λn.λs.λz.s n

We can see 1 := λs.λz.(s 0), 2 := λs.λz.(s 1). We are going to de-

fine a notion of recursor. We first give a version of the fix point operator Fix :=

9

λf.(λx.f (x x))(λx.f (x x)). The reason it is called fix point operator is when it

applied to a lambda expression, it give a fix point of that lambda expression(recall

informally each lambda expression is both data and function). So

Fix g →β (λx.g (x x))(λx.g (x x))→β g((λx.g (x x)) (λx.g (x x))) =β g (Fix g).

Now we can define recursor: Rec := Fix λr.λn.λf.λv.n (λm.f (r m f v) m) v. We

get Rec 0 f v�βv and Rec (S n) f v�βf (Rec n f v) n. In a similar fashion, one can

define Plus n m := Rec n (λx.λy.S x) m.

The predecessor function can be easily defined as Pred n := Rec n (λx.λy.y) 0.

It only takes constant time (w.r.t. the number of beta reduction steps) to calculate

the predessesor. But this function is tricky to define with Church encoding, one need

to first define recursor with iterator, then use recursor to define Pred. To calculate

Pred n with Church encoding, one has to perform at least n steps, so it takes linear

time [24].

2.2.3 Parigot Encoding

Definition 8 (Parigot Numeral).

0 := λs.λz.z

S := λn.λs.λz.s n (n s z)

Parigot encoding can be seen as a mixture of Church and Scott encoding, each

data contains its own subdata and it support a form of iteration similar to Church

encoding. For example, we can define Pred n := n (λx.λy.y) 0 and Plus n m :=

n (λx.S) m. We do not need full recursion to compute with Parigot numerals and we

can retrieve subdata in constant time.

10

2.3 Confluence

Definition 9. Given an abstract reduction system (A, {→i}i∈I), let→ denote
⋃
i∈I →i,

let = denote the equivalence relation generated by →.

• Confluence: For any a, b, c ∈ A, if a � b and a � c, then there exist d ∈ A

such that b� d and c� d.

• Church-Rosser: For any a, b ∈ A, if a = b, then there is a c ∈ A such that

a� c and b� c.

The two properties above can be expressed by following diagrams:

a

b
��

c

--

d
��

--

a = b

c
��

--

Lemma 1. An abstract reduction system R is confluent iff it is Church-Rosser.

Proof. Assume the same notation as defintion 9.

“⇐”: Assume R is Church-Rosser. For any a, b, c ∈ A, if a � b and a � c,

then this means b = c. By Church-Rosser, there is a d ∈ A, such that b � d and

c� d.

“⇒”: Assume R is Confluent. For any a, b ∈ A, if a = b, then we show there

is a c ∈ A such that a� c and b� c by induction on the generation of a = b:

If a� b⇒ a = b, then let c be b.

If b = a⇒ a = b, by induction, there is a c such that b� c and a� c.

11

If a = d, d = b ⇒ a = b, by induction there is a c1 such that a � c1 and

d � c1; there is a c2 such that d � c2 and b � c2. So now we get d � c1 and

d� c2, by confluence, we have a c such that c1 � c and c2 � c. So a� c1 � c and

b� c2 � c. This process is illustrated by the following diagram:

a = d = b

c1
��

--

c2
��

--

c
��

--

The definition of = depends on �, the definition of � depends on →, conflu-

ence is often easier to prove compare to Church-Rosser, in the sense that it is easier

to anaylze � compare to =. Now let us see some consequences of confluence.

Corollary 1. If R is confluent, then every element in A has at most one normal

form.

Proof. Assume a ∈ A, b, c are two diferent normal forms for a. So we have a � b

and a � c, by confluence, there exist a d such that b � d and c � d. But b, c are

normal form, this implies b and c are the same as d, which contradicts that they are

two different normal form.

Definition 10. For an abstract reduction system R, it is trivial if for any a, b ∈ A,

a = b.

Corollary 2. If R is confluent and there are at least two different normal forms,

then R is not trivial.

12

2.4 Tait-Martin Löf’s Method

We want to show lambda calculus as an abstract reduction system is confluent.

We present a method of proving confluence in abstract reduction system, which is

due to W. Tait and P. Martin-Löf(reported in [5]). Then we show how we can apply

this method to show lambda calculus is confluent.

Definition 11 (Diamond Property). Given an abstract reduction system (A, {→i

}i∈I), it has diamond property if:

For any a, b, c ∈ A, if a → b and a → c, then there exist d ∈ A such that

b→ d and c→ d.

a

b
�

c

-

d
�

-

Lemma 2. If R has diamond property, then it is confluent.

Proof. By simple diagam chasing suggested below:

a

c1
�

c2

-

e
�

d
�

-

b

-

c1
�

-

c2
�

-

c
�

-

13

Lemma 3. If exist some →i, →⊆→i⊆� and →i satisfies diamond property, then

→ is confluent.

Proof. Since →⊆→i⊆� implies �⊆ �i ⊆ �, so �i= �. And the diamond prop-

erty of →i implies →i is confluence, thus implies the confluence of →.

Sometimes → may not satisfy diamond property, then one can look for the

possibility to construct an intermediate reduction→i such that it has diamond prop-

erty. That is exactly what we will do for lambda calculus. Beta reduction itself

does not satsify diamond property, for example, (λx.((λu.u) v) ((λy.y y) z) →β

(λx.((λu.u) v)) (z z) and (λx.((λu.u) v) ((λy.y y) z)→β (λu.u) v. And one can not

join (λu.u) v and (λx.((λu.u) v)) (z z) in one step. But one can see they are still

joinable, but not joinable in one step. This leads to the notion of parallel reduciton.

Definition 12 (Parallel Reduction).

t⇒β t

t⇒β t
′

λx.t⇒β λx.t
′
t1 ⇒β t

′
1 t2 ⇒β t

′
2

t1t2 ⇒β t
′
1t
′
2

t1 ⇒β t
′
1 t2 ⇒β t

′
2

(λx.t1)t2 ⇒β [t′2/x]t′1

Intuitively, parallel reduction allows us to contract many beta redex(or not

contracting at all) in one step, under this notion of one step reduction, we can obtain

diamond property for ⇒β.

Lemma 4. If t1 ⇒β t
′
1 and t2 ⇒β t

′
2, then [t2/x]t1 ⇒β [t′2/x]t′1.

Proof. By induction on the derivation of t1 ⇒β t
′
1. We will not prove this here.

Lemma 5. ⇒β satisfies diamond property.

14

Proof. Assume t ⇒β t1 and t ⇒β t2, we need to show there exists a t3 such that

t1 ⇒β t3 and t2 ⇒β t3. We prove this by induction on the derivation of t⇒β t1.

• Case: t⇒β t

Simply let t3 be t.

• Case:

t′ ⇒β t
′′

λx.t′ ⇒β λx.t
′′

In this case t is of the form λx.t′, where t′ ⇒β t
′′; t1 is of the form λx.t′′. t2 must

be of the form λx.t′′′, where t′ ⇒β t
′′′. Thus by induction, we have a t′3 such that

t′′ ⇒β t
′
3 and t′′′ ⇒β t

′
3. Thus let t3 be λx.t′3, we get t1 ≡ λx.t′′ ⇒β λx.t

′
3 ≡ t3

and t2 ≡ λx.t′′′ ⇒β λx.t
′
3 ≡ t3.

• Case:

t4 ⇒β t
′
4 t5 ⇒β t

′
5

(λx.t4)t5 ⇒β [t′4/x]t′5

In this case t is of the form (λx.t4)t5, t1 is of the form [t′5/x]t′4, t4 ⇒β t
′
4 and

t5 ⇒β t
′
5.

If t2 is of the form (λx.t′′4)t′′5, where t4 ⇒β t
′′
4 and t5 ⇒β t

′′
5 . Thus by induction,

we have a t6 such that t′′5 ⇒β t6 and t′5 ⇒β t6. And same by induction, there

is a t7 such that t′′4 ⇒β t7 and t′4 ⇒β t7. Thus let t3 be [t6/x]t7, we get

t1 ≡ [t′5/x]t′4 ⇒β [t6/x]t7 ≡ t3(by lemma 4) and t2 ≡ (λx.t′′4)t′′5 ⇒β [t6/x]t7 ≡ t3.

If t2 is of the form [t′′5/x]t′′4, where t4 ⇒β t
′′
4 and t5 ⇒β t

′′
5 . Thus by induction,

we have a t6 such that t′′5 ⇒β t6 and t′5 ⇒β t6. And same by induction, there is

a t7 such that t′′4 ⇒β t7 and t′4 ⇒β t7. Thus let t3 be [t6/x]t7, by lemma 4, we

get t1 ≡ [t′5/x]t′4 ⇒β [t6/x]t7 ≡ t3 and t2 ≡ [t′′5/x]t′′4 ⇒β [t6/x]t7 ≡ t3.

15

• Case:

t4 ⇒β t
′
4 t5 ⇒β t

′
5

t4t5 ⇒β t
′
4t
′
5

Similar to the arguments above.

Lemma 6. →β⊆⇒β⊆�β.

Theorem 1. →β reduction is confluent.

Proof. By lemma 3, lemma 5 and lemma 6.

2.5 Hardin’s Interpretation Method

Sometimes it is inevitable to deal with reduction systems that contains more

than one reduction, for example, (Λ, {→β,→η}). Confluence problem for this kind

of system require some nontrivial efforts to prove. Hardin’s interpretion method [25]

provide a way to deal with some of those reduction systems.

Lemma 7 (Interpretation lemma). Let → be →1 ∪ →2, →1 being confluent and

strongly normalizing. We denote by ν(a) the →1-normal form of a. Suppose that

there is some relation →i on →1 normal forms satisfying:

→i⊆�, and a→2 b implies ν(a)�iν(b) (†)

Then the confluence of →i implies the confluence of →.

Proof. So suppose →i is confluent. If a�a′ and a�a′′. So by (†), ν(a)�iν(a′)

and ν(a)�iν(a′′). Notice that t→∗1t′ implies ν(t) = ν(t′)(By confluence and strong

16

normalizing of →1). By confluence of →i, there exists b such that ν(a′)�ib and

ν(a′′)�ib. Since →i,→1⊆�, we got a′�ν(a′)�b and a′′�ν(a′′)�b. Hence → is

confluent.

a

a′
��

ν(a)

1
??

a′′

--

ν(a′)
��

i1
--

ν(a′′)
��

1i
--

b
��

ii
--

Hardin’s method reduce the confluence problem of →1 ∪ →2 to →i, given the

confluence and strong normalizing of→1, this make it possible to apply Tait-Martin-

Löf’s method to prove confluence of →i.

17

CHAPTER 3

CONFLUENCE OF LAMBDA-MU CALCULUS

In this Chapter, we will investigate the confluence problem of extending lambda

calculus with local definitions, we called it λµ calculus, the µ represents the usual let-

rec binding availables in functional programming languages. It is desirable to know

the confluence property of λµ since it may be needed to prove type preservation for

the type systems based on λµ and it implies the equality reasoning is consistent. We

give the formulation of λµ first (Section 3.1). We discuss why traditional approaches

to confluence fail on λµ in Section 3.2. Finally, we show how to use interpretation

method to prove the confluence for a restrictive version of λµ calculus (we called it

local lambda-mu calculus) in Section 3.3.

3.1 Lambda-Mu Calculus

Definition 13 (Syntax).

Terms t ::= x | λx.t | tt′ | µt

Local Definitions/Closures µ ::= {xi 7→ ti}i∈I

Definition 14 (Free Variables).

FV(x) := x.

FV(λx.t) := FV(t)/x.

FV(t t′) := FV(t) ∪ FV(t′)

FV(µt) := (FV(t)− dom(µ)) ∪ FV(µ)

FV({xi 7→ ti}i∈I) := (
⋃
i∈I FV(ti))− {xi}i∈I

18

Definition 15 (Beta-Reductions). t→β t
′

(λx.t)t′ →β [t′/x]t
(xi 7→ ti) ∈ µ
µxi →β µti

t→β t
′

λx.t→β λx.t
′

t→β t
′′

tt′ →β t
′′t′

t′ →β t
′′

t t′ →β t t
′′

t→β t
′

µt→β µt
′

µ→β µ
′

µt→β µ
′t

Note that µ →β µ
′ is a shorthand for there is exactly one xi 7→ ti ∈ µ and

ti →β t
′
i, and µ′ is same as µ except xi 7→ t′i ∈ µ′. Similarly, we have shorthand for

µ→µ µ
′.

Definition 16 (Mu-Reductions). t→µ t
′

dom(µ)#FV(t)
µt→µ t µ(λx.t)→µ λx.µt µ(t1t2)→µ (µt1)(µt2)

t→µ t
′

λx.t→µ λx.t
′

t′ →µ t
′′

t t′ →µ t t
′′

t→µ t
′′

t t′ →µ t
′′ t′

t→µ t
′

µt→µ µt
′

µ→µ µ
′

µt→µ µ
′t

Mutual substitutions within the local definition is not possible in λµ, because

of Ariola and Klop [4]’s non-confluence example:

{δ 7→ λy.α(Sy), α 7→ λx.δ(Sx)}α→ {δ 7→ λy.δS(Sy), α 7→ λx.δ(Sx)}α

{δ 7→ λy.α(Sy), α 7→ λx.δ(Sx)}α→ {δ 7→ λy.α(Sy), α 7→ λx.αS(Sx)}α.

It seems natural to allow mutual substitutions. We consider mutal substitu-

tions overly eager. Because in the above non-confluence example, only α is being

used, namely, occurs in the body. So there is no need to reduce the α in the definiens

of the δ if one is “lazy” enough.

19

Another possible formulation of mu-reduction is (µt µt′) → µ(t t′) instead of

pushing µ inside of a term as we do. The potential drawback is in the case where

(µ(λx.t))t′, where there is no µ inside t′, it is now a stuck term. One could add

another rule to repair this situation: (µ(λx.t))t′ → µ([t′/x]t). Then one would need

another rule to deal with the case where (µ2µ1(λx.t))t′ etc.

3.2 A Fail Attempt to Prove Confluence of Lambda-Mu Calculus

We want to point out that directly applying Tait-Martin Löf’s method (Section

2.4, Chapter 2) will not work for lambda-mu calculus. For example, let⇒ be a direct

parallelization of →β and →µ. Then

µ((λx.x) t)⇒ µ′t′, where µ⇒ µ′, t⇒ t′.

µ((λx.x) t)⇒ (µ′(λx.x)) (µ′t), where µ⇒ µ′.

We can not bring back (µ′(λx.x)) (µ′t) and µ′t′ in one ⇒ step. Thus the ⇒ does not

have the diamond property.

Since we know that the→µ reduction is convergent, then we would hope to use

Hardin’s interpretation lemma to reduce the confluence proof of →β ∪ →µ to →βµ,

which is a reduction defined on mu-normal term, and then apply Tait-Martin Löf’s

method to show confluence of→βµ. We fail on the second step, namely, applying Tait-

Martin Löf’s method to show confluence of→βµ. We will introduce several definitions

before we discuss the reason we fail.

Lemma 8. →µ is strongly normalizing and confluent.

Proof. The number of µ-redex is decreasing by the →µ-reduction. We can use local

confluence to prove confluence.

20

Definition 17 (µ-Normal Forms).

Normal Term n ::= x | ~ρxi | λx.n | n n′, where xi ∈ dom(ρi).

Normal Local Definitions ρ ::= {xi 7→ ni}i∈I

We use ~µt to denote µ1...µnt, ~ρt denote ρ1...ρnt.

Definition 18 (µ-Normalize Funciton). We define function ν that maps a term to

its µ-normal form.

ν(x) := x ν(λy.t) := λy.ν(t)
ν(t1t2) := ν(t1)ν(t2) ν(~µy) := y if y /∈ dom(~µ).
ν(~µy) := ν(~µ)y if y ∈ dom(µi). ν(~µ(tt′)) := ν(~µt)ν(~µt′)
ν(~µ(λx.t)) := λx.ν(~µt). ν(x 7→ t, µ) := x 7→ ν(t), ν(µ).

Definition 19 (β Reduction on µ-normal Forms). n→βµ n
′

n→β t

n→βµ ν(t)

n→βµ n
′

λx.n→βµ λx.n
′

n′ →βµ n
′′

n n′ →βµ n n
′′

n→βµ n
′′

n n′ →βµ n
′′ n′

Intuitively, →βµ first →β reduce a term and then apply the ν function to the

contractum.

Definition 20 (Parallelization). n⇒βµ n
′

n⇒βµ n

(xi 7→ ni) ∈ ρi
~ρxi ⇒βµ ν(~ρni)

n1 ⇒βµ n
′
1 n2 ⇒βµ n

′
2

(λx.n1)n2 ⇒βµ ν([n′1/x]n′2)

n⇒βµ n
′

λx.n⇒βµ λx.n
′
n′ ⇒βµ n

′′′ n⇒βµ n
′′

n n′ ⇒βµ n
′′ n′′′

~ρ⇒βµ
~ρ′

~ρxi ⇒βµ
~ρ′xi

Note that ~ρ ⇒βµ
~ρ′ is a shorthand for for all ρi, and for all xi 7→ ni ∈ ρi, we

have ni ⇒βµ n
′
i, and ρ′i is consisted of xi 7→ n′i.

21

The next step would be to show ⇒βµ has diamond property so that we can

conclude the confluence of →βµ. However, ⇒βµ does not have the diamond property

due to the following counter-example:

Let µ denote {x 7→ (λy.y) z, z 7→ λq.q}.

{x 7→ (λy.y) z, z 7→ λq.q} x⇒βµ {x 7→ z, z 7→ λq.q} x

{x 7→ (λy.y) z, z 7→ λq.q} x⇒βµ (λy.µy) (µz).

We can not join (λy.µy) (µz) and {x 7→ z, z 7→ λq.q} x in one ⇒βµ step. So at this

point even though intuitive it seems like lambda-mu calculus is confluent, we have

not found an adequate proof yet.

3.3 Confluence of Local Lambda-Mu Calculus

In this section we are going to prove confluence of a restrictive version of

lambda-mu calculus, namely, local lambda-mu calculus. For local lambda-mu, given

{xi 7→ ti}i∈N t, we require for any 1 ≤ i ≤ n, the set of free variables of ti, FV(ti) ⊆

dom(µ) = {x1, ..., xn} and we do not allow reduction, definitional substitution, sub-

stitution inside the definitions.

Definition 21 (Beta-Reductions). t→β t
′

(λx.t)t′ →β [t′/x]t
(xi 7→ ti) ∈ µ
µxi →β µti

t→β t
′

λx.t→β λx.t
′

t→β t
′′

tt′ →β t
′′t′

t′ →β t
′′

tt′ →β tt
′′

t→β t
′

µt→β µt
′

Definition 22 (Mu-Reductions). t→µ t
′

22

dom(µ)#FV(t)
µt→µ t µ(λx.t)→µ λx.µt µ(t1t2)→µ (µt1)(µt2)

t→µ t
′

λx.t→µ λx.t
′

t′ →µ t
′′

tt′ →µ tt
′′

t→µ t
′′

tt′ →µ t
′′t′

t→µ t
′

µt→µ µt
′

Lemma 9. →µ is strongly normalizing and confluent.

Definition 23 (µ-Normal Forms).

n ::= x | µxi | λx.n | n n′

We require xi ∈ dom(µ).

Definition 24 (µ-Normalize Funciton).
ν(x) := x ν(λy.t) := λy.ν(t)
ν(t1t2) := ν(t1)ν(t2) ν(~µy) := y if y /∈ dom(~µ).
ν(~µy) := µiy if y ∈ dom(µi). ν(~µ(tt′)) := ν(~µt)ν(~µt′)
ν(~µ(λx.t)) := λx.ν(~µt).

Definition 25 (β Reduction on µ-normal Forms).

n→β t

n→βµ ν(t)

n→βµ n
′

λx.n→βµ λx.n
′

n′ →βµ n
′′

nn′ →βµ nn
′′

n→βµ n
′′

nn′ →βµ n
′′n′

Definition 26 (Parallelization).

n⇒βµ n

(xi 7→ ti) ∈ µ
µxi ⇒βµ ν(µti)

n1 ⇒βµ n
′
1 n2 ⇒βµ n

′
2

(λx.n1)n2 ⇒βµ ν([n′1/x]n′2)

n⇒βµ n
′

λx.n⇒βµ λx.n
′
n′ ⇒βµ n

′′′ n⇒βµ n
′′

nn′ ⇒βµ n
′′n′′′

Lemma 10. →βµ⊆⇒βµ⊆→∗βµ.

Lemma 11. If n2 ⇒βµ n
′
2, then ν([n2/x]n1)⇒βµ ν([n′2/x]n1).

Proof. By induction on the structure of n1.

Base Cases: n1 = x, n1 = µxi, Obvious.

23

Step Case: n1 = λy.n. We have ν(λy.[n2/x]n) ≡ λy.ν([n2/x]n)
IH⇒βµ λy.ν([n′2/x]n) ≡

ν(λy.[n′2/x]n).

Step Case: n1 = nn′. We have ν([n2/x]n[n2/x]n′) ≡ ν([n2/x]n)ν([n2/x]n′)
IH⇒βµ

ν([n′2/x]n)ν([n′2/x]n′) ≡ ν([n′2/x]n[n′2/x]n).

We use −̇→µ to denote zero or more µs.

Lemma 12. ν(ν(t)) ≡ ν(t) and ν([ν(t1)/y]ν(t2)) ≡ ν([t1/y]t2).

Proof. We only prove the second equality here. We identify t2 as −̇→µ1t
′
2, where t′2 does

not contains any closure at head position. We proceed by induction on the structure

of t′2:

Base Cases: For t′2 = x, we use ν(ν(t)) ≡ ν(t).

Step Cases: If t′2 = λx.t′′2, then

ν(−̇→µ1(λx.[t1/y]t′′2)) ≡ λx.ν(−̇→µ1([t1/y]t′′2)) ≡ λx.ν(−̇→µ1
−̇→µ2([t1/y]t′′′2)),

where t′′2 as −̇→µ2t
′′′
2 and t′′′2 does not have any closure at head position. Since t′′′2

is structurally smaller than λx.t′′2, by IH, ν(−̇→µ1
−̇→µ2([t1/y]t′′′2)) ≡ ν([t1/y](−̇→µ1

−̇→µ2t
′′′
2)) ≡

ν([ν(t1)/y]ν(−̇→µ1
−̇→µ2t
′′′
2)). Thus λx.ν(−̇→µ1

−̇→µ2([t1/y]t′′′2)) ≡ λx.ν([ν(t1)/y]ν(−̇→µ1
−̇→µ2t
′′′
2)). So

ν([t1/y]−̇→µ1(λx.t′′2)) ≡ ν([ν(t1)/y]ν(λx.−̇→µ1
−̇→µ2t
′′′
2)) ≡ ν([ν(t1)/y]ν(λx.−̇→µ1t

′′
2)) ≡

ν([ν(t1)/y]ν(−̇→µ1(λx.t′′2)))

For t′2 = tatb, we can argue similarly as above.

Lemma 13. If n1 ⇒βµ n
′
1 and n2 ⇒βµ n

′
2, then ν([n2/x]n1)⇒βµ ν([n′2/x]n′1).

24

Proof. We prove this by induction on the derivation of n1 ⇒βµ n
′
1.

• Base Case: n⇒βµ n

By the lemma 11.

• Base Case:

xi 7→ ti ∈ µ
µxi ⇒βµ ν(µti)

Because y /∈ FV(µxi) and µ is local.

• Step Case:

na ⇒βµ n
′
a nb ⇒βµ n

′
b

(λx.na)nb ⇒βµ ν([n′a/x]n′b)

We have ν((λx.[n2/y]na)[n2/y]nb) ≡ (λx.ν([n2/y]na))ν([n2/y]nb)

IH⇒βµ ν([ν([n′2/y]n′b)/x]ν([n′2/y]n′a)) ≡ ν([n′2/y]([n′b/x]n′a)). The last equality is

by lemma 12.

• Step Case:

n⇒βµ n
′

λx.n⇒βµ λx.n
′

We have ν(λx.[n2/y]n) ≡ λx.ν([n2/y]n)
IH⇒βµ λx.ν([n′2/y]n′) ≡ ν(λx.[n′2/y]n′)

• Step Case:

na ⇒βµ n
′
a nb ⇒βµ n

′
b

nanb ⇒βµ n
′
an
′
b

We have ν([n2/y]na[n2/y]nb) ≡ ν([n2/y]na)ν([n2/y]nb)

IH⇒βµ ν([n′2/y]n′a)ν([n′2/y]n′b) ≡ ν([n′2/y](n′an
′
b)).

Lemma 14 (Diamond Property). If n ⇒βµ n
′ and n ⇒βµ n

′′, then there exist n′′′

such that n′′ ⇒βµ n
′′′ and n′ ⇒βµ n

′′′. So →βµ is confluent.

Proof. By induction on the derivation of n⇒βµ n
′.

25

• Base Case: n⇒βµ n and µxi ⇒βµ ν(µti)

Obvious.

• Step Case:

n1 ⇒βµ n
′
1 n2 ⇒βµ n

′
2

(λx.n1)n2 ⇒βµ ν([n′1/x]n′2)

Suppose (λx.n1)n2 ⇒βµ (λx.n′′1)n′′2, where n1 ⇒βµ n
′′
1 and n2 ⇒βµ n

′′
2. By lemma

13 and IH, we have ν([n′1/x]n′2)⇒βµ ν([n′′′1 /x]n′′′2). We also have (λx.n′′1)n′′2 ⇒βµ

ν([n′′′1 /x]n′′′2), where n′′1 ⇒βµ n
′′′
1 and n′1 ⇒βµ n

′′′
1 and n′2 ⇒βµ n

′′′
2 and n′2 ⇒βµ n

′′′
2 .

Suppose (λx.n1)n2 ⇒βµ ν([n′′2/x]n′′1), where n1 ⇒βµ n′′1 and n2 ⇒βµ n′′2. By

lemma 13 and IH, we have ν([n′1/x]n′2)⇒βµ ν([n′′′1 /x]n′′′2) and ν([n′′1/x]n′′2)⇒βµ

ν([n′′′1 /x]n′′′2).

The other cases are either similar to the one above or easy.

One may also use Takahashi’s method [47] to prove the lemma above. We will

not explore that here.

Lemma 15. ν(~µ~µt) ≡ ν(~µt) and ν(~µ([t2/x]t1)) ≡ ν([~µt2/x]~µt1)

�

Lemma 16. If a→β b, then ν(a)→βµ ν(b).

Proof. We prove this by induction on the derivation(depth) of a→β b. We list a few

non-trial cases:

• Base Case:
(xi 7→ ti) ∈ µ
µxi →β µti

We have ν(µxi) ≡ µxi →βµ ν(µti).

26

• Base Case: (λx.t)t′ →β [t′/x]t

We have ν((λx.t)t′) ≡ (λx.ν(t))ν(t′)→βµ ν([ν(t)/x]ν(t′)) ≡ ν([t′/x]t).

• Step Case:

t→β t
′

λx.t→β λx.t
′

By IH, we have ν(λx.t) ≡ λx.ν(t)
IH→βµ λx.ν(t′) ≡ ν(λx.t′).

• Step Case:

t→β t
′

µt→β µt
′

We want to show ν(µt) →βµ ν(µt′). If dom(µ)#FV(t), then ν(µt) ≡ ν(t)
IH→βµ

ν(t′) ≡ ν(µt′). Of course, here we assume beta-reduction does not introduce

any new variable.

If dom(µ) ∩ FV(t) 6= ∅, then identify t as −̇→µ1t
′′, where t′′ does not contain any

closure at head position. We do case analyze on the structure of t′′:

– Case. t′′ = xi ∈ dom(−̇→µ1) or xi /∈ dom(−̇→µ1), these cases will not arise.

– Case. t′′ = λy.t1, then it must be that t′ = −̇→µ1(λy.t′1) where t1 →β t
′
1.

So we get µ−̇→µ1t1 →β µ
−̇→µ1t
′
1. By IH(depth of µ−̇→µ1t1 →β µ

−̇→µ1t
′
1 is smaller),

we have ν(µ−̇→µ1t1) →βµ ν(µ−̇→µ1t
′
1). Thus ν(µ−̇→µ1(λy.t1)) ≡ λy.ν(µ−̇→µ1t1) →βµ

λy.ν(µ−̇→µ1t
′
1) ≡ ν(µ−̇→µ1(λy.t′1)).

– Case. t′′ = t1t2 and t′ = −̇→µ1(t′1t2), where t1 →β t
′
1. We have µ−̇→µ1t1 →β

µ−̇→µ1t
′
1. By IH(depth of µ−̇→µ1t1 →β µ

−̇→µ1t
′
1 is smaller), ν(µ−̇→µ1t1)→βµ ν(µ−̇→µ1t

′
1).

Thus ν(µ−̇→µ1(t1t2)) ≡ ν(µ−̇→µ1t1)ν(µ−̇→µ1t2)→βµ ν(µ−̇→µ1t
′
1)ν(µ−̇→µ1t2) ≡ ν(µ−̇→µ1(t′1t2)).

For t′′ = t1t
′
2, where t2 →β t

′
2, we can argue similarly.

– Case. t′′ = (λy.t1)t2 and t′ = −̇→µ1([t2/y]t1). We have ν(µ−̇→µ1((λy.t1)t2)) ≡

27

(λy.ν(µ−̇→µ1t1)))ν(µ−̇→µ1t2)→βµ ν([ν(µ−̇→µ1t2)/y]ν(µ−̇→µ1t1)) ≡ ν([µ−̇→µ1t2/y]µ−̇→µ1t1) ≡

ν(µ−̇→µ1[t2/y]t1)(lemma 15).

Theorem 2. →β ∪ →µ is confluent.

Proof. We know by diamond property of⇒βµ,→βµ is confluent. Since→µ is strongly

normalizing and confluent, and by lemma 16 and Hardin’s interpretation lemma(lemma

7), we conclude →β ∪ →µ is confluent.

28

CHAPTER 4

AN ATTEMPT TO EXPRESSIVE TYPE THEORY THROUGH
INTERNALIZATION

This Chapter introduces the concept of internalization structure, which can be

used to incorporate certain relations into FΠ, a variant of system F, while maintaining

termination of the new system. We will call this process of incorporation internaliza-

tion, FΠ the base system and the new system after the incorporation the internalized

system. We first specify the syntax, and then the semantics of FΠ via the Tait-

Girard reducibility method (Section 4.2). We then define internalization structure

(Section 4.3). We show that we can obtain a terminating internalized system from

an internalization structure (Section 4.4). As motivating examples, we demonstrate

how our framework can be applied to internalize subtyping, full-beta term equality

and term-type inhabitation relations (Section 4.5). Finally, we discuss some of the

difficulties in Section 4.6.

4.1 Backgrounds

Type systems often incorporate auxiliary judgments in their typing relations.

For example, the subsumption rule for subtyping:

Γ ` t : T T <: T ′

Γ ` t : T ′
sub

Likewise, the conversion rule for type-equivalence:

29

Γ ` t : T T ≡ T ′

Γ ` t : T ′
conv

We propose a framework for incorporating the meta-level relations such as <: and

≡ as types in the type system, and shows that such extensions yield terminationing

systems under the call-by-name reduction. We call the deduction systems producing

auxiliary judgments metasystems, and refer to the typing rules that modify types

based such metasystem judgments as automatic conversion rules. We will also con-

sider cut-down type systems without automatic conversion rules, which are called base

systems. For instance, the subtyping and the type-equivalence derivation systems are

the metasystems, and rules sub and conv are the automatic conversion rules. We will

discuss an variant of System F, which is the base system for our extensions.

Type structure can be used to reflect metasystem judgments. Indeed this

has been done in several languages: equality sets in Martin-Löf type theory enable

reasoning about equality relations [38]; Sjöberg and Stump’s T vec uses types to reflect

call-by-value term equality in the presence of divergence [46], and the AuraConf

language uses proofs of type e isa t to indicate expression e may be cast to type

t [50].

4.2 The Base system FΠ

Internalization builds off of base system FΠ, a variant of system F.

Definition 27 (Syntax and Reductions).

Types T ::= B | X | Πx : T.T | ∀X.T

Terms t, u ::= axiom | x | (t t) | λx.t

30

Contexts C ::= · | C t

Values v ::= λx.t | axiom

Reductions C[(λx.t) t′] C[[t′/x]t]

Note that we use call-by-name reduction strategy.

Definition 28 (Kinding). Γ ` OK

· ` OK
Γ ` OK

Γ, X ` OK

Γ ` OK FVar(T) ⊆ dom(Γ)

Γ, x : T ` OK

FVar(T) means the set of free type variables and free term variables in type

T . dom(Γ) means the domain of the context, i.e., e ∈ dom(Γ) iff e is either a type

variable such that Γ ≡ Γ1, e,Γ2, or a term variable such that Γ ≡ Γ1, e : T,Γ2.

Definition 29 (Typing). Γ ` t : T
Γ, x : T1 ` t : T2

Γ ` λx.t : Πx : T1.T2
Π-intro

(x : T) ∈ Γ Γ ` OK

Γ ` x : T
Var

Γ ` t1 : Πx : T1.T2 Γ ` t2 : T1

Γ ` t1 t2 : [t2/x]T2
Π-elim

Γ, X ` t : T

Γ ` t : ∀X.T ∀-intro

Γ ` t : ∀X.T FVar(T ′) ⊆ dom(Γ)

Γ ` t : [T ′/X]T
∀-elim

The differences between F and FΠ are as follows:

1. FΠ is parametrized by a finite set B of constant types and it contains constant

terms like axiom. Later, we will use axiom to inhabit special types.

2. The notion of value is extended by including constant terms.

3. FΠ uses dependent product Π instead of arrow → as the function type con-

structor anticipating the use of types that mention terms.

31

A word about the use of call-by-name reduction is warranted. The main result

of this paper is normalization for systems derived by internalization from the base

system FΠ. Strong normalization does not hold for all such systems, as we show

by example in Section 4.5.1. So (weak) normalization is all that we can obtain.

An interesting result of our investigation into internalization is that normalization

with respect to call-by-name reduction imposes fewer requirements on internalization

structures than with call-by-value reduction. Specifically, the λ-abstraction case of

the proof of Theorem 3 goes through more directly using call-by-name reduction; with

call-by-value reduction, dependent typing imposes additional restrictions.

4.2.1 Interpretation of Types in FΠ

Reducibility is a well-known technique for proving the normalization of type

systems such as F. In this paper, we use it to interpret FΠ’s types. Reducibility will

both provide intuition for FΠ’s semantics and yield a normalization result.

Definition 30. A reducibility candidate R is a set of terms that satisfies the following

conditions:

CR 1 If t ∈ R,then t ∈ V, where V is the set of closed terms that that reduces to a

value.

CR 2 If t ∈ R and t t′, then t′ ∈ R.

CR 3 If t is a closed term, t t′ and t′ ∈ R, then t ∈ R.

Definition 31. Let R be the set of all reducibility candidates. Let TVar be the set of

all type variables. Let φ be a finite function with dom(φ) ⊆ TVar and range(φ) ⊆ R.

If dom(φ) = {X1, X2, ...Xn}, then we usually write φ as [R1/X1, ...Rn/Xn].

32

Definition 32 (Interpretation of Types).

t ∈ JBKφ iff t ∈ RB, where RB ∈ R.

t ∈ JXKφ iff t ∈ φ(X).

t ∈ JΠx : T1.T2Kφ iff t ∈ V and (∀u ∈ JT1Kφ ⇒ (t u) ∈ J[u/x]T2Kφ).

t ∈ J∀X.T Kφ iff ∀R ∈ R, t ∈ JT Kφ[R/X].

Note that constant types B and their interpretations RB are left unspecified;

these may be filled in later. For any JT Kφ, let FV(T) be the set of free type variable

in T .we assume FV(T) ⊆ dom(φ).

4.2.2 Type Soundness

The theorem below shows that any typable closed term is normalizing, and

can be shown in a standard way using Tait-Girard reducibility (cf. [24]). Several

properties of the interpretation of types are required, which can all be proved by

induction on the structure of types in FΠ.

Lemma 17. JT Kφ ∈ R, in the other words, the interpretation of a type is indeed a

reducibility candidate.

Definition 33. We define the set [Γ] of well-typed substitutions (σ, δ) w.r.t. Γ as

follows:
(∅, ∅) ∈ [.]

(σ, δ) ∈ [Γ] R ∈ R

(σ, δ ∪ {(X,R)}) ∈ [Γ, X]

(σ, δ) ∈ [Γ] t ∈ JσT Kδ
(σ ∪ {(x, t)}, δ) ∈ [Γ, x : T]

Theorem 3 (Type Soundness). If Γ ` t : T , then ∀(σ, δ) ∈ [Γ], (σ t) ∈ JσT Kδ.

4.3 Internalized Structure

An internalization structure is a triple (D,E, I). Reflective relational sen-

tences D define the syntax of metasystem propositions and identify valid metasystem

33

judgments. Elimination relation E defines automatic conversion rules based on judg-

ments from D. Finally, interpretation I defines semantics for reflective relational

sentences as relations over the sets of terms in the base system. All internalization

structures require that D and E are sound. As a central result of our work, we show

that any sound internalized system constructed from an internalization structure is

guaranteed to be terminating. Internalization is based on internalization structure.

The internalization structure contains the information of how to construct reflective

relational sentences and how these reflective relational sentences interact with the

base system. It also gives the meaning of the reflective relational sentences through

the interpretation of types in the base system. Once we obtain a sound internalization

structure, we can then begin the process of internalization by first incorporating the

reflective relational sentences as types, then add two new typing rules to deal with

these reflective relational sentences.

4.3.1 Reflective Relational Sentence-D

We define the kind of judgments or relations that could be integrated into the

base system. Essentially these are the relations on the terms and types from the base

system.

Definition 34. Let signature Σ ⊆ Symbols×N×N, where Symbols means a set of

relation symbols, and N is the set of natural numbers. Rn×m ∈ Σ means R ∈ Symbols

and the arity of R is n+m.

Definition 35. A relational sentence on the basic system is a syntactic object of form

R(n×m)(t1, ..., tn, T1, ..., Tm), where t, T are defined in FΠ and R(n×m) ∈ Σ.

34

Definition 36. Let A be the set of all relational sentences. A set of reflective rela-

tional sentences D is a subset of all relational sentences, i.e. D ⊆ A.

Reflective relational sentences are used to formalize a metasystem’s derivable

judgments. When we define specifically how to recognize the reflective relational

sentences from relational sentences, we obtain a kind of metasystem. This metasystem

need not be recursive.

4.3.2 Elimination Relation-E

An elimination relation is a syntactic constraint used to specify how the meta-

system influences the base system. We will appeal to an elimination relation when

we add the elimination rule to the base system for the reflective relational sentences.

Since the elimination relation is used after internalizing reflective relational sentences

as types, we need to extend the definition of types and the context accordingly.

Definition 37. We define extended types and extended contexts as follows:

RTypes A ::= R
(n×m)
1 (t1, ..., tn, T1, ..., Tm) | ... | R(n×m)

l (t1, ..., tn, T1, ..., Tm)

ETypes S ::= A | B | X | Πx : S.S | ∀X.S

EContext ∆ ::= · | ∆, x : S | ∆, X

Definition 38. We specify an elimination relation E by:

E ⊆ EContext×Terms×Terms× A× ETypes× ETypes.

For example, when we consider the specific internalization structure for sub-

typing below, we will define an elimination relation where (∆, t, t′, T < T ′, T, T ′) ∈ E

holds iff in extended context ∆, t has the type T , t′ has the type T < T ′, and we can

35

change the type of t to T ′.

4.3.3 Interpretation-I

We defined the interpretation of types of FΠ before. Since interpretation of

types is a set of terms and the reflective relational sentences are relations about

between terms and types in FΠ, it is natural to understand the meaning of these re-

flective relational sentences as set-theoretic relations between interpretation of types.

Take subtyping as an example; we interpret subtype judgment <: as the subset re-

lation ⊆ on interpretation of types1. Interpretation-I is defined to capture this in-

tuition. Later we will relate interpretation-I to reflective relational sentences and

elimination relation through two soundness properties.

Definition 39. Let R be the set of all reducibility candidates as defined in FΠ. We

define an interpretation of R(n×m)–IR(n×m) to be IR(n×m) ⊆ Termsn ×Rm.

4.3.4 Soundness Properties

Now that we have defined all parts of an internalization structure, we can

formulate two soundness properties for an internalization structure. Since one of the

soundness properties is related to the extended types, we first define the interpretation

for extended types. Then we identify the soundness properties.

Definition 40. Let φ be an environment function w.r.t. type S, which is defined in

the same way as definition 31 except we extend it to type S. Let A be the set of closed

terms that normalize at axiom. The interpretation of types JSKφ is defined inductively

1This is also observed by [44]

36

as follows:

• t ∈ JBKφ iff t ∈ RB.

• t ∈ JR(n×m)(t1, ..., tn, T1, ..., Tm)Kφ iff t ∈ A and (t1, ..., tn, JT1Kφ, ..., JTmKφ) ∈

IR(n×m).

• t ∈ JXKφ iff t ∈ φ(X).

• t ∈ JΠx : S1.S2Kφ iff t ∈ V and (∀u ∈ JS1Kφ ⇒ (t u) ∈ J[u/x]S2Kφ).

• t ∈ J∀X.SKφ iff ∀R ∈ R, t ∈ JSKφ[R/X].

We define (σ, δ) ∈ [∆] in the same way as (σ, δ) ∈ [Γ], except with extended

contexts and extended types.

Definition 41. We say a tuple 〈D,E, I〉 is an internalization structure iff it satisfies

the following soundness properties:

Soundness of reflective relational sentences:

If R(n×m)(t1, ..., tn, T1, ..., Tm) ∈ D, then ∀φ, σ, (σt1, ..., σtn, JσT1Kφ, ..., JσTmKφ) ∈ IR(n×m).

Soundness of the elimination relation:

Suppose (∆, t, t′, R(n×m)(t1, ..., tn, T1, ..., Tm), S, S ′) ∈ E, (σ, δ) ∈ [∆], σ(t) ∈ JσSKδ

and R(n×m)(t1, ..., tn, T1, ..., Tm) ∈ D. Then σ(t) ∈ JσS ′Kδ.

Soundness of reflective relational sentences means that the reflective relational

sentences are a conservative approximation of interpretation-I. Soundness of the

elimination relation will imply that the elimination rule for internalized systems re-

37

spects the Girard-Tait type interpretation and is semantically compatible with sub-

stitutions that arise duing CBN evaluation.

4.4 Internalized System

We have defined the internalization structure–(D,E, I). Using an internaliza-

tion structure, we can construct a new system–we call it the internalized system–from

the internalization structure and FΠ. The term syntax and operational semantics of

internalized system are the same as FΠ, while the syntax of types and contexts are the

RTypes,ETypes,EContexts in definition 37. The well-formed extended context

∆ ` OK is defined just as before except using EContexts.

Definition 42. ∆ ` t : S

A ∈ D FVar(A) ⊆ dom(∆) ∆ ` OK

∆ ` axiom : A
A-intro

∆(x) = S ∆ ` OK

∆ ` x : S
Var

∆ ` t : T ∆ ` t′ : A E(∆, t, t′, A, T, T ′)

∆ ` t : T ′
A-elim

∆, x : S1 ` t : S2

∆ ` λx.t : Πx : S1.S2
Π intro

∆ ` t1 : Πx : S1.S2 ∆ ` t2 : S1

∆ ` t1 t2 : [t2/x]S2
Π elim

∆, X ` t : S

∆ ` t : ∀X.S ∀ intro

∆ ` t : ∀X.S [S ′/X]S ∈ ETypes FVar(S ′) ⊆ dom(∆)

∆ ` t : [S ′/X]S
∀ elim

We can see that the new type assignment system contains two new rules:A-

38

intro and A-elim. The A-intro rule is used to introduce reflective relational sentences

as types in the internalized system, while the A-elim rule is for using the reflective

relational sentences to change the type of a term accordingly. The theorem below

guarantees that the internalized system generated from FΠ and internalization struc-

ture is terminating, which is the central result of internalization.

Theorem 4 (Type Soundness). If (D,E, I) is an internalization structure and ∆ `

t : S, then ∀(σ, δ) ∈ [∆], (σ t) ∈ JσSKδ.

Corollary 3. If · ` t : S, then t ∈ V.

Because typing contexts may introduce spurious assumptions, some open con-

texts may assign a type to a diverging term. Section 4.5.1 shows gives an example.

This is an expected outcome of reasoning from invalid premises. Indeed Corollary 3

may be strengthened to allow contexts where all variables are classified by inhabited

types.

4.5 Examples

In previous section, we capsule our development of internalized system as

constructing a sound internalization structure. Now let us see how we can apply

our formalization of internalization to internalize subtyping, full-beta term equality

and term-type inhabitation relations as types. First, we specify an instance of FΠ.

Namely, we instantiate constant types as B ::= > | ⊥. Additionally, we define

J⊥Kφ := ∅, J>Kφ := V .

Recall that internalization works as follows. We first define the set of reflec-

39

tive relational sentences that contains all the derivable judgments from subtyping,

full-beta term equality and term-type inhabitation. Then we define the elimination

relation and interpretation. We show our definition interpretation structure is sound.

Finally we present the internalized system as the result of internalization. We will

follow this recipe in the sequel.

4.5.1 Subtyping

We need to instantiate the three parts of internalization structure-〈D,E, I〉.

First, we specify Σ := {<0+2}. Then we know all the reflective relational sentences

should be in the form T1 < T2. We identify reflective relational sentences D as follows:

Definition 43. T < T ′ ∈ D

T < > ∈ D ⊥ < T ∈ D X < X ∈ D

T1 < T2 ∈ D
∀X.T1 < ∀X.T2 ∈ D

T ′1 < T1 ∈ D T2 < T ′2 ∈ D
Πx : T1.T2 < Πx : T ′1.T

′
2 ∈ D

We can see that the way we identify D is similar to the way we write subtyping

rules. Now we define (∆, t, t′, T < T ′, T, T ′) ∈ E. The meaning of this elimination

relation is that if t has type T in context ∆ and t′ has type T < T ′, then t can also

has the type T ′. We define: I< := {(R1,R2) |R1 ⊆ R2}. We can see that I< capture

all the subset relations on reducibility candidates. The following two lemmas make

sure we obtain a sound internalization structure from (D,E, I<) we defined above.

Lemma 18 (Soundness of the Reflective Relational Sentence). If (T < T ′) ∈ D, then

∀σ, ∀φ, (JσT Kφ, JσT ′Kφ) ∈ I<.

40

Proof. Since JσT Kφ = JT Kφ, we just need to show: If (T < T ′) ∈ D, then ∀φ, (JT Kφ, JT ′Kφ) ∈

I<. We will prove this by induction on the structure of T .

• Case: T = > or T = ⊥

By inversion, it holds.

• Case: T = X

By inversion, we know T ′ = X or >, again, it is the case.

• Case: T = Πx : T1.T2

By inversion, T ′ = > or T ′ = Πx : T ′1.T
′
2. Let us consider T ′ = Πx : T ′1.T

′
2.

In this case, by inversion, T ′1 < T1 ∈ D,T2 < T ′2 ∈ D. By IH, we have

JT ′1Kφ ⊆ JT1Kφ. Again, by IH, we have JT2Kφ ⊆ JT ′2Kφ. For any u ∈ JT ′1Kφ ⊆

JT1Kφ, if t ∈ JΠx : T1.T2Kφ, we have tu ∈ J[u/x]T2Kφ = JT2Kφ ⊆ JT ′2Kφ. So

t ∈ JΠx : T ′1.T
′
2Kφ.

• Case: T = ∀X.T

By inversion, T ′ = > or ∀X.T ′. So let’s consider T ′ = ∀X.T ′. By inversion, we

know T < T ′ ∈ D. We know for t ∈ J∀X.T Kφ, ∀R ∈ R, t ∈ JT Kφ[R/X]. By IH,

JT Kφ[R/X] ⊆ JT ′Kφ[R/X]. So t ∈ J∀X.T ′Kφ.

Lemma 19 (Soundness of the Elimination Relation). If (∆, t, t′, T1 < T2, T1, T2) ∈ E,

(σ, δ) ∈ [∆] and σ(t) ∈ JσT1Kδ = JT1Kδ and T1 < T2 ∈ D, then σ(t) ∈ JσT2Kδ = JT2Kδ.

41

The subtyping setting also provides an example that it is possible to have

diverging term under open terms and full-beta reduction in internalized system. It

is possible to derive y : (> < (> → >)) ` (λx.xx)(λx.xx) : > using the underivable

fact > < (> → >) and derivable (> → >) < > to establish an isomorphism between

types > and > → >. Sticking to closed terms means we need not worry about this

derivation directly. And call-by-name evaluation ensures that · ` λy.(λx.xx)(λx.xx) :

(> < (> → >))→ > does not reduce. In contrast, full reduction would loop.

4.5.2 Term Equality and Term-Type Inhabitation

We can go even further to explore the internalization structure. We add two

more relation symbols to signature so that Σ = {↓(2+0), <(0+2), /(1+1)}. For simplicity,

we usually do not specify the arity. Thus the relational sentences have form: t1 ↓

t2, T1 < T2, and t / T for base-system t and T .

Now we are ready to specify more reflective relational sentences. We define /

reflective relational sentences by the following condition:

t / T ∈ D iff ∀φ, t ∈ JT Kφ

Notice that this definition is not algorithmic, which is fine since our framework does

not require decidability for the set D for reflective relational sentences.

The / symbol allows us to give “morally correct” types to terms which cannot

otherwise be checked. In practice, such terms are created when extracting compu-

tational content from mechanically checked proofs. As a concrete example, the Coq

proof assistant uses an expressive language to define functional programs and exports

42

that code to OCaml for efficient compilation. Resulting OCaml programs do not go

wrong, but must use Obj.magic:α→ β to pass ML’s weaker type system. Likewise,

AuraConf [50] uses a type constructor resembling / to inform the type checker about

the concealed types of opaque ciphertexts. Note that weaker variants of / may be

possible when, as in the case of extracted proofs, there is a conservative procedure for

checking semantic type inclusion, t /alt T ∈ D iff Oracle(t ,T). (We do not consider

such variants further.)

We define t1 ↓ t2 ∈ D by the following rules:

Definition 44. t ↓ t′ ∈ D

t ↓ t ∈ D (λx.t)t′ ↓ [t′/x]t ∈ D
t1 ↓ t2 ∈ D

t1 t ↓ t2 t ∈ D

t1 ↓ t2 ∈ D
λx.t1 ↓ λx.t2 ∈ D

t1 ↓ t2 ∈ D
t t1 ↓ t t2 ∈ D

t1 ↓ t2 ∈ D t2 ↓ t3 ∈ D
t1 ↓ t3 ∈ D

t1 ↓ t2 ∈ D
t2 ↓ t1 ∈ D

The rules above are the same as how we define the conversion in lambda

calculus. In this case, the syntax of extended types (as defined by the internalization

framework) is:

EType S ::= > | ⊥ | X | Πx : S.S | ∀X.S | t1 ↓ t2 | T1 < T2 | t / T

The additional elimination relations are:

(∆, t, t′, t1 ↓ t2, [t1/x](t3 ↓ t4), [t2/x](t3 ↓ t4)) ∈ E.

(∆, t, t′, t / T ′, T, T ′) ∈ E

The additional interpretations I↓, I/ are:

• I↓ ⊆ Terms×Terms defined by I↓ := {(t1, t2) | t1 ↓ t2 ∈ D}.

43

• I/ ⊆ Terms×R defined by I/ := {(t,R) | t ∈ R}.

We have now defined the three parts of the internalization structure. We need

to show that this structure is sound. For that purpose, we have following lemmas.

Lemma 20 (Soundness of the Reflective Relational Sentence).

• If (t1 ↓ t2) ∈ D, then ∀σ, (σt1, σt2) ∈ I↓.

• If (t / T) ∈ D, then ∀σ,∀φ, (σt, JσT Kφ) ∈ I/.

Proof. If (t1 ↓ t2) ∈ D, we have ∀σ, (σt1, σt2) ∈ D. This is because we define the t ↓ t′

relation same as the conversion in lambda calculus and this is one of its properties.

Thus (σt1, σt2) ∈ I↓ by definition of I↓.

If (t / T) ∈ D, by definition, we have ∀φ, t ∈ JT Kφ. Since t is closed, ∀σ, σt ≡ t. And

we have JσT Kφ = JT Kφ. So ∀φ,∀σ, σt ∈ JσT Kφ. Thus ∀σ, ∀φ, (σt, JσT Kφ) ∈ I/.

Lemma 21 (Soundness of the Elimination Relation).

• If (∆, t, t′, t1 ↓ t2, [t1/x](t3 ↓ t4), [t2/x](t3 ↓ t4)) ∈ E, (σ, δ) ∈ [∆] and σ(t) ∈

Jσ[t1/x](t3 ↓ t4)Kδ and t1 ↓ t2 ∈ D, then σ(t) ∈ Jσ[t2/x](t3 ↓ t4)Kδ.

• If (∆, t, t′, t / T ′, T, T ′) ∈ E, (σ, δ) ∈ [∆] and σ(t) ∈ JσT Kδ and t / T ′ ∈ D, then

σ(t) ∈ JσT ′Kδ.

Proof. We have σ(t) ∈ Jσ[t1/x](t3 ↓ t4)Kδ, thus σ(t) ∈ A and (σ[t1/x]t3) ↓ (σ[t1/x]t4) ∈

D. Since t1 ↓ t2 ∈ D, then we have (σ[t2/x]t3) ↓ (σ[t2/x]t4) ∈ D. This is also followed

by the property of t ↓ t′. So σ(t) ∈ Jσ[t2/x](t3 ↓ t4)Kδ.

44

By soundness of reflective relational sentences, t / T ′ ∈ D implies ∀φ, σt = t ∈ JT ′Kφ.

So it is the case.

So the structure (D,E, I<, I↓, I/) we have defined is a sound internalization

structure. Let us see some instances of A-elim rule and A-intro rule for the internal-

ized system based on this internalization structure:

t1 ↓ t2 ∈ D FVar(t1 ↓ t2) ⊆ dom(∆) ∆ ` OK

∆ ` axiom : t1 ↓ t2 A-intro

∆ ` t : [t1/x](t3 ↓ t4) ∆ ` t′ : t1 ↓ t2
∆ ` t : [t2/x](t3 ↓ t4)

A-elim

t / T ′ ∈ D FVar(t / T ′) ⊆ dom(∆) ∆ ` OK

∆ ` axiom : t / T ′
A-intro

∆ ` t : T ∆ ` t′ : t / T ′
∆ ` t : T ′

A-elim

We can see that our elimination rule for ↓ realizes a more general form of transitivity.

For example, if we have a term with a type [t2/y](t1 ↓ y) and t2 ↓ t3 ∈ D, then we

can assign this term a new type [t3/y](t1 ↓ y) by the elimination rule.

4.6 Summary

We have formalized the notion of internalization structure and demonstrated

that the internalized system is terminating. We also have shown how our formaliza-

tion can be applied to full-beta term equality, subtyping and term-type inhabitation

relation. Our approach makes it easier to establish normalization for type theo-

ries with these features, since the framework provides the analysis for all but the

internalization-specific parts of the language.

45

In retrospective, the difficulty of this approach is that, with internalization,

the type system has the ability to make inconsistent assumption using the internal-

ized relation such as /,<, ↓, which will falsify the type preservation property. For

example, assuming we manage to internalize a form of type equivalence that we can

automatically convert one type to another, and suppose a : A→ B ≡ A→ C, d : A `

t : A → B. Then we can have a : A → B ≡ A → C, d : A ` t d : B and a : A →

B ≡ A→ C, d : A ` t d : C due to automatic conversion. But we know that B,C are

not unifiable. Thus we have a counterexample for type preservation2. This counter

example will not arise if we adopt the Leibniz equality, namely, we define T ≡ T ′ as

∀P.P (T) → P (T ′). Then we would have a : A → B ≡ A → C, d : A ` t d : B and

a : A→ B ≡ A→ C, d : A ` (a t) d : C, which is entirely legal and type preservation

still hold. This sequence of development suggests that we should at least be careful

when we try to “lift” propositional equivalence ↔ to meta-level equivalence ≡. We

will discuss Leibniz equality more in Chapter 6.

2This counterexample is found by the Upenn group.

46

CHAPTER 5

LAMBDA ENCODINGS WITH DEPENDENT TYPES

In this Chapter, we revisit lambda encodings of data, proposing new solutions

to several old problems, in particular dependent elimination with lambda encodings

(Section 5.2). We start with a type-assignment form of the Calculus of Constructions,

restricted recursive definitions and Miquel’s implicit product. We add a type construct

ιx.T , called a self type, which allows T to refer to the subject of typing (Section 5.3).

We show how the resulting System S with this novel form of dependency supports

dependent elimination with lambda encodings, including induction principles (Section

5.4). Strong normalization of S is established by defining an erasure from S to a

version of Fω with positive recursive type definitions, which we analyze (Section 5.5).

We also prove type preservation for S.

5.1 Introduction

Modern type-theoretic tools Coq and Agda extend a typed lambda calculus

with a rich notion of primitive datatypes. Both tools build on established founda-

tional concepts, but the interactions of these, particularly with datatypes and recur-

sion, often leads to unexpected problems. For example, it is well-known that type

preservation does not hold in Coq, due to the treatment of coinductive types [22].

Arbitrary nesting of coinductive and inductive types is not supported by the current

version of Agda, leading to new proposals like co-patterns [2]. And new issues are dis-

covered with disturbing frequency; e.g., an unexpected incompatibility of extensional

47

consequences of Homotopy Type Theory with both Coq and Agda was discovered in

December, 2013 [45].

The above issues all are related to the datatype system, which must determine

what are the legal inductive/coinductive datatypes, in the presence of indexing, de-

pendency, and generalized induction (allowing functional arguments to constructors).

And for formal study of the type theory – either on paper [52], or in a proof assis-

tant [7] – one must formalize the datatype system, which can be daunting, even in

very capable hands (cf. Section 2 of [9]).

Fortunately, an alternative to primitive datatypes exists: lambda encodings,

like the well-known Church and Scott encodings [12, 16]. Utilizing the core typed

lambda calculus for representing data means that no datatype system is needed at

all, greatly simplifying the formal theory. We focus here just on inductive types, since

in extensions of System F, coinductive types can be reduced to inductive ones [20].

Several problems historically prevented lambda encodings from being adopted

in practical type theories. Scott encodings are efficient but do not inherently provide

a form of iteration or recursion. Church encodings inherently provide iteration, and

are typable in System F. Due to strong normalization of System F [23], they are thus

suitable for use in a total (impredicative) type theory, but:

1. The predecessor of n takes O(n) time to compute instead of constant time.

2. We cannot prove 0 6= 1 with the usual definition of 6=.

3. Induction is not derivable [21].

48

4. Large eliminations (computing types from data) are not supported.

These issues motivated the development of the Calculus of Inductive Constructions

(cf. [51]). Problem (1) is best known but has a surprisingly underappreciated solution:

if we accept positive recursive definitions (which preserve normalization), then we

can use Parigot numerals, which are like Church numerals but based on recursors

not iterators [40]. Normal forms of Parigot numerals are exponential in size, but a

reasonable term-graph implementation should be able to keep them linear via sharing.

The other three problems have remained unsolved.

In this Chapter, we propose solutions to problems (2) and (3). For problem (2)

we propose to change the definition of falsehood from explosion (∀X.X, everything

is true) to equational inconsistency (∀X.Πx : X.Πy : X.x =X y, everything is equal

for any type). We point out that 0 6= 1 is derivable with this notion. Our main

contribution is for problem (3). We adapt CC to support dependent elimination

with Church or Parigot encodings, using a novel type construct called self types,

ιx.T , to express dependency of a type on its subject. This allows deriving induction

principles in a total type theory, and we believe it is the missing piece of the puzzle

for dependent typing of pure lambda calculus. For problem (4), we suspect it would

be hard to extend self type to support large elimination, that would mean we would

have to surport impredicative kind polymorphism, which is known to render Girard’s

paradox.

We summarize the main technical points:

• System S, which enables us to encode Church and Parigot data and derive

49

induction principles for these data.

• We prove strong normalization of S by erasure to a version of Fω with positive

recursive type definitions. We prove strong normalization of this version of Fω

by adapting a standard argument.

• Type preservation for S is proved by extending Barendregt’s method [6] to

handle implicit products and making use of a confluence argument.

Detailed arguments omitted here may be found in [18].

5.2 Overview of System S

System S extends a type-assignment formulation of the Calculus of Construc-

tions (CC) [15]. We allow global recursive definitions in a form we call a closure:

{(xi : Si) 7→ ti}i∈N ∪ {(Xi : κi) 7→ Ti}i∈M The xi are term variables which cannot

appear in the terms ti, but can appear in the types Ti. Occurrences in types are used

to express dependency, and are crucial for our approach. Erasure to Fω with positive

recursive definitions will drop all such occurrences. The Xi are type variables that

can appear positively in the Ti or at erased positions (explained later).

The essential new construct is the self type ιx.T . Note that this is different

from self typing in the object-oriented (OO) literature, where the central problem has

been to allow self-application while still validating natural record-subtyping rules [39,

1]. Typing the self parameter of an object’s methods appears different from allowing

a type to refer to its subject, though Hickey proposes a type-theoretic encoding of

objects based on very dependent function types {f |x : A → B}, where the range

50

B can depend on both x and values of the function f itself [27]. The self types we

propose appear to be simpler.

5.2.1 Induction Principle

Let us take a closer look at the difficulties of deriving an induction principle

for Church numerals in CC, and then consider our solutions. In CC à la Curry, let

Nat := ∀X.(X → X) → X → X. One can obtain a notion of indexed iterator by

It := λx.λf.λa.x f a and It : ∀X.Πx : Nat.(X → X) → X → X. Thus we have

It n̄ =β λf.λa.n̄ f a =β λf.λa. f(f(f...(f︸ ︷︷ ︸
n

a)...)). One may want to know if we can

obtain a finer version, namely, the induction principle-Ind such that:

Ind : ∀P : Nat→ ∗.Πx : Nat.(Πy : Nat.(Py → P (Sy)))→ P 0̄→ P x

Let us try to construct such Ind. First observe the following beta-equalities and

typings:

Ind 0̄ =β λf.λa.a

Ind 0̄ : (Πy : Nat.(Py → P (Sy)))→ P 0̄→ P 0̄

Ind n̄ =β λf.λa. f n− 1(...f 1̄ (f︸ ︷︷ ︸
n>0

0̄ a))

Ind n̄ : (Πy : Nat.(Py → P (Sy)))→ P 0̄→ P n̄

with f : Πy : Nat.(Py → P (Sy)), a : P 0̄

These equalities suggest that Ind := λx.λf.λa.x f a, using Parigot numerals [40]:

0̄ := λs.λz.z

n̄ := λs.λz.s n− 1 (n− 1 s z)

Each numeral corresponds to its terminating recursor.

Now, let us try to type these lambda numerals. It is reasonable to assign

51

s : Πy : Nat.(P y → P (S y)) and z : P 0̄. Thus we have the following typing

relations:

0̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P 0̄

1̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P 1̄

n̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄

So we want to define Nat to be something like:

∀P : Nat→ ∗.Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄ for any n̄.

Two problems arise with this scheme of encoding. The first problem involves recur-

siveness. The definiens of Nat contains Nat and S, 0̄, while the type of S is Nat→ Nat

and the type of 0̄ is Nat. So the typing of Nat will be mutually recursive. Observe

that the recursive occurrences of Nat are all at the type-annotated positions; i.e., the

right side of the “:”.

Note that the subdata of n̄ is responsible for one recursive occurrence of Nat,

namely, Πy : Nat. If one never computes with the subdata, then these numerals will

behave just like Church numerals. This inspires us to use Miquel’s implicit product

[36]. In this case, we want to redefine Nat to be something like:

∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P n̄ for any n̄.

Here ∀y : Nat is the implicit product. Now our notion of numerals are exactly Church

numerals instead of Parigot numerals. Even better, this definition of Nat can be

erased to Fω. Since Fω’s types do not have dependency on terms, P : Nat → ∗ will

get erased to P : ∗. It is known that one can also erase the implicit product [3]. The

erasure of Nat will be ∀P : ∗.(P → P) → P → P , which is the definition of Nat in

52

Fω.

The second problem is about quantification. We want to define a type Nat for

any n̄, but right now what we really have is one Nat for each numeral n̄. We solve

this problem by introducing a new type construct ιx.T called a self type. This allows

us to make this definition (for Church-encoded naturals):

Nat := ιx.∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P x

We require that the self type can only be instantiated/generalized by its own

subject, so we add the following two rules:

Γ ` t : [t/x]T

Γ ` t : ιx.T
selfGen

Γ ` t : ιx.T
Γ ` t : [t/x]T

selfInst

We have the following inferences1:

n̄ : ∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P n̄

n̄ : ιx.∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P x

5.2.2 The Notion of Contradiction

In CC à la Curry, it is customary to use ∀X : ∗.X as the notion of contradic-

tion, since an inhabitant of the type ∀X : ∗.X will inhabit any type, so the law of

explosion is subsumed by the type ∀X : ∗.X. However, this notion of contradiction

is too strong to be useful. Let t =A t
′ denote ∀C : A → ∗.C t → C t′ with t, t′ : A.

Then 0 =Nat 1 can be expanded to ∀C : Nat → ∗.C 0 → C 1 (0 is Leibniz equals

to 1). One can not derive a proof for (∀C : Nat → ∗.C 0 → C 1) → ∀X : ∗.X,

because the erasure of (∀C : Nat→ ∗.C 0→ C 1)→ ∀X : ∗.X in System F would be

(∀C : ∗.C → C) → ∀X : ∗.X, and we know that ∀C : ∗.C → C is inhabited. So the

1The double bar means that the converse of the inference also holds.

53

inhabitation of (∀C : Nat → ∗.C 0 → C 1) → ∀X : ∗.X will imply the inhabitation

of ∀X : ∗.X in System F, which does not hold. If we take Leibniz equality and use

∀X : ∗.X as contradiction, then we can not prove any negative results about equality.

On the other hand, an equational theory is considered inconsistent if a = b for

all term a and b. So we propose to use ∀A : ∗.Πx : A.Πy : A.x =A y as the notion of

contradiction in CC. We first want to make sure it is uninhabited. The way to argue

that is first assume it is inhabited by t. Since CC is strongly normalizing, the normal

form of t must be of the form2 [λA : ∗.]λx[: A].λy[: A].[λC : A → ∗].λz[: C x].n for

some normal term n with type C y, but we know that there is no combination of x, y, z

to make a term of type C y. So the type ∀A : ∗.Πx : A.Πy : A.∀C : A→ ∗.Cx→ Cy

is uninhabited. We can then prove the following theorem.

Theorem 5. 0 = 1→ ⊥ is inhabited in CC, where ⊥ := ∀A : ∗.Πx : A.Πy : A.∀C :

A→ ∗.C x→ C y, 0 := λs.λz.z, 1 := λs.λz.s z.

Proof. Assume Nat := ∀B : ∗.(B → B)→ B → B. Let Γ = a : (∀D : Nat→ ∗.D0→

D1), A : ∗, x : A, y : A,C : A → ∗, c : C x. We want to construct a term of type

C y. Let F := λn[: Nat].n [A] (λq[: A].y)x. Note that F : Nat → A. We know that

F0 =β x and F1 =β y. So we can indeed convert the type of c from Cx to C (F0).

And then we instantiate the D in ∀D : Nat→ ∗.D0→ D1 with λx[: Nat].C (Fx). So

we have C (F0) → C (F1) as the type of a. So a c : C(F1), which means a c : Cy.

So we just show how to inhabit 0 = 1→ ⊥ in CC.

2We use square brackets [] to show annotations that are not present in the inhabiting
lambda term in Curry-style System F.

54

Once ⊥ is derived, one can not distinguish the domain of individuals. Note

that this notion of contradiction does not subsume law of explosion.

5.3 System S

Definition 45 (Syntax).

Terms t ::= x | λx.t | tt′

Types T ::= X | ∀X : κ.T | Πx : T1.T2 | ∀x : T1.T2 | ιx.T | T t | λX.T | λx.T | T1T2

Kinds κ ::= ∗ | Πx : T.κ | ΠX : κ′.κ

Context Γ ::= · | Γ, x : T | Γ, X : κ | Γ, µ

Closure µ ::= {(xi : Si) 7→ ti}i∈N ∪ {(Xi : κi) 7→ Ti}i∈M

Closures. For {(xi : Si) 7→ ti}i∈N , we mean the term variable xi of type Si is

defined to be ti for some i ∈ N ; similarly for {(Xi : κi) 7→ Ti}i∈M .

Legal positions for recursion in closures. For {(xi : Si) 7→ ti}i∈N , we

do not allow any recursive (or mutually recursive) definitions. For {(Xi : κi) 7→

Ti}i∈M , we only allow singly recursive type definitions, but not mutually recursive

ones. This is not a fundamental limitation of the approach; it is just for simplicity of

the normalization argument. The recursive occurrences of type variables can only be

at positive or erased positions. Erased positions, following the erasure function we

will see in Section 5.5.1, are those in kinds or in the types for ∀-bound variables.

Variable restrictions for closures. Let FV(e) denote the set of free term

variables in expression e (either term, type, or kind), and let FVar(T) denote the set

of free type variables in type T . Then for {(xi : Si) 7→ ti}i∈N ∪ {(Xi : κi) 7→ Ti}i∈M ,

55

we make the simplifying assumption that for any 1 ≤ i ≤ n, FV(ti) = ∅. Also, for any

1 ≤ i ≤ m, we require FV(Ti) ⊆ dom(µ), and FVar(Ti) ⊆ {Xi}. All our examples

below satisfy these conditions.

Notation for accessing closures. (ti : Si) ∈ µ means (xi : Si) 7→ ti ∈ µ and

(Ti : κi) ∈ µ means (Xi : κi) 7→ Ti ∈ µ. Also, xi 7→ ti ∈ µ means (xi : Si) 7→ ti ∈ µ

for some Si and Xi 7→ Ti ∈ µ means (Xi : κi) 7→ Ti ∈ µ for some κi.

Well-formed annotated closures. Γ ` µ ok stands for {Γ, µ ` tj : Tj}(tj :Tj)∈µ

and {Γ, µ ` Tj : κj}(Tj :κj)∈µ. In other words, the defining expressions in closures must

be typable with respect to the context and the entire closure.

Notation for equivalence. ∼= is the congruence closure of →β.

Self type formation. Typing and kinding do not depend on well-formedness

of the context, so the self type formation rule self is not circular.

Well-formed Contexts Γ ` wf

· ` wf
Γ ` wf Γ ` T : ∗

Γ, x : T ` wf
Γ ` wf Γ ` κ : �

Γ, X : κ ` wf
Γ ` wf Γ ` µ ok

Γ, µ ` wf

Well-formed Kinds Γ ` κ : �

Γ ` ∗ : �
Γ, X : κ′ ` κ : � Γ ` κ′ : �

Γ ` ΠX : κ′.κ : �
Γ, x : T ` κ : � Γ ` T : ∗

Γ ` Πx : T.κ : �

Kinding Γ ` T : κ

56

(X : κ) ∈ Γ

Γ ` X : κ
Γ ` T : κ Γ ` κ ∼= κ′ Γ ` κ′ : �

Γ ` T : κ′

Γ ` T1 : ∗ Γ, x : T1 ` T2 : ∗
Γ ` Πx : T1.T2 : ∗

Γ, X : κ ` T : ∗ Γ ` κ : �
Γ ` ∀X : κ.T : ∗

Γ, x : T1 ` T2 : ∗ Γ ` T1 : ∗
Γ ` ∀x : T1.T2 : ∗

Γ, x : ιx.T ` T : ∗
Γ ` ιx.T : ∗ Self

Γ, X : κ ` T : κ′ Γ ` κ : �
Γ ` λX.T : ΠX : κ.κ′

Γ, x : T ′ ` T : κ Γ ` T ′ : ∗
Γ ` λx.T : Πx : T ′.κ

Γ ` S : Πx : T.κ Γ ` t : T
Γ ` S t : [t/x]κ

Γ ` S : ΠX : κ′.κ Γ ` T : κ′

Γ ` S T : [T/X]κ

Typing Γ ` t : T

Γ ` t : T1 Γ ` T1
∼= T2 Γ ` T2 : ∗

Γ ` t : T2
Conv

(x : T) ∈ Γ

Γ ` x : T
Var

Γ ` t : [t/x]T Γ ` ιx.T : ∗
Γ ` t : ιx.T

SelfGen
Γ ` t : ιx.T

Γ ` t : [t/x]T
SelfInst

Γ, x : T1 ` t : T2 Γ ` T1 : ∗ x /∈ FV(t)

Γ ` t : ∀x : T1.T2
Indx

Γ ` t : ∀x : T1.T2 Γ ` t′ : T1

Γ ` t : [t′/x]T2
Dex

Γ ` t : Πx : T1.T2 Γ ` t′ : T1

Γ ` tt′ : [t′/x]T2
App

Γ, X : κ ` t : T Γ ` κ : �
Γ ` t : ∀X : κ.T

Poly

Γ ` t : ∀X : κ.T Γ ` T ′ : κ
Γ ` t : [T ′/X]T

Inst
Γ, x : T1 ` t : T2 Γ ` T1 : ∗

Γ ` λx.t : Πx : T1.T2
Func

Reductions Γ ` t→β t
′ , Γ ` T →β T

′

(x 7→ t) ∈ Γ

Γ ` x→β t Γ ` (λx.t)t′ →β [t′/x]t

(X 7→ T) ∈ Γ

Γ ` X →β T

Γ ` (λx.T)t→β [t/x]T Γ ` (λX.T)T ′ →β [T ′/X]T

57

5.4 Lambda Encodings in S

Now let us see some concrete examples of lambda encoding in S. For conve-

nience, we write T → T ′ for Πx : T.T ′ with x /∈ FV(T ′), and similarly for kinds.

5.4.1 Natural Numbers

Definition 46 (Church Numerals). Let µc be the following closure:

(Nat : ∗) 7→ ιx.∀C : Nat→ ∗.(∀n : Nat.C n→ C (S n))→ C 0→ C x

(S : Nat→ Nat) 7→ λn.λs.λz.s (n s z)

(0 : Nat) 7→ λs.λz.z

With s : ∀n : Nat.C n → C (S n), z : C 0, n : Nat, we have µc ` wf (using

selfGen and selfInst rules). Also note that the µc satisfies the constraints on recursive

definitions. Similarly, if we choose to use explicit product, then we can define Parigot

numerals.

Definition 47 (Parigot Numerals). Let µp be the following closure:

(Nat : ∗) 7→ ιx.∀C : Nat→ ∗.(Π n : Nat.C n→ C (S n))→ C 0→ C x

(S : Nat→ Nat) 7→ λn.λs.λz.s n (n s z)

(0 : Nat) 7→ λs.λz.z

Note that the recursive occurences of Nat in Parigot numerals are at posi-

tive positions. The rest of the examples are about Church numerals, but a similar

development can be carried out with Parigot numerals.

Theorem 6 (Induction Principle).

µc ` Ind : ∀C : Nat→ ∗.(∀n : Nat.C n→ C (S n))→ C 0→ Πn : Nat.C n

58

where Ind := λs.λz.λn.n s z

with s : ∀n : Nat.C n→ C (S n), z : C 0, n : Nat.

Proof. Let Γ = µc, C : Nat → ∗, s : ∀n : Nat.C n → C (S n), z : C 0, n : Nat. Since

n : Nat, by selfInst, n : ∀C : Nat→ ∗.(∀y : Nat.C y → C (S y))→ C 0→ C n. Thus

n s z : C n.

It is worth noting that it is really the definition of Nat and the selfInst rule

that give us the induction principle, which is not derivable in CC [14].

Definition 48 (Addition). m+ n := Ind S n m

One can check that µc ` + : Nat → Nat → Nat by instantiating the C in the

type of Ind by λy.Nat, then the type of Ind is (Nat→ Nat)→ Nat→ (Nat→ Nat).

Definition 49 (Leibniz’s Equality).

Eq := λA[: ∗].λx[: A].λy[: A].∀C : A→ ∗.C x→ C y.

Note that we use x =A y to denote Eq A x y. We often write t = t′ when the

type is clear. One can check that if ` A : ∗ and ` x, y : A, then ` x =A y : ∗.

Theorem 7. µc ` Πx : Nat.x+ 0 =Nat x

Proof. We prove this by induction. We instantiate C in the type of Ind with λn.(n+

0) =Nat n. So by beta reduction at type level, we have (∀n : Nat.(n + 0 =Nat n) →

((S n) + 0 =Nat S n)) → 0 + 0 =Nat 0 → Πn : Nat.n + 0 =Nat n. So for the base

case, we need to show 0 + 0 =Nat 0, which is easy. For the step case, we assume

n + 0 =Nat n (Induction Hypothesis), and want to show (S n) + 0 =Nat S n. Since

59

(S n) + 0 →β S (n S 0) =β S(n + 0), by congruence on the induction hypothesis, we

have (S n) + 0 =Nat S n. Thus Πx : Nat.x+ 0 =Nat x.

5.4.2 Vector Encoding

Definition 50 (Vector). Let µv be the following definitions:

(vec : ∗ → Nat→ ∗) 7→

λU : ∗.λn : Nat. ιx .∀C : Πp : Nat.vec U p→ ∗ .

(Πm : Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y)))

→ C 0 nil→ C n x

(nil : ∀U : ∗.vec U 0) 7→ λy.λx.x

(cons : Πn : Nat.∀U : ∗.U → vec U n→ vec U (S n)) 7→ λn.λv.λl.λy.λx.y n v (l y x)

where n : Nat, v : U, l : vec U n, y : Πm : Nat.Πu : U.∀z : vec U m.(C m z →

C (S m) (cons m u z)), x : C 0 nil.

Typing: It is easy to see that nil is typable to ∀U : ∗.vec U 0. Now we show

how cons is typable to Πn : Nat.∀U : ∗.U → vec U n → vec U (S n). We

can see that l y x : C n l (using selfinst on l). After the instantiation with

l, the type of y n v is C n l → C (S n) (cons n v l). So y n v (l y x) :

C (S n) (cons n v l). So λy.λx.y n v (l y x) : ΠC : (Nat → vec U p → ∗).(Πm :

Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y))) → C 0 nil →

C (S n) (λy.λx.y n v (l y x)) . So by selfGen, we have λy.λx.y n v (l y x) :

vec U(S n). Thus cons : Πn : Nat.∀U : ∗.U → vec U n→ vec U (S n).

Definition 51 (Induction Principle for Vector).

µv ` Ind : ∀U : ∗.Πn : Nat.∀C : Nat→ vec U p→ ∗.

60

(Πm : Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y)))

→ C 0 nil→ Πx : vec U n.(C n x)

where Ind := λn.λs.λz.λx.x s z

n : Nat, s : ∀C : (Nat → vec U p → ∗).(Πm : Nat.Πu : U.∀y : vec U m.(C m y →

C (S m) (cons m u y))), z : C 0 nil, x : vec U n.

Definition 52 (Append). µv ` app : ∀U : ∗.Πn1 : Nat.Πn2 : Nat.vec U n1 →

vec U n2 → vec U (n1 + n2)

where app := λn1.λn2.λl1.λl2.(Ind n1) (λn.λx.λv.cons (n+ n2) x v) l2 l1.

Typing: We want to show app : ∀U : ∗.Πn1 : Nat.Πn2 : Nat.vec U n1 → vec U n2 →

vec U (n1 +n2). Observe that λn.λx.λv.cons(n+n2) x v : Πn : Nat.Πx : U.vec U (n+

n2)→ vec U (n+ n2 + 1). We instantiate C := λy.(λx.vec U (y + n2)) , where x free

over vec U (y + n2), in Ind n1. By beta reductions, we get Ind n1 : (Πm : Nat.Πu :

U.∀y : vec U m.(vec U (m + n2) → vec U ((S m) + n2)) → vec U (0 + n2) → Πx :

vec U n1.vec U (n1 + n2).

So (Ind n1) (λn.λx.λv.cons(n+n2) x v) : vec U (0+n2)→ Πx : vec U n1.vec U (n1+n2).

We assume l1 : vec U n1, l2 : vec U n2. Thus (Ind n1) (λn.λx.λv.cons(n+n2) x v) l2 l1 :

vec U (n1 + n2).

5.5 Metatheory

We first outline the erasure from S to Fω with positive recursive definitions,

which shows the strong normalization of S. We also prove type preservation for S,

which involves confluence analysis (Section 5.5.2) and morph analysis (Section 5.5.3).

61

5.5.1 Strong Normalization

We prove strong normalization of S through the strong normalization of Fω

with positive recursive definitions. We first define the syntax for Fω with positive

recursive definitions.

Definition 53 (Syntax for Fω with positive definitions).

Terms t ::= x | λx.t | tt′

Kinds κ ::= ∗ | κ′ → κ

Types T κ ::= Xκ | (∀Xκ.T ∗)∗ | (T ∗1 → T ∗2)∗ | (λXκ1 .T κ2)κ1→κ2 | (T κ1→κ21 T κ12)κ2

Context Γ ::= · | Γ, x : T κ | Γ, µ

Definitions µ ::= {(xi : Sκi) 7→ ti}i∈N ∪ {Xκ
i 7→ T κi }i∈M

Term definitions ρ ::= {xi 7→ ti}i∈N

Note that for every x 7→ t,Xκ 7→ T κ ∈ µ, we require FV(t) = ∅ and

FVar(T κ) ⊆ {Xκ}; and the Xκ can only occur at the positive position in T κ, no

mutually recusive definitions are allowed. We elide the typing rules for space reason.

We adopt kind-annotated types to obtain a clearer interpretation of types. e.g. with

kind annotation, we do not need to worry about interpretation for ill-formed types

like (λX.X)→ (λX.X).

Definition 54 (Erasure for kinds). We define a function F maps kinds in S to kinds

in Fω with positive definitions.

F (∗) := ∗

F (Πx : T.κ) := F (κ)

F (ΠX : κ′.κ) := F (κ′)→ F (κ)

62

Definition 55 (Erasure relation). We define relation Γ ` T . T ′κ (intuitively, it

means that type T can be erased to T ′κ under the context Γ), where T,Γ are types and

context in S, T ′κ is a type in Fω with positive definitions.

F (κ′) = κ (X : κ′) ∈ Γ

Γ ` X . Xκ

Γ ` T . T κ1
Γ ` ιx.T . T κ1

Γ, X : κ ` T . T ∗1
Γ ` ∀X : κ.T . (∀XF (κ).T ∗1)∗

Γ ` T1 . T
∗
a Γ ` T2 . T

∗
b

Γ ` Πx : T1.T2 . (T ∗a → T ∗b)∗

Γ ` T2 . T
κ

Γ ` ∀x : T1.T2 . T
κ

Γ ` T1 . T
κ1→κ2
a Γ ` T κ1b

Γ ` T1T2 . (T κ1→κ2a T κ1b)κ2

Γ, X : κ ` T . T κ′a
Γ ` λX.T . (λXF (κ).T κ

′
a)κ→κ

′
Γ ` T . T κ1

Γ ` T t . T κ1

Γ ` T . T κ1
Γ ` λx.T . T κ1

Definition 56 (Erasure for Context). We define relation Γ . Γ′ inductively.

Γ ` T . T F (κ)
a Γ . Γ′

Γ, (X : κ) 7→ T . Γ′, XF (κ) 7→ T
F (κ)
a

Γ ` Γ′

Γ, X : κ . Γ′ · . ·

Γ ` T . T κa Γ . Γ′

Γ, (x : T) 7→ t . Γ′, x : T κa 7→ t

Γ ` T . T κa Γ . Γ′

Γ, x : T . Γ′, x : T κa

Theorem 8 (Erasure Theorem).

1. If Γ ` T : κ, then there exists a T
F (κ)
a such that Γ ` T . T F (κ)

a .

2. If Γ ` t : T and Γ ` wf, then there exist T ∗a and Γ′ such that Γ ` T . T ∗a , Γ . Γ′

and Γ′ ` t : T ∗a .

Now that we obtained an erasure from S to Fω with positive definitions. We

continue to show latter is strongly normalizing. The development below is in Fω with

63

positive definitions. Let Rρ be the set of all reducibility candidates3. Let σ be a

mapping between type variable of kind κ to element of ρJκK.

Definition 57.

• ρJ∗K := Rρ.

• ρJκ→ κ′K := {f | ∀a ∈ ρJκK, f(a) ∈ ρJκ′K}.

• ρJXκKσ := σ(Xκ).

• ρJ(T ∗1 → T ∗2)∗Kσ := {t | ∀u. ∈ ρJT ∗1 Kσ, tu ∈ ρJT ∗2 Kσ}.

• ρJ(∀Xκ.T ∗)∗Kσ :=
⋂
f∈ρJκK ρJT

∗Kσ[f/X].

• ρJ(λXκ′ .T κ)κ
′→κKσ := f where f is the map a 7→ ρJT κKσ[a/X] for any a ∈ ρJκ′K.

• ρJ(T κ′→κ1 T κ
′

2)κKσ := ρJT κ′→κ1 Kσ(ρJT κ′2 Kσ).

Let | · | be a function that retrieves all the term definitions from the context

Γ.

Definition 58. Let ρ = |Γ|, and FVar(Γ) be the set of free type variables in Γ. We

define σ ∈ ρJΓK if σ(Xκ) ∈ ρJκK for undefined variable Xκ; and σ(Xκ) = lfp(b 7→

ρJT κKσ[b/Xκ]) for b ∈ ρJκK if Xκ 7→ T κ ∈ Γ.

Note that the least fix point operation in lfp(b 7→ ρJT κKσ[b/Xκ]) is defined

since we can extend the complete lattice of reducibility candidate to complete lattice

(ρJκK,⊆κ,∩κ).

3The notion of reducibility candidate here slightly extends the standard one to handle
definitional reduction: ρ ` x→β t, where x 7→ t ∈ ρ. So it is parametrized by ρ.

64

Definition 59. Let ρ = |Γ| and σ ∈ ρJΓK. We define the relation δ ∈ ρJΓK induc-

tively:

· ∈ ρJ·K
δ ∈ ρJΓK t ∈ ρJT κKσ
δ[t/x] ∈ ρJΓ, x : T κK

δ ∈ Γ
δ ∈ ρJΓ, (x : T κ) 7→ tK

Theorem 9 (Soundness theorem). Let ρ = |Γ|. If Γ ` t : T ∗ and Γ ` wf, then for

any σ, δ ∈ ρJΓK, we have δt ∈ ρJT ∗Kσ, with ρJT ∗Kσ ∈ Rρ.

Theorem 8 and 9 imply all the typable term in S is strongly normalizing.

5.5.2 Confluence Analysis

The complications of proving type preservation are due to several rules which

are not syntax-directed. To prove type preservation, one needs to ensure that if

Πx : T.T ′ can be transformed to Πx : T1.T2, then it must be the case that T can be

transformed to T1 and T ′ can be transformed to T2. This is why we need to show

confluence for type-level reduction. We first observe that the selfGen rule and selfInst

rule are mutually inverse, and model the change of self type by the following reduction

relation.

Definition 60.

Γ ` T1 →ι T2 if T1 ≡ ιx.T ′ and T2 ≡ [t/x]T ′ for some fix term t.

Note that →ι models the selfInst rule, →−1
ι models the selfGen rule. Impor-

tantly, the notion of ι-reduction does not include congruence; that is, we do not allow

reduction rules like if T →ι T
′, then λx.T →ι λx.T

′. The purpose of ι-reduction is to

emulate the typing rule selfInst and selfGen.

We first show confluence of →β by applying the standard Tait-Martin Löf

65

method, and then apply Hindley-Rossen’s commutativity theorem to show →ι com-

mutes with →β. We use →∗ to denote the reflexive symmetric transitive closure of

→.

Lemma 22. →β is confluent.

Definition 61 (Commutativity). Let →1,→2 be two notions of reduction. Then →1

commutes with →2 iff ←1 · →2 ⊆ →1 · ←2.

Proposition 1. Let →1,→2 be two notions of reduction. Suppose both →1 and →2

are confluent, and →∗1 commutes with →∗2. Then →1 ∪ →2 is confluent.

Lemma 23. →β commutes with →ι. Thus →β,ι is confluent, where →β,ι=→β ∪ →ι.

Theorem 10 (ι-elimination). If Γ ` Πx : T1.T2 =β,ι Πx : T ′1.T
′
2, then Γ ` T1 =β T

′
1

and Γ ` T2 =β T
′
2.

Proof. If Γ ` Πx : T1.T2 =β,ι Πx : T ′1.T
′
2, then by the confluence of→β,ι, there exists a

T such that Γ ` Πx : T1.T2 →∗ι,β T and Γ ` Πx : T ′1.T
′
2 →∗ι,β T . Since all the reductions

on Πx : T1.T2 preserve the structure of the dependent type, one will never have a

chance to use →ι-reduction, thus Γ ` Πx : T1.T2 →∗β T and Γ ` Πx : T ′1.T
′
2 →∗β T . So

T must be of the form Πx : T3.T4. And Γ ` T1 →∗β T3, Γ ` T ′1 →∗β T3, Γ ` T2 →∗β T4

and Γ ` T ′2 →∗β T4. Finally, we have Γ ` T1 =β T
′
1 and Γ ` T2 =β T

′
2.

5.5.3 Morph Analysis

The methods of the previous section are not suitable for dealing with implicit

polymorphism, since as a reduction relation, polymorphic instantiation is not con-

66

fluent. For example, ∀X : κ.X can be instantiated either to T or to T → T . The

only known syntactic method (to our knowledge) to deal with preservation proof for

Curry-style System F is Barendregt’s method [6]. We will extend his method to

handle the instantiation of ∀x : T.T ′.

Definition 62 (Morphing Relations).

• ([Γ], T1)→i ([Γ], T2) if T1 ≡ ∀X : κ.T ′ and T2 ≡ [T/X]T ′ for some T such that

Γ ` T : κ.

• ([Γ, X : κ], T1)→g ([Γ], T2) if T2 ≡ ∀X : κ.T1 and Γ ` κ : �.

• ([Γ], T1) →I ([Γ], T2) if T1 ≡ ∀x : T.T ′ and T2 ≡ [t/x]T ′ for some t such that

Γ ` t : T .

• ([Γ, x : T], T1)→G ([Γ], T2) if T2 ≡ ∀x : T.T1 and Γ ` T : ∗.

Intuitively, ([Γ], T1) → ([Γ′], T2) means T1 can be transformed to T2 with a

change of context from Γ to Γ′. One can view morphing relations as a way to model

typing rules which are not syntax-directed. Note that morphing relations are not

intended to be viewed as rewrite relation. Instead of proving confluence for these

morphing relations, we try to use substitutions to summarize the effects of a sequence

of morphing relations. Before we do that, first we “lift” =β,ι to a form of morphing

relation.

Definition 63. ([Γ], T) =β,ι ([Γ], T ′) if Γ ` T =β,ι T
′ and Γ ` T : ∗ and Γ ` T ′ : ∗.

67

The best way to understand the E,G mappings below is through understand-

ing Lemmas 25 and 26. They give concrete demonstrations of how to summarize a

sequence of morphing relations.

Definition 64.
E(∀X : κ.T) := E(T) E(X) := X E(Πx : T1.T2) := Πx : T1.T2

E(λX.T) := λX.T E(T1T2) := T1T2 E(∀x : T ′.T) := ∀x : T ′.T
E(ιx.T) := ιx.T E(T t) := T t E(λx.T) := λx.T

Definition 65.
G(∀X : κ.T) := ∀X : κ.T G(X) := X G(Πx : T1.T2) := Πx : T1.T2

G(λX.T) := λX.T G(T1T2) := T1T2 G(∀x : T ′.T) := G(T)

G(ιx.T) := ιx.T G(T t) := T t G(λx.T) := λx.T

Lemma 24. E([T ′/X]T) ≡ [T ′′/X]E(T) for some T ′′; G([t/x]T) ≡ [t/x]G(T) .

Proof. By induction on the structure of T .

Lemma 25. If ([Γ], T)→∗i,g([Γ′], T ′), then there exists a type substitution σ such that

σE(T) ≡ E(T ′).

Proof. It suffices to consider ([Γ], T)→i,g([Γ
′], T ′). If T ′ ≡ ∀X : κ.T and Γ = Γ′, X : κ,

then E(T ′) ≡ E(T). If T ≡ ∀X : κ.T1 and T ′ ≡ [T ′′/X]T1 and Γ = Γ′, then

E(T) ≡ E(T1). By Lemma 32, we know E(T ′) ≡ E([T ′′/X]T1) ≡ [T2/X]E(T1) for

some T2.

Lemma 26. If ([Γ], T)→∗I,G([Γ′], T ′), then there exists a term substitution δ such that

δG(T) ≡ G(T ′).

Proof. It suffices to consider ([Γ], T)→I,G([Γ′], T ′). If T ′ ≡ ∀x : T1.T and Γ = Γ′, x :

T1, then G(T ′) ≡ G(T). If T ≡ ∀x : T2.T1 and T ′ ≡ [t/x]T1 and Γ = Γ′, then

E(T) ≡ E(T1). By Lemma 32, we know E(T ′) ≡ E([t/x]T1) ≡ [t/x]E(T1).

68

Lemma 27. If ([Γ],Πx : T1.T2)→∗i,g([Γ′],Πx : T ′1.T
′
2), then there exists a type substi-

tution σ such that σ(Πx : T1.T2) ≡ Πx : T ′1.T
′
2.

Proof. By Lemma 25.

Lemma 28. If ([Γ],Πx : T1.T2)→∗I,G([Γ′],Πx : T ′1.T
′
2), then there exists a term sub-

stitution δ such that δ(Πx : T1.T2) ≡ Πx : T ′1.T
′
2.

Proof. By Lemma 26.

Let →∗ι,β,i,g,I,G denote (→i,g,I,G ∪ =ι,β)∗. Let →ι,β,i,g,I,G denote →i,g,I,G ∪ =ι,β.

The goal of confluence analysis and morph analysis is to establish the following com-

patibility theorem.

Theorem 11 (Compatibility). If ([Γ],Πx : T1.T2) →∗ι,β,i,g,I,G ([Γ′],Πx : T ′1.T
′
2), then

there exists a mixed substitution4 φ such that ([Γ], φ(Πx : T1.T2)) =ι,β ([Γ],Πx : T ′1.T
′
2).

Thus Γ ` φT1 =β T
′
1 and Γ ` φT2 =β T

′
2 (by Theorem 10).

Proof. By Lemma 33 and 27, making use of the fact that if Γ ` t =ι,β t
′, then for any

mixed substitution φ, we have Γ ` φt =ι,β φt
′.

Theorem 12 (Type Preservation). If Γ ` t : T and Γ ` t →β t
′ and Γ ` wf, then

Γ ` t′ : T .

5.6 0 6= 1 in S

The proof of 0 6= 1 follows the same method as in Theorem 5, while emptiness

of ⊥ needs the erasure and preservation theorems. Notice that in this section, by

a = b, we mean ∀C : A→ ∗.C a→ C b with a, b : A.

4A substitution that contains both term substitution and type substitution.

69

Definition 66. ⊥ := ∀A : ∗.∀x : A.∀y : A.x = y.

Theorem 13. There is no term t such that µc ` t : ⊥

Proof. Suppose µc ` t : ⊥. By the erasure theorem (Theorem 8) in Section 5.5.1, we

have F (µc) ` t : ∀A : ∗.∀C : ∗.C → C in Fω. We know that ∀A : ∗.∀C : ∗.C → C

is the singleton type5, which is inhabited by λz.z. This means t →∗β λz.z (the term

reductions of Fω with let-bindings are the same as S) and µc ` λz.z : ⊥ in S (by type

preservation, Theorem 12). Then we would have µc, A : ∗, x : A, y : A,C : A→ ∗, z :

C x ` z : C y. We know this derivation is impossible since C x 6∼= C y.

Theorem 14. µc ` 0 = 1→ ⊥.

Proof. This proof follows the method in Theorem 5. Let Γ = µc, a : (∀B : Nat →

∗.B 0→ B 1), A : ∗, x : A, y : A,C : A→ ∗, c : C x. We want to construct a term of

type C y. Let F := λn[: Nat].n [λp : Nat.A] (λq[: A].y)x, and note that F : Nat→ A.

We know that F 0 =β x and F 1 =β y. So we can indeed convert the type of c from

C x to C (F 0). And then we instantiate the B in ∀B : Nat → ∗.B 0 → B 1 with

λx[: Nat].C (F x). So we have C (F 0)→ C (F 1) as the type of a. So a c : C (F 1),

which means a c : C y. So we have just shown how to inhabit 0 = 1→ ⊥ in S.

5.7 Summary

We have revisited lambda encodings in type theory, and shown how a new

self type construct ιx.T supports dependent eliminations with lambda encodings,

5Note that we are dealing with Curry-style Fω.

70

including induction principles. We considered System S, which incorporates self types

together with implicit products and a restricted version of global positive recursive

definition. The corresponding induction principles for Church- and Parigot-encoded

datatypes are derivable in S. By changing the notion of contradiction from explosion

to equational inconsistency, we are able to show 0 6= 1 in both CC and S. We proved

type preservation, which is nontrivial for S since several rules are not syntax-directed.

We also defined an erasure from S to Fω with positive definitions, and proved strong

normalization of S by showing strong normalization of Fω with positive definitions.

71

CHAPTER 6

LAMBDA ENCODING WITH COMPREHENSION

In this chapter, we will investigate iota-binder from a different perspective.

Instead of viewing iota-binder as a type construct, we view it as a set-forming con-

struct. For example, if F [x] is a formula containing a free term variable x , then

ιx.F [x] describes a set of terms t, which satisfies the formula, i.e. t ∈ ιx.F [x] iff

F [t]. Recalled that in Chapter 5, we have ` t : ιx.T iff ` t : [t/x]T . If we com-

pare t ∈ ιx.F [x] with ` t : ιx.T , we observe that there is a similarity between the

meta-level typing relation (denoted by “:”) and the set membership notation “∈”,

which lies in the object logic. This observation is inspired from our earlier work on

internalization ([19], see also Chapter 4.). Right now we are being informal, because

it is hard to draw a connection between F [t] and ` t : [t/x]T , since equating t ∈ F [t]

with F [t] violates the grammatical structure of the logic. Furthermore, one can not

näıvely view self type described in Chapter 5 as formula. Suppose both ιx.T and

T are corresponding to formulas, we know that for the formula F [x], the ιx.F [x] is

representing a set, not a formula, so it is again incoherent to equates ιx.F [x] with

ιx.T . Nonetheless, the observation above motivates us to investigate iota-binder from

a pure logical perspective.

Another source of inspiration of our work in this Chapter is from Hatcher’s

formulation of Frege’s logic [26]. Hatcher present Frege’s system [17] in modern

notations, i.e. a logic with basic set-like construct and comprehension axiom. He

72

shows how to prove all of Peano’s axioms in Frege’s system. Despite Frege’s system is

inconsistent, the development of Peano’s axioms, especially the derivation of induction

principle is remarkable and should be emphasis over the inconsistency.

We first present Frege’s System F (section 6.1), to motivate our construction

of arithmetic with lambda calculus. Then we give a formulation of second order

theory of lambda calculus based on iota-binder ι and epsilon relation ε, we call it G

(section 6.2). There are at least three similar systems, namely, Girard’s formulation

of HA2 à la Takeuti [24], Krivine’s FA2 [31] and Takeuti’s second order logic [48].

There are two subtle differences between G and these systems, the first one is that the

domain of individuals of G is lambda terms instead of primitive notion of numbers.

The second one is that G has (ε, ι)-notation, namely, set-abstraction and membership

relation are explict in the object language, thus comprehension axiom is needed in

G. While the other systems use predication instead of membership relation, and

set-abstraction is implicit at the meta-level, the comprehension axiom is admissible

by performing substitution. We found that with explicit (ε, ι)-notation and explicit

comprehension axiom are easier to extend to full fledge higher order system and easier

to implement(see Chapter 7). In section 6.3, we define a notion of polymorphic-

dependent typing within G, which benefits from the facts that G adimits explicit

(ε, ι)-notation. We prove all of Peano’s axioms in section 6.4. We enrich the reduction

on lambda term with η-and Ω-reductions, then we are able to show that the member

of the inductively defined sets such as Nat is terminating with respect to head beta-

reduction (section 6.5). Finally, we show the notion of Leibniz equality in G is faithful

73

to the conversions in lambda calculus (section 6.6.3).

6.1 Frege’s System F

Certain inconsistent systems and their corresponding antinomies are invalu-

able, because not only the antinomies can be served as criterions for maintaining

consistency, but also, perhaps more importantly, they give us examples to see how to

reconstruct a large part of mathematics within these systems. Frege’s system (à la

Hatcher) belongs to this category1. In fact, G is inspired by the Fregean construction

of numbers. We formalize an intuitionistic version of Frege’s system F, and then we

show how to derive basic arithmetic with F and how the antinomy arises.

Definition 67 (Syntax).

Domain Terms/Set a, b, s ::= x | ιx.F

Formula F ::= ⊥ | sεs′ | F1 → F2 | ∀x.F | F ∧ F ′

Context Γ ::= · | Γ, F

We identify three syntactical categories in F, namely, domain terms, set and

formula. Note that set in this chapter is just a name for a syntactical category, we

should not confused the notion of set in this chapter with the set in set theory like

ZF. Note that the notion of set coincides with the notion of domain terms in F.

Definition 68 (Deduction Rules). Γ ` F

1Of course, one should also mention Church’s lambda calculus.

74

F ∈ Γ
Γ ` F

Γ ` F1 F1
∼= F2

Γ ` F2

Γ ` F x /∈ FV(Γ)

Γ ` ∀x.F

Γ ` ∀x.F
Γ ` [s/x]F

Γ, F1 ` F2

Γ ` F1 → F2

Γ ` F1 → F2 Γ ` F1

Γ ` F2

Γ ` F1 ∧ F2

Γ ` Fi
Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

Note that F1
∼= F2 is specified by the comprehension axiom.

Definition 69 (Comprehension). sε(ιx.F) ∼= [s/x]F

Comprehension axiom is essential for Fregean number construction. The defi-

nition of number, the induction principle for numbers rely on comprehension. Because

the notion domain terms and set coincide, with comprehension axiom, F is inconsis-

tent. We will show this later.

Definition 70 (Equality). a = b := ∀z.(zεa ≡ zεb).

For convenient, we write a ≡ b to denote a→ b.∧ .b→ a. We also write a 6= b

for a = b → ⊥, ∃a.A for (∀a.(A → ⊥)) → ⊥. Now we can proceed to construct a

näıve set theory in F.

Definition 71 (Näıve Set Theory).

Λ := ιx.(x = x→ ⊥).

{b} := ιy.y = b

c̄ := ιy.(yεc→ ⊥).

a ∩ b := ιz.(zεa ∧ zεb)

a ∪ b := ιz.(zεa→ ⊥. ∧ .zεb→ ⊥)→ ⊥

75

Theorem 15.

` ∀x.(x = x)

` ∀x.(xεΛ→ ⊥).

We can take xεΛ as our notion of contradictory because xεΛ implies ⊥. We

now can develop an elementary number theory in F.

Definition 72 (Fregean Numbers).

N := ιx.∀c.(∀y.(yεc→ Syεc))→ 0εc→ xεc.

0 := {Λ}.

S a := ιy.∃z.(zεy. ∧ .(y ∩ {z})εa).

Theorem 16.

` 0εN .

Proof. We want to prove ∀c.(∀y.(yεc → Syεc)) → 0εc → 0εc. Assume ∀y.(yεc →

Syεc) and 0εc, we want to show 0εc, which is obvious2.

Theorem 17. ` ∀y.(yεN → SyεN).

Proof. Assume yεN , we want to show SyεN . By comprehension, we want to show

∀c.(∀y.(yεc → Syεc)) → 0εc → (Sy)εc. So we assume ∀y.(yεc → Syεc) and 0εc, we

need to show (Sy)εc. We know that yεN implies ∀c.(∀y.(yεc→ Syεc))→ 0εc→ yεc.

By modus ponens, we have yεc. By universal instantiation, we have yεc→ Syεc. So

by modus ponens, we have Syεc. Thus we have the proof3.

2Observe that the lambda term for the proof is Church numberal zero λs.λz.z.

3The lambda term for this proof is Church successor λn.λs.λz.s(n s z).

76

Theorem 18 (Induction Principle). ` ∀c.(∀y.(yεc → Syεc)) → 0εc → ∀x.(xεN →

xεc).

Proof. Assume ∀y.(yεc → Syεc), 0εc, xεN . We want to show xεc. We know xεN

implies ∀c.(∀y.(yεc→ Syεc))→ 0εc→ xεc. By modus ponens, we get xεc4.

Observe that there is an algorithmic interpretation for constructive proof of

totality of certain kind of function. For example, the proof of S is total, namely,

∀y.(yεN → SyεN), can be encoded as Church numeral’s successor λn.λs.λz.s (n s z).

This result is already known by Leivant and Krivine [32], [31]. So one should at least

admit there is a constructive flavor in Fregean construction of number. Of course,

the system itself is inconsistent, i.e. the following formula is provable in system F:

Let A := (ιu1.u1 6∈ u1)ε(ιu1.u1 6∈ u1) ∼= A → ⊥. So we have ` A → ⊥

because A ` A and A ` A → ⊥. Also, A → ⊥ ` A → ⊥ implies A → ⊥ ` A,

thus ` (A→ ⊥)→ ⊥. By modus ponens, we can derive ` ⊥. It is worthnoting that

intuitionistic is irrelavant to prevent inconsistency.

6.2 System G

System G is inspired by Frege’s F and the possibility of understanding the

iota-binder as set-abstraction in higher order logic. System G is a simple logical

system with the (ε, ι)-notation.

Definition 73.

Formula F ::= X0 | tεS | ΠX1.F | F1 → F2 | ∀x.F | ΠX0.F

4The lambda term for this proof is iterator λf.λa.λn.n f a.

77

Set S ::= X1 | ιx.F

Domain Terms/Pure Lambda Terms t ::= x | λx.t | tt′

Context Γ ::= · | Γ, F

Note that X0 is a formula variable, it represents any formula. X1 is a set

variable, it represents any set. ιx.F is the set formed by the formula F . To avoid

inconsistency arised in F, we separate the notion of set and domain terms, the domain

terms in G are pure lambda terms. Set can only occur inside of a formula, they do not

have their own rule and identity outside of a formula. Again, please do not confuse

the set in this Chapter with the set in ZF. ΠX0.F is a formula formed by quantifying

over formula and ΠX1.F is formed by quantifying over set. The notation of ε, ι are

formal parts of the language of G, they are called (ε, ι)-notation.

Definition 74 (Deduction Rules). Γ ` F

F ∈ Γ
Γ ` F

Γ ` F1 F1 =β,ι F2

Γ ` F2
Conv

Γ ` F x /∈ FV(Γ)

Γ ` ∀x.F

Γ ` ∀x.F
Γ ` [t/x]F

Γ ` F X i /∈ FV(Γ) i ∈ {0, 1}
Γ ` ΠX i.F

Γ ` ΠX0.F
Γ ` [F ′/X0]F

Inst0

Γ, F1 ` F2

Γ ` F1 → F2

Γ ` F1 → F2 Γ ` F1

Γ ` F2

Γ ` ΠX1.F
Γ ` [S/X1]F

Inst1

The rule Inst0 allows us to instantiate X0 with any formula, this is what the

instantiation does in system F, while the Inst1 rule allows us to instantiate a set

variable X1 with any set S.

Definition 75 (Axioms). F1 =ι,β F2 iff one the the following holds.

1. F1 (or F2) is of the form tε(ιx.F) and F2 (or F1) is of the form [t/x]F .

78

2. F1 (or F2) contains a term t and F2 (or F1) is obtained from F1 by replacing t

with its beta-equivalent term t′.

The first axiom corresponds to the comprehension axiom. The second axiom

corresponds to the axiom of extensionality [26], it also depends on beta-conversion ax-

iom in lambda calculus. We know that beta-conversion in lambda calculus is Church-

Rosser, thus not every lambda terms are considered equal. The reason we set up

axioms through the Conv rule is that it will not affect the overall proof tree, a direct

consequence is that the consistency and subject reduction are relatively easy to prove,

as we shall see next.

6.2.1 Consistency of System G

We have presented the whole specifications of G. Now we show G is consistent,

in the sense that not every formula is provable in G. To prove consistency, we will first

devise a version of G with proof term annotation, denoted by G[p]. Then a forgetful

mapping from G[p] to System F is defined. Finally, any derivable judgement in G[p]

can be mapped to a deravable judgement in System F. Thus we can conclude the

proof term for G[p] is strongly normalizing and not every formula in G is provable.

Definition 76 (System G[p]).

Proof Terms p ::= a | λa.p | pp′

Proof Context Γ ::= · | a : F,Γ

Definition 77 (Proof Annotation). Γ ` p : F

79

Γ ` p : F x /∈ FV(Γ)

Γ ` p : ∀x.F
Γ ` p : F1 F1 =β,ι F2

Γ ` p : F2

(a : F) ∈ Γ

Γ ` a : F

Γ ` p : ∀x.F
Γ ` p : [t′/x]F

Γ ` p : F X i /∈ FV(Γ) i = 0, 1

Γ ` p : ΠX i.F

Γ ` p : ΠX0.F

Γ ` p : [F ′/X0]F

Γ, a : F1 ` p : F2

Γ ` λa.p : F1 → F2

Γ ` p : F1 → F2 Γ ` p′ : F1

Γ ` pp′ : F2

Γ ` p : ΠX1.F

Γ ` p : [S/X1]F

The proof terms only annotated the introduction and elimination rules of

implication. We say it is in Curry style.

Definition 78. We define φ to be a map from G[p] to System F.
φ(X0) := X φ(tεS) := φ(S)
φ(F1 → F2) := φ(F1)→ φ(F2) φ(ΠX0.F) := ΠX.φ(F)
φ(ΠX1.F) := ΠX.φ(F) φ(∀x.F) := φ(F)
φ(X1) := X φ(ιx.F) := φ(F)

Note that the function φ can be easily extended to the proof context. It maps

formula and set in G[p] to types in System F.

Lemma 29.

1. If F1 =β,ι F2, then φ(F1) ≡ φ(F2).

2. φ(F) ≡ φ([t′/x]F).

3. φ([F ′/X0]F) ≡ [φ(F ′)/X]φ(F).

4. φ([S/X1]F) ≡ [φ(S)/X]φ(F).

The following theorem connects System G[p] with System F.

80

Theorem 19. If Γ ` p : F in G[p], then φ(Γ) ` p : φ(F) in F.

Proof. By induction on the derivation of Γ ` p : F .

• Case:

(a : F) ∈ Γ

Γ ` a : F

By a : φ(F) ∈ φ(Γ).

• Case:

Γ ` p : F x /∈ FV(Γ)

Γ ` p : ∀x.F

By IH, we know that φ(Γ) ` p : φ(F) ≡ φ(∀x.F).

• Case:

Γ ` p : F1 F1 =β,ι F2

Γ ` p : F2

By lemma 29, we know that φ(F1) ≡ φ(F2).

• Case:

Γ ` p : ∀x.F
Γ ` p : [t′/x]F

By lemma 29, we know that φ(∀x.F) ≡ φ(F) ≡ φ([t′/x]F).

• Case:

Γ ` p : F X i /∈ FV(Γ) i = 0, 1

Γ ` p : ΠX i.F

By IH, we know φ(Γ) ` p : φ(F). And X /∈ FV(φ(Γ)), thus φ(Γ) ` p :

ΠX.φ(F) ≡ φ(ΠiX.F).

• Case:

Γ ` p : ΠX0.F

Γ ` p : [F ′/X0]F

By IH, we know that φ(Γ) ` p : ΠX.φ(F). Thus φ(Γ) ` p : [φ(F ′)/X]φ(F) ≡

φ([F ′/X0]F). The last equality is by lemma 29.

• Case:

Γ, a : F1 ` p : F2

Γ ` λa.p : F1 → F2

By IH, we know φ(Γ), a : φ(F1) ` p : φ(F2). Thus φ(Γ) ` λa.p : φ(F1)→ φ(F2).

81

• Case:

Γ ` p : F1 → F2 Γ ` p′ : F1

Γ ` pp′ : F2

By IH, φ(Γ) ` p : φ(F1)→ φ(F2) and φ(Γ) ` p′ : φ(F1). Thus φ(Γ) ` pp′ : φ(F2).

• Case:

Γ ` p : ΠX1.F

Γ ` p : [S/X1]F

By IH, we know that φ(Γ) ` p : ΠX.φ(F). Thus φ(Γ) ` p : [φ(S)/X]φ(F) ≡

φ([S/X1]F). The last equality is by lemma 29.

Theorem 19 implies that if Γ ` p : F in G[p], then p is strongly normalizing.

So the formlua ΠX0.X in G is unprovable.

6.2.2 Preservation Theorem for G[p]

We need to establish preservation property (subject reduction) for G[p] in order

to explore more unprovable formulas in G (at meta-level). The proof of preservation

theorem is an adaption of Barendregt’s method for proving preservation for System

F à la Curry [6].

Definition 79 (Formula Reduction).

• F1 →β F2 if t1 =β t2, F1 ≡ F [t1] and F2 ≡ F [t2].

• F1 →ι F2 if F1 ≡ tειx.F and F2 ≡ [t/x]F .

Note that F [t1] means the lambda term t1 appears inside the formula F and

→β,ι denotes →β ∪ →ι.

Lemma 30. →β,ι is confluent.

82

Proof. We know that →β and →ι are confluent. We also know that →β commutes

with →ι, so →β,ι is confluent.

Definition 80 (Morphing Relations).

• F1 →i F2 if F1 ≡ ∀x.F and F2 ≡ [t/x]F for some term t.

• F1 →g F2 if F2 ≡ ∀x.F1.

• F1 →I F2 if F1 ≡ ΠX0.F and F2 ≡ [F ′/X0]F for formula F ′.

• F1 →G F2 if F2 ≡ ΠX0.F1.

• F1 →is F2 if F1 ≡ ΠX1.F and F2 ≡ [S/X1]F for some set S.

• F1 →gs F2 if F2 ≡ ΠX1.F1.

Let �gi denotes the reflexive and transitive closure of →i,g,I,G,is,gs.

Lemma 31. Suppose no free variable of F occurs in Γ. If Γ ` p : F

and F �gi F
′, then Γ ` p : F ′.

Definition 81.

E0(ΠX0.F) := E0(F) E0(X0) := X0 E0(F1 → F2) := F1 → F2

E0(ΠX1.F) := ΠX1.F E0(∀x.F) := ∀x.F E0(tεS) := tεS

Definition 82.

E1(ΠX1.F) := E1(F) E1(X0) := X0 E1(F1 → F2) := F1 → F2

E1(tεS) := tεS E1(∀x.F) := ∀x.F E1(ΠX0.F) := ΠX0.F

Definition 83.

G(ΠX i.F) := ΠX i.F G(X0) := X0 G(F1 → F2) := F1 → F2

G(∀x.F) := G(F) G(tεS) := tεS

83

Lemma 32. E0([F ′/X0]F) ≡ [F ′′/X0]E0(F) for some F ′′;

E1([S/X1]F) ≡ [S/X1]E1(F); G([t/x]F) ≡ [t/x]G(F).

Proof. Proof by induction on the structure of F .

Lemma 33. If F �i,g F
′, then there exist a substitution δ with domain of term

variables and codomain of terms such that δG(F) ≡ G(F ′).

Proof. It suffices to consider F→i,gF
′. If F ′ ≡ ∀x.F , then G(F ′) ≡ G(F). If F ≡

∀x.F1 and F ′ ≡ [t/x]F1, then G(F) ≡ G(F1). By lemma 32, we know G(F ′) ≡

G([t/x]F1) ≡ [t/x]G(F1).

Lemma 34. If F �I,G F
′, then there exist a substitution δ with domain of formula

variables and codomain of formulas such that δE0(F) ≡ E0(F ′).

Proof. It suffices to consider F→I,GF
′. If F ′ ≡ ΠX0.F , then E0(F ′) ≡ E0(F). If

F ≡ ΠX0.F1 and F ′ ≡ [F ′′/X0]F1, then E0(F) ≡ E0(F1). By lemma 32, we know

E0(F ′) ≡ E0([F ′′/X0]F1) ≡ [F2/X
0]E0(F1) for some F2.

Lemma 35. If F �is,gs F
′, then there exist a substitution δ with domain of set

variables and codomain of sets such that δE1(F) ≡ E1(F ′).

Proof. It suffices to consider F→is,gsF
′. If F ′ ≡ ΠX1.F , then E1(F ′) ≡ E1(F). If

F ≡ ΠX1.F1 and F ′ ≡ [S/X1]F1, then E1(F) ≡ E1(F1). By lemma 32, we know

E1(F ′) ≡ E1([S/X1]F1) ≡ [S/X1]E1(F1).

84

Theorem 20 (Compatibility). If (F1 → F2) →∗ι,β,i,g,I,G,is,gs (F ′1 → F ′2), then there

exists a mixed substitution5 δ such that δ(F1 → F2) →β F
′
1 → F ′2. Thus δF1 →β F

′
1

and δF2 →β F
′
2.

Proof. By lemma 33, lemma 34 and lemma 35, we have δ(F1 → F2) →β,ι F
′
1 → F ′2

for some mix substitution δ. Since →ι reduction can not happen in the sequence

δ(F1 → F2) →β,ι F
′
1 → F ′2, so we have δ(F1 → F2) →β F

′
1 → F ′2. Thus δF1 →β F

′
1

and δF2 →β F
′
2.

Lemma 36 (Inversion).

• If Γ ` a : F , then exist F1 such that F1→∗ι,β,i,g,I,G,is,gsF and (a : F1) ∈ Γ.

• If Γ ` p1p2 : F , then exist F1, F2 such that Γ ` p1 : F1 → F2 and Γ ` p2 : F1

and F2→∗ι,β,i,g,I,G,is,gsF .

• If Γ ` λa.p : F , then exist F1, F2 such that Γ, a : F1 ` p : F2 and F1 →

F2→∗ι,β,i,g,I,G,is,gsF .

Lemma 37 (Substitution).

1. If Γ ` p : F , then for any mixed substitution δ, δΓ ` p : δF .

2. If Γ, a : F ` p : F ′ and Γ ` p′ : F , then Γ ` [p′/a]p : F ′.

Theorem 21 (Preservation). If Γ ` p : F and p→β p
′, then Γ ` p′ : F .

5A substitution that contains term, set and formula substitution

85

Proof. We list one interesting case:

Γ ` p1 : F1 → F2 Γ ` p2 : F1

Γ ` p1p2 : F2

Suppose Γ ` (λa.p1)p2 →β [p2/a]p1. We know that Γ ` λa.p1 : F1 → F2 and

Γ ` p2 : F1. By inversion on Γ ` λa.p1 : F1 → F2, we know that there exist

F ′1, F
′
2 such that Γ, a : F ′1 ` p1 : F ′2 and (F ′1 → F ′2)→∗ι,β,i,g,I,G,is,gs(F1 → F2). By

theorem 20, we have δ(F ′1 → F ′2) =β (F1 → F2). By Church-Rosser of =β, we have

δF ′1 =β F1 and δF ′2 =β F2. So by (1) of lemma 37, we have Γ, a : δF ′1 ` p1 : δF ′2. So

Γ, a : δF ′1 ` p1 : F2. Since Γ ` p2 : δF ′1, by (2) of lemma 37, Γ ` [p2/a]p1 : F2.

6.3 A Polymorphic Dependent Type System G[t]

In this section, we first show a polymorphic dependent type system G[t]. Then,

we define an embedding from G[t] to G. The embedding is invertable, thus we can

transform (at meta level) a judgement in G to a judgement in G[t] and vice versa.

We call this behavior reciprocity.

Definition 84 (Syntax).

Lambda Terms t := x | λx.t | tt′

Internal Types U := X1 | ιx.Q | Πx : U.U ′ | ∆X1.U

Internal Formula Q := X0 | tεU | ΠX0.Q | Q→ Q′ | ∀x.Q | ΠX1.Q

Internal Context Ψ := · | Ψ, xεU

Besides basic set formed by formula and set variable, internal types includes

dependent-type-like construct Πx : U.U ′ and polymorphic-type-like construct ∆X1.U .

86

The internal formula stay the same as formula in G except replacing the notion of set

by the notion of internal type. We can view ε relation as a kind of typing relation,

thus we have the notion of internal context as a list of formula of the form xεU and

the following internal typing relation.

Definition 85 (Internal Typing). Ψ
 tεU

xεU ∈ Ψ
Ψ
 xεU

Ψ, xεU
 tεU ′

Ψ
 λx.tεΠx : U.U ′
Ψ
 tεU X1 /∈ FV (Ψ)

Ψ
 tε∆X1.U

Ψ
 tε∆X1.U
Ψ
 tε[U ′/X]U

Ψ
 t1εΠx : U ′.U Ψ
 t2εU ′

Ψ
 t1t2ε[t2/x]U

The internal typing looks remarkably like the usual polymorphic dependent

type system. But we want to emphasis that the meaning of internal typing in G[t] is

different from the usual notion of typing. The internal typing relation is an internal

formula in G[t] (which lies in the object language), while the ususal notion of typing

relation is a meta-level relation. For example, tεU is a formula while t : T is a meta-

level relation. The emergence of internal typing benefits from the (ε, ι)-notation. Now

let us relate G[t] with G.

Definition 86. J·K is an embedding from internal types in G[t] to sets in G, internal

formulas in G[t] to formulas in G.

JX1K := X1

Jιx.QK := ιx.JQK

JΠx : U ′.UK := ιf.∀x.(xεJU ′K→ f xεJUK), where f is fresh.

J∆X1.UK := ιx.(ΠX1.xεJUK), where x is fresh.

JX0K := X0

87

JtεUK := tεJUK

JQ→ Q′K := JQK→ JQK

JΠX i.QK := ΠX i.JQK.

J∀x.QK := ∀x.JQK.

JxεU,ΨK := xεJUK, JΨK

Lemma 38. [t′/x]JUK = J[t′/x]UK and [JU ′K/X1]JUK = J[U ′/X1]UK.

Proof. By induction on structure of U .

Theorem 22. If Ψ
 tεU , then JΨK ` tεJUK.

Proof. By induction on the derivation of Ψ
 tεU .

• Case:
xεU ∈ Ψ
Ψ
 xεU

JΨK ` xεJUK, since xεJUK ∈ JΨK.

• Case:

Ψ, xεU
 tεU ′

Ψ
 λx.tεΠx : U.U ′

By induction, we have JΨK, xεJUK ` tεJU ′K. So JΨK ` xεJUK→ tεJU ′K, then by

∀-intro rule, we have JΨK ` ∀x.(xεJUK → tεJU ′K). By comprehension rule and

beta-reduction, we get JΨK ` λx.tειf.∀x.(xεJUK → f xεJU ′K). We know that

JΠx : U.U ′K := ιf.∀x.(xεJUK→ f xεJU ′K).

• Case:
Ψ
 tεΠx : U ′.U Ψ
 t′εU ′

Ψ
 tt′ε[t′/x]U

By induction, we have JΨK ` tειf.∀x.(xεJU ′K → f xεJUK) and JΨK ` t′εJU ′K.

By comprehension, we have JΨK ` ∀x.(xεJU ′K → t xεJUK). Instantiate x with

t′, we have JΨK ` t′εJU ′K → t t′ε[t′/x]JUK. So by modus ponens, we have

88

JΨK ` tt′ε[t′/x]JUK. By lemma 38, we know that [t′/x]JUK = J[t′/x]UK. So

JΨK ` tt′εJ[t′/x]UK.

• Case:

Ψ
 tεU X1 /∈ FV (Ψ)

Ψ
 tε∆X1.U

By induction, one has JΨK ` tεJUK. So one has JΨK ` ΠX1.tεJUK. So by

comprehension, one has JΨK ` tειx.ΠX1.xεJUK.

• Case:
Ψ
 tε∆X1.U

Ψ
 tε[U ′/X]U

By induction, one has JΨK ` tειx.ΠX1.xεJUK. By comprehension, we have

JΨK ` ΠX1.tεJUK. So by instantiation, we have JΨK ` tε[JU ′K/X1]JUK. Since

by lemma 38, we know [JU ′K/X1]JUK = J[U ′/X1]UK.

Definition 87.

J·K−1 is a maping from the sets in G to the internal types in G[t], from the formulas

in G to the internal formulas G[t].

JX1K−1 := X1

Jιf.∀x.(xεS ′ → f xεS)K−1 := Πx : JS ′K−1.JSK−1, where f is fresh.

Jιx.(ΠX1.xεS)K−1 := ∆X1.JSK−1, where x is fresh.

Jιx.T K−1 := ιx.JT K−1

JX0K−1 := X0

JtεSK−1 := tεJSK−1

JT → T ′K−1 := JT K−1 → JT K−1

JΠX i.T K−1 := ΠX i.JT K−1.

89

J∀x.T K−1 := ∀x.JT K−1.

JxεS,ΓK−1 := xεJSK−1, JΓK−1

Lemma 39. JJSK−1K = S and JJUKK−1 = U .

Proof. By induction.

By lemma 39, if we have Γ ` tεS in G, we can go to G[t] by JΓK−1
 tεJSK−1.

Then, after a few deductions in G[t], we can use theorem 22 to go back to G.

6.4 Proving Peano’s Axioms

In this section, we prove all of Peano’s axioms [41] in G. First, let us define

natural number as Scott numeral.

Definition 88 (Scott Numerals).

Nat := ιx.ΠC1.(∀y.((yεC)→ (Sy)εC))→ 0εC → xεC

S := λn.λs.λz.s n

0 := λs.λz.z

Theorem 23 (Peano’s Axiom 1). ` 0εNat.

Proof. By comprehension, we want to show ` ΠC1.(∀y.((yεC)→ (Sy)εC))→ 0εC →

0εC, which is obvious6.

Definition 89 (Leibniz Equality). x = y := ΠC1.xεC → yεC.

Theorem 24 (Peano Axiom 2-4).

6Note the proof terms for the theorem is Church numeral 0.

90

1. ∀x.x = x.

2. ∀x.∀y.x = y → y = x.

3. ∀x.∀y.∀z.x = y → y = z → x = z.

Proof. We only prove 2, the others are easy. Assume ΠC1.xεC → yεC(1), we want

to show yεA → xεA for any A1. Instantiate C in (1) with ιz.(zεA → xεA). By

comprehension, we get (xεA→ xεA)→ (yεA→ xεA). And we know that xεA→ xεA

is derivable in our system, so by modus ponens we get yεA→ xεA.

Lemma 40. · ` ∀a.∀b.ΠP 1.(aεP → a = b→ bεP).

Proof. By modus ponens.

Theorem 25 (Peano’s Axiom 5). · ` ∀a.∀b.(aεNat→ a = b→ bεNat).

Proof. Let P := ιx.xεNat for lemma 40.

Theorem 26 (Peano’s Axiom 6). · ` ∀m.(mεNat→ SmεNat).

Proof. Assume mεNat. We want to show SmεNat. By comprehension, we just need

to show ΠC1.(∀y.((yεC) → (Sy)εC)) → 0εC → SmεC. By Intros, we want to

derive mεNat, ∀y.((yεC) → (Sy)εC), 0εC ` SmεC. Since mεNat, we know that

ΠC1.(∀y.((yεC) → (Sy)εC)) → 0εC → mεC. By Modus Ponens, we have mεC.

We know that mεNat,∀y.((yεC) → (Sy)εC), 0εC ` (mεC) → (Sm)εC. Thus we

derive mεNat,∀y.((yεC)→ (Sy)εC), 0εC ` SmεC, which is what we want7.

7Note that the proof term for this theorem is Church successor.

91

Theorem 27 (Induction Principle).

` ΠC1.(∀y.((yεC)→ (Sy)εC))→ 0εC → ∀m.(mεNat→ mεC)

Proof. Assume ∀y.((yεC) → (Sy)εC), 0εC and mεNat. We need to show that mεC.

Since mεNat implies that ΠC1.(∀y.((yεC)→ (Sy)εC))→ 0εC → mεC. So by instan-

tiation and modus ponens we get mεC. 8

In order to proceed to prove Peano’s axiom 7, we need to define a notion of

contradiction in G.

Definition 90 (Notion of Contradiction). ⊥ := ∀x.∀y.(x = y).

Theorem 28 (Consistency (Meta)9). ⊥ is uninhabited in G[p].

Proof. Suppose ⊥ is inhabited, that is, there is a proof term p such that · ` p :

∀x.∀y.ΠC1.xεC → yεC. By theorem 19 and theorem 21, we know that p must

normalized at some normal proof term p′ such that · ` p′ : ∀x.∀y.ΠC1.xεC → yεC.

We know that p′ must of the form λa.p′′ with a : xεC. Since =β,ι is Church-Rosser,

we can not convert xεC to yεC. So p′ can not exist.

Lemma 41. ` 0 = S0→ ⊥.

Proof. Assume 0 = S0, namely, ΠC1.0εC → S0εC †. We want to show ∀x.∀y.ΠA1.xεA→

yεA. Assume xεA (1). We now instantiate C with ιu.(((λn.n (λz.y) x) u)εA) in †.

8The proof terms for this theorem is λs.λz.λn.n s z.

9Meaning the proof of this theorem relies on meta-level argument.

92

By comprehension and beta reduction, we get xεA→ yεA (2). By modus ponens of

(1), (2), we get yεA.

We also need predecessor to prove Peano’s axiom 7.

Definition 91. Pred := λn.n(λx.x)0.

Lemma 42 (Congruence of Equality). ` ∀a.∀b.∀f.a = b→ fa = fb.

Proof. Assume ΠC.aεC → bεC. Let C := ιx.fxεP with P free. Instantiate C for

the assumption, we get aε(ιx.fxεP)→ bε(ιx.fxεP). By conversion, we get f aεP →

f bεP . So by polymorphic generalization, we get f a = f b.

Theorem 29 (Peano’s Axiom 7). ` ∀n.nεNat→ (Sn = 0→ ⊥)

Proof. We will use induction principle (theorem 27) to prove this. We instantiate C in

theorem 27 with ιz.(Sz = 0→ ⊥), we have ∀y.((Sy = 0→ ⊥)→ (SSy = 0→ ⊥))→

(S0 = 0→ ⊥)→ ∀m.(mεNat→ (Sm = 0→ ⊥)). Base case is by lemma 41. For the

step case, we assume Sy = 0 → ⊥ (IH), we want to show SSy = 0 → ⊥. Assuming

SSy = 0, we want to show ⊥. By lemma 42, we know that Pred(SSy) = Pred0. By

beta-reduction, we have Sy = 0. Thus by IH, we have ⊥.

Theorem 30 (Peano’s Axiom 8). ∀m.∀n.mεNat→ nεNat→ Sm = Sn→ m = n.

Proof. Assume Sm = Sn. By lemma 42, we have Pred(Sm) = Pred(Sn). So by beta

reduction, we have m = n.

93

In order to state Peano’s axiom 9, we extend the formula in G with F ∧F ′. And the

proof of F ∧ F ′ consist of both the proof of F and the proof of F ′10.

Theorem 31 (Peano’s Axiom 9, Weak Induction).

` ΠC1.(∀y.(yεNat ∧ (yεC)→ (Sy)εC))→ 0εC → ∀m.(mεNat→ mεC)

Proof. Assume ∀y.(yεNat ∧ (yεC) → (Sy)εC) † and 0εC. We want to show that

∀m.(mεNat → mεC). We just need to show ∀m.(mεNat → (mεNat ∧ mεC)). We

prove this using theorem 27. For the base case, it is obvious that 0εNat ∧ 0εC. For

step case, assuming zεNat ∧ zεC (IH), we need to show SzεNat ∧ SzεC. By theorem

26, we have SzεNat. By †, we know that SzεC. Thus ∀z.(zεNat→ (zεNat∧zεC)).

We have proved all Peano’s nine axioms. We will leave the investigation of the relation

between strong induction principle and the weak induction principle as future work.

6.5 Reasoning about Programs

System G is expressive enough to reason about programs. By programs we

mean lambda calculus with Scott encoding and recursive term definitions. We first

show some simple examples about Scott numerals, and then we show how to encode

Vector in G.

Definition 92. add := λn.λm.n (λp.add p (Sm)) m

We know that the above recursive equation can be solved by fixpoint. For

convenient, we simply use the definition as a kind of build-in beta equality. i.e.

whenever we see a add, we one step unfold it.

10This extension can be avoided by defining F ∧ F ′ := ∀Y 0.(F → F ′ → Y)→ Y .

94

Theorem 32. · ` ∀n.(nεNat→ add n 0 = n).

Proof. We want to show ∀n.(nεNat → add n 0 = n). Let P := ιx.add x 0 = x.

Instantiate the C1 in theorem 27 with P , we get ∀y.(add y 0 = y → add (Sy) 0 =

Sy)→ add 0 0 = 0→ ∀m.(mεNat→ mεP). We just have to prove ∀y.(add y 0 = y →

add (Sy) 0 = Sy) and add 0 0 = 0. For the base case, we want to show ΠC.add 0 0εC →

0εC. Assume add 0 0εC, since add 0 0→β 0, by conversion, we get 0εC. For the step

case is a bit complicated, assume add y 0 = y, we want to show add (Sy) 0 = Sy.

Since add y 0→β y (λp.add p (S0)) 0, And add (Sy) 0→β add y (S0)←∗β S(add y 0).

So lemma 42 will give us this.

Theorem 33. · ` ∀n.(nεNat→ ∀m.(mεNat→ add n mεNat)). After transformed to

G[t], we have
 addεNat→ Nat→ Nat. 11

Proof. Let P := ιz.∀m.(mεNat → add z mεNat). We instantiate the C in theorem

27, we have (∀y.((yεP) → (Sy)εP)) → 0εP → ∀m.(mεNat → mεP). For the base

case, we need to show ∀m.(mεNat→ add 0 mεNat). By add 0 m→β m, we have the

base case. For the step case, assuming ∀m.(mεNat→ add y mεNat) (IH), we need to

show ∀m.(mεNat→ add (Sy) mεNat). We know that add (Sy) m→∗β add y (Sm). By

(IH), we know add y (Sm)εNat. So add (Sy) mεNat.

In order to do vector encoding in G, we need to extend the formulas of G to

specify binary relation, so we add the following syntatic category.

11We write U → U ′ if Πx : U.U ′ with x /∈ FV(U ′).

95

Definition 93 (Relation12).

Formula F ::= ... | (t; t′)εR | ΠX2.F

Binary Relation R ::= X2 | ι(x; y).F

Relational Comprehension (t; t′)ει(x; y).F =ι [(t; t′)/(x; y)]F

Definition 94 (Vector).

vec(U, n) :=

ιx.ΠC2.(∀y.∀m.∀u.(mεNat → uεU → (y;m)εC → (cons m u y; Sm)εC)) →

(nil; 0)εC → (x;n)εC

nil := λy.λx.x

cons := λn.λv.λl.λy.λx.y n v l.

Lemma 43. ` nilεvec(U, 0).

Lemma 44. ` ∀n.nεNat → ∀u.(uεU → ∀l.(lεvec(U, n) → (cons n u l)εvec(U, Sn))).

Transform to G[t], we get
 consεΠn : Nat.U → vec(U, n)→ vec(U, Sn).

Proof. Assume nεNat, uεU, lεvec(U, n). We want to show (cons n u l)εvec(U, Sn). By

comprehension, we need to show ΠC2.(∀y.∀m.∀u.(mεNat → uεU → (y;m)εC →

(cons m u y; Sm)εC)) → (nil; 0)εC → ((cons n u l); Sn)εC. Assume that we have

∀y.∀m.∀u.(mεNat → uεU → (y;m)εC → (cons m u y; Sm)εC) † and (nil; 0)εC, we

need to show that ((cons n u l); Sn)εC. We know that lεvec(U, n), by comprehension,

we have

12We will show a more uniform extension of G in next Chapter.

96

ΠC2.(∀y.∀m.∀u.(mεNat → uεU → (y;m)εC → (cons m u y; Sm)εC)) →

(nil; 0)εC → (l;n)εC.

By modus ponens, we have (l;n)εC. Instantiate y with l, m with n, u with u in †, we

have nεNat → uεU → (l;n)εC → (cons n u l; Sn)εC. So by modus ponens, we have

(cons n u l; Sn)εC.

Theorem 34 (Induction Principle).

` Ind(U, n) :=

ΠC2.(∀y.∀m.∀u.(mεNat → uεU → (y;m)εC → (cons m u y; Sm)εC)) →

(nil; 0)εC → ∀l.(lεvec(U, n)→ (l;n)εC)

Proof. Assume we have lεvec(U, n) and

∀y.∀m.∀u.(mεNat→ uεU → (y;m)εC → (cons m u y; Sm)εC), (nil; 0)εC.

We want to show (l;n)εC. By comprehension, we have

ΠC2.(∀y.∀m.∀u.(mεNat → uεU → (y;m)εC → (cons m u y; Sm)εC)) →

(nil; 0)εC → (l;n)εC.

By modus ponens, we have (l;n)εC.

Definition 95 (Append).

app := λn1.λn2.λl1.λl2.l1(λm.λh.λt.cons (m+ n2) h (app m n2 t l2))l2

Theorem 35.
 appεΠn1 : Nat.Πn2 : Nat.vec(U, n1)→ vec(U, n2)→ vec(U, n1 + n2)

Proof. Note that we state the theorem in G[t]. So we want to derive

97

n1εNat, n2εNat
 λl1.λl2.l1(λm.λh.λt.cons (m+ n2) h (app m n2 t l2))l2 ε

vec(U, n1)→ vec(U, n2)→ vec(U, n1 + n2).

We now transform it back to G, we have:

n1εNat, n2εNat ` ∀x1.x1εvec(U, n1) → ∀x2.(x2εvec(U, n2) → x1(λm.λh.λt.cons (m +

n2) h (app m n2 t x2))x2εvec(U, n1 + n2)).

We instantiate the C in theorem 34 by

P := ι (l;n) .∀x2.(x2εvec(U, n2)→

l (λm′.λh.λt.cons (m′ + n2) h (app m′ n2 t x2))x2εvec(U, n + n2)).

So we get

(∀y.∀m.∀u.(mεNat→ uεU → (y;m)εP → (consm u y; Sm)εP))→ (nil; 0)εP →

∀l.(lεvec(U, n)→ (l;n)εP).

For the base case, we can easily prove ∀x2.(x2εvec(U, n2)→ (nil(λm′.λh.λt.cons (m′+

n2) h (app m′ n2 t x2))x2εvec(U, 0 + n2))). For the step case, assume (IH)

∀x2.(x2εvec(U, n2)→ y(λm′.λh.λt.cons (m′+n2) h (appm′ n2 t x2))x2εvec(U,m+n2)),

we want to show that ∀x2.(x2εvec(U, n2) → (cons m u y)(λm′.λh.λt.cons (m′ +

n2) h (app m′ n2 t x2))x2εvec(U, Sm+ n2)). We know that

(cons m u y)(λm′.λh.λt.cons (m′ + n2) h (app m′ n2 t x2))x2 →∗β

cons(m+ n2) u (app m n2 y x2)→∗β

cons (m+ n2) u (y (λm′.λh.λt.cons(m′ + n2) h (app m′ n2 t x2))x2)).

By (IH), we know that

y(λm′.λh.λt.cons (m′ + n2) h (app m′ n2 t x2))x2εvec(U,m + n2). By lemma 44

cons (m+n2) u (y (λm′.λh.λt.cons(m′+n2) h (app m′ n2 t x2))x2))εvec(U, S(m+n2)).

98

Thus (cons m u y)(λm′.λh.λt.cons (m′+n2) h (app m′ n2 t x2))x2εvec(U, S(m+n2)).

Of course, we assume we have S(m+ n2) = Sm+ n2, so we have the proof.

Theorem 36 (Associativity). ` ∀(n1.n2.n3.v1.v2.v3).(n1εNat→ n2εNat→ n3εNat→

v1εvec(U, n1)→ v2εvec(U, n2))→ v3εvec(U, n3)→

app n1 (n2 + n3) v1 (app n2 n3 v2 v3) = app (n1 + n2) n3 (app n1 n2 v1 v2) v3

Proof. Assume n1εNat, n2εNat, n3εNat, v2εvec(U, n2)), v3εvec(U, n3). We want to show

∀v1.(v1εvec(U, n1) → app n1 (n2 + n3) v1 (app n2 n3 v2 v3) = app (n1 +

n2) n3 (app n1 n2 v1 v2) v3).

Let P := ι(y; z).(app z (n2+n3) y (app n2 n3 v2 v3) = app (z+n2) n3 (app z n2 y v2) v3).

We instantiate the C in Ind(U, n1) with P , by comprehension we have

(∀y.∀m.∀u.(mεNat → uεU → (y;m)εP → (cons m u y; Sm)εP)) → (nil; 0)εP →

∀l.(lεvec(U, n)→ (l;n)εP).

So we just need to prove base case:

app 0 (n2 + n3) nil (app n2 n3 v2 v3) = app (0 + n2) n3 (app 0 n2 nil v2) v3

and step case:

∀y.∀m.∀u.(mεNat→ uεU → (app m (n2 + n3) y (app n2 n3 v2 v3) = app (m+

n2) n3 (app m n2 y v2) v3) → (app Sm (n2 + n3) (cons m u y) (app n2 n3 v2 v3) =

app (Sm+ n2) n3 (app Sm n2 (cons m u y) v2) v3)).

For the base case, app 0 (n2 + n3) nil (app n2 n3 v2 v3) →∗β app n2 n3 v2 v3 ←∗β

app (0 + n2) n3 (app 0 n2 nil v2) v3. For the step case, we assume app m (n2 +

n3) y (app n2 n3 v2 v3) = app (m+ n2) n3 (app m n2 y v2) v3(IH), we want to show

99

app Sm (n2 + n3) (cons m u y) (app n2 n3 v2 v3) =

app (Sm+ n2) n3 (app Sm n2 (cons m u y) v2) v3(Goal).

We know that app Sm (n2 + n3) (cons m u y) (app n2 n3 v2 v3) →∗β cons(m + n2 +

n3) u (app m (n2 + n3) y (app n2 n3 v2 v3)) . The right hand side of the (Goal) can

be reduced to cons(m+ n2 + n3) u (app (m+ n2) n3 (app m n2 y v2) v3) . So (IH) is

enough to give us the (goal).

6.6 Termination Analysis in System G

In this section, we will show that elements in the inductive defined set are

solvable. A direct consequence of this result is that these elements is terminating

with respect to head reduction.

6.6.1 Preliminary

The definitions, lemmas and theorems in this subsection are came from Baren-

dregt’s [5], Chapter 8.3.

Definition 96 (Solvability).

• A closed lambda term t, i.e. FV(t) = ∅, is solvable if there exists t1, ..., tn such

that tt1...tn =β λx.x.

• An arbitrary term t is solvable if the closure λx1...λxn.t, where {x1, ..., xn} =

FV(t), is solvable.

• t is unsolvable iff t is not solvable.

Lemma 45. Every term t is of the following forms:

100

• λx1....λxn.xt1...tm, where n,m ≥ 0. It is called head normal form.

• λx1....λxn.((λy.t)t1)...tm, where m ≥ 1, n ≥ 0 and (λy.t)t1 is called head redex.

Definition 97 (Head Reduction). t→h t
′ if t′ is resulting from contracting the head

redex of t.

Theorem 37. A term t has a head normal form iff it is terminating with respect to

head reduction.

Theorem 38 (Wadsworth). t is solvable iff t has a head normal form. In particular,

all terms in normal forms are solvable, and unsolvable terms have no normal form.

Theorem 39 (Genericity). For a unsolvable term t, if t1t =β t2, where t2 in normal

form, then for any t′, we have t1t
′ =β t2.

Unsolvable in general is computational irrelevance, thus it is reasonable to

equate all unsolvable terms.

Definition 98 (Omega-Reduction). Let Ω be (λx.xx)λx.xx, then t →ω Ω iff t is

unsolvable and t 6≡ Ω.

Theorem 40. →β ∪ →ω is Church-Rosser.

6.6.2 Head Normalization

We add Omega-reduction as part of the term reduction in G. We now define

another notion of contradictory: ⊥′ := ∀x.x = Ω. Note that this will imply ∀x.∀y.x =

y, thus we can safely take it as contradictory.

Theorem 41. ` ∀n.(nεNat→ (n = Ω→ ⊥′)).

101

Proof. We will prove this by induction. Recall the induction principle:

ΠC1.(∀y.((yεC)→ (Sy)εC))→ 0εC → ∀m.(mεNat→ mεC).

We instantiate C with ιz.(z = Ω → ⊥′), by comprehension, we then have (∀y.((y =

Ω → ⊥′) → (Sy = Ω → ⊥′)) → (0 = Ω → ⊥′) → ∀m.(mεNat → (m = Ω → ⊥′)).

It is enough to show that 0 = Ω → ⊥′ and Sy = Ω → ⊥′. We know that for Scott

numerals we have 0 := λs.λz.z and Sy := λs.λz.sy. Assume 0 = Ω = λx1.λx2.Ω, let

F := λu.u p q. Assume qεX1, then F 0εX1 (since F0 =β q). So F (λx1.λx2.Ω)εX1,

thus ΩεX1. Thus we just show ∀X1.(qεX1 → ΩεX1), which means ∀q.q = Ω. So

0 = Ω→ ⊥′. Now let us show Sy = Ω→ ⊥′. Assume λs.λz.sy = Ω = λx1.λx2.Ω. Let

F := λn.n (λp.q) z. Assume qεX1, then F (λs.λz.sy)εX1, thus F (λx1.λx2.Ω)εX1,

meaning ΩεX1. So we just show ΠX1.(qεX → ΩεX). Thus ∀q.q = Ω. So Sy = Ω→

⊥′.

Above theorem implies that all the member of Nat has a head normal form

and it can be generalized to show that the elements of inductive describable set are

solvable. To see this, we prove the following meta-theorem.

Theorem 42 (Meta). If ` tεNat, then t 6=β,ω Ω.

Proof. By theorem 41, we know that ` t = Ω→ ⊥. We know that by the conv rule,

if t =β,ω t
′, then ` t = t′ in G. By contraposition, we have if 6` t = t′, then t 6=β,ω t

′.

Since G is consistent (theorem 28), we know that 6` t = Ω. So t 6=β,ω Ω.

102

6.6.3 Leibniz Equality in G

We know that by the conv rule, if t =β,η,ω t
′, then ` t = t′ in G. It is natural

to consider wether the other direction is the case, namely, to prove: if ` t = t′, then

t =β,η,ω t
′. By the contraposition, we need to prove: if t 6=β,η,ω t

′, then 6` t = t′. We

conjecture that it is hard to prove this. Due to the genericity (theorem 39) property

in lambda calculus. Oraclely, if t is solvable and t′ is unsolvable, we can not define

a lambda term F such that Ft =β x and Ft′ =β y. Because by genericity, we would

have Ft =β y, thus x =β y, which is impossible for beta-reduction. However, when

t, t′ both are solvable and t 6=β,η t
′, then by the results of Coppo et al. [13], we can

indeed define a lambda term F such that Ft =β x and Ft′ =β y. So we can derive

` t = t′ → ⊥ in System G.

Theorem 43. Assume t1, t2 are solvable terms. If ` t1 = t2 in G, then t1 =βη t2.

Proof. By contraposition, we want to prove: if t1 6=βη t2, then 6` t1 = t2. Since t1 and

t2 are distinct, then t1 and t2 are separable13. i.e. there exists a lambda term F such

that Ft1 =β x and Ft2 =β y. Thus we can derive ` t = t′ → ⊥. Since G is consistent,

we have 6` t1 = t2.

The developments in this section together with section 6.6.2 shows that if

` t = t′ → ⊥ in G, then t 6=β,η,ω t
′. And if t1, t2 are solvable terms, then ` t1 = t2 in

G implies t1 =βη t2.

13See Barendregt’s [5], Page 256

103

6.7 Summary

We present System G and develop Peano’s axioms and Vector encoding in

System G as evidents for its potentials. The usefulness of G[t] is not obvious in this

Chapter. In implementation, we make use of the reciprocity to derive inductive set

based on algebraic data type definitions. The existence of G[t] provides a way to

understand polymorphic-dependent type through G. One difference between System

G and PTS style system is that computation at formula level is currently not possible

in G, more research will be needed to explore this issue.

Compare to usual typed functional programming language, the set in System

G is more precise than the notion of type in typed functional programming language.

Not surprisingly, it is impossible to fully automate the reasoning with G. However, a

degree of automation is still possible, together with human guidence, it would be an

attracting tool to have besides the usual type system. In fact, the implementation in

next Chapter shows that it is possible to obtain such an system.

104

CHAPTER 7

IMPLEMENTATION AND FUTURE IMPROVEMENTS

We first define the logic implemented in Gottlob, which is an extension of G.

Then we discuss the current implemented features of Gottlob. Finally, we discuss

some possible improvements over the current implementation.

7.1 The Gottlob System

The logic in Gottlob system is an extension of System G with Church’s simple

types [11] and maintain the comprehension scheme à la Takeuti.

Definition 99 (Syntax).

Simple Types τ ::= ι | o | τ → τ ′

Lambda Terms t ::= x | λx.t | tt′

PreFormula F ::= x | ιx.F | tεF | F → F ′ | ∀x.F | FF ′ | Ft

Proof p ::= x | mp p p′ | inst p t | cmp p | ug x.p | discharge x : F.p

Type Context ∆ ::= · | ∆, x : τ

Proof Context Γ ::= · | Γ, x : F

The intended meaning of type ι is individuals and type o is formula. With

Church’s simple type device, the set mentioned in previous chapter will be a prefor-

mula of type ι→ o.

Definition 100 (Type Inference for PreFormula).

105

∆ ` t : ι
x : τ ∈ ∆
∆ ` x : τ

∆, x : τ ′ ` F : τ

∆ ` ιx.F : τ ′ → τ

∆ ` F : ι→ τ
∆ ` Ft : τ

∆ ` F1 : o ∆ ` F2 : o
∆ ` F1 → F2 : o

∆ ` F : ι→ o
∆ ` tεF : o

∆ ` F : τ → τ ′ ∆ ` F ′ : τ
∆ ` FF ′ : τ ′

∆, x : τ ` F : o

∆ ` ∀x.F : o

Note that type inference for preformula is decidable. We call a preformula of

type o well-formed formula.

Definition 101 (Proof Checking Rules). Γ ` p : F

Γ ` p : F x /∈ FV(Γ)

Γ ` ug x.p : ∀x.F
Γ ` p : F1 F1

∼= F2

Γ ` cmp p : F2

(x : F) ∈ Γ

Γ ` x : F

Γ ` p : ∀x.F Q ::= t | F
Γ ` inst p Q : [Q/x]F

Γ, a : F1 ` p : F2

Γ ` discharge a : F1.p : F1 → F2

Γ ` p : F1 → F2 Γ ` p′ : F1

Γ ` mp p p′ : F2

We can see that the proof checking is actually simpler than the one in Section

6.2.1, Chapter 6. The proof checking rule is specifically designed so that given Γ and

p, we can deduce F with Γ ` p : F .

Definition 102. F ∼= F ′ iff one of the following holds.

• F ≡ [t/x]F1 and F ′ ≡ [t′/x]F1 with t =β t
′.

• F ≡ tε(ιx.F1) and F ′ ≡ [t/x]F1.

• F ≡ C[(ιx.F1)Q] and F ′ ≡ C[[Q/x]F1], where Q ::= t | F for some preformula

context C.

106

We have seen the full specification of the logic in Gottlob. It is consider more

flexible in the sense that now Leibniz equality can be defined as

Eq : ι→ ι→ o := ιa.ιb.∀C.aεC → bεC

Vector can be defined as

Vec : (ι→ o)→ ι→ ι→ o := ιU.ιa.ιx.∀V....

The point is that with help of comprehension and simple types, we do not need

to appeal to meta-level conventions like we did before in last Chapter. Gottlob is

considered more expressive than System G in the sense that now we can express set

of set, namely, entity of type (ι → o) → o, up to arbitrary hierarchy. We can still

define an erasure from Gottlob to Girard’s System F (erasing everything except entity

of type o), thus not every formula is provable in Gottlob.

7.2 The Implemented Features of Gottlob

Gottlob is implemented in Haskell, a functional-imperative programming lan-

guage. The total lines of Haskell code (loc) currently is about 2700. About 600 loc are

from the parser and the pretty-printing module; about 400 loc are used to describe

syntax tree; about 700 loc are used to implement the proof checker; the rest of the

codes deal with program transformation and polymorphic type checking. The project

is available through https://github.com/Fermat/Gottlob.

Logic. The logic in Gottlob is described in Section 7.1. We implement a

simple version of constraints solving algorithm to check the well-formedness of a

formula. Proofs are represented as objects but not functions. So in Gottlob, we do

not use proof as program and we do not run proof as program. That is not to say we

https://github.com/Fermat/Gottlob

107

can not program with proof. As we will discuss later, there are many common proof

patterns we want to capture, and in Gottlob, we can use a notion of tactic to capture

the proof pattern. Basically, a tactic is a meta-level function that take in an object

(lambda terms, formula or proof) and return a proof. In Gottlob, formula/set can

not be defined by recursion/induction. So inductive formula or inductive predicate is

not supported. The proof language is in natural deduction style, while still allow user

to write a big proof term to prove a theroem if she/he prefer. The proof language is

carefully designed such that Gottlob can infer the formula of a proof term.

Proof Pattern and Tactic. After the second iteration of the implementa-

tion, the author realized that treating proof as object although can simplify the proof

checking process, the author has to write long proof most of the time even to prove

simple lemmas like congruence of equality. Long proof greatly affects the readabil-

ity, readability is one of the goals of designing Gottlob. We notice that this issue

can be fixed by introducing user-defined tactics in the proofs. By tactic we mean a

meta-program that can take in proofs/formulas/programs as arguments and produce

a checkable proof. The idea is that there are many proof patterns that can not be

easily captured by lemma, but can be captured reasonably by tactic. For example,

we know that we can always construct a proof of t1 =Leibniz t2 if t1 can be evaluated

to t2. However, the notion of “t1 can be evaluated to t2” can not captured by the

language, so everytime one want to prove t1 =Leibniz t2, one would need to manually

construct a proof of t1 =Leibniz t2. It is easy to see that all these proofs are the same

except we only vary t1, t2. This proof pattern can be captured by introducing a meta-

108

program that takes in t1, t2 as argument and produce a of proof of t1 =Leibniz t2. This

meta-program does not need to be typed, because the correctness of its outputs will

always be checked by the proof checker.

Since the logic in Gottlob is higher order logic à la Takeuti, it can capture

some common proof patterns. For example, we know that for any formula F (x) with

x free in F , we know that we can always construct a proof of ∀x.F (x) → F (x).

This pattern can be captured by the proof of ∀C.∀x.x ∈ C → x ∈ C. To obtain

a proof of ∀x.F1(x) → F1(x), one just need to instantiate C with ιx.F1(x), then by

comprehension we can get a proof of ∀x.F1(x) → F1(x). So we think that higher

order logic in combination with tactic provide a good way to capture proof patterns.

About Gottlob Program. We mentioned that the logic includes the un-

typed lambda calculus as its domain of individuals. And untyped lambda calculus is

basic of the program in Gottlob. It is natural to concerns about the type descipline

for the program. Empirically, we realize that type checking can capture an range of

bugs without requiring the programmer to annotate the program. So we implement

a version of Hindley-Milner polymorphic type inference based on [29]. Our type in-

ference system can handle mutual recursive defined programs naturally similar to the

style of Haskell. We want to emphasis that even polymorphic type inference is conve-

nient, it does not capture all the bugs and certainly does not verify a program. One

would need to use the logic of Gottlob to prove theorems about programs. Gottlob’s

logic system treat program as untype lambda calculus. We think it is appropriate,

because one usually need to reason about the execution behavior of the program,

109

not the type behavior of a program, so the type information for a program is not as

relevant as one may think. So when the author write programs and prove properties

about the programs in Gottlob, internally, it first type check the programs, and then

elaborate the programs to untyped lambda calculus, which is the execution model

of the program, then finally, the reasoning is performed on the elaborated lambda

terms1.

Pattern Matching and Algebraic Data Type. Pattern matching and

algebraic data type are central in Gottlob. Program can be defined as a set of “equa-

tions” just like Haskell function definition. And within each equation, one can use

the case expression to further pattern match on data. So it seems like Gottlob does

support pattern matching. Internally, polymorphic type checking is first performed

on functions defined by pattern matching. After type checking, Gottlob translate a

set of definitions in to a single equivalent function defined by case-expression (this

process is described in [42]), then further translate this function to lambda term.

The translation from case-expression to lambda term is done with respect to Scott

encoding scheme. So case expression is not primitive in the execution model.

The translation process of pattern matching only make sense when the data

is Scott encoded data. So for each algebraic data type declaration, Gottlob construct

the corresponding Scott-encoded lambda term for each data type constructor. Data

type declaration is also used for automatically deriving the corresponding inductive

defined set and the corresponding induction principle. Data type declaration is also

1So it feels like reasoning directly on the compiled programs.

110

used for the polymorphic type checking. Let us see a concrete example, the following

code are the data declaration for list and the append function in Gottlob.

data List U where

nil :: List U

cons :: U -> List U -> List U

deriving Ind

append nil l = l

append (cons u l’) l = cons u (append l’ l)

From the type annotation in the data type declaration, Gottlob will infer the

type of append is ∀U.List U → List U → List U . And it will also infer that

nil := λn.λc.n

cons := λa2.λa1.λn.λc.c a2 a1

List : (ι→ o)→ ι→ o = ιU.ιx.∀L...

indList := p : ∀U.∀L.nilεL U → (∀x.xεU → ∀x0.x0εL U → cons x x0εLU)→

∀x.xεList U → xε L U .

Note that the p in indList is the proof of induction principle, Gottlob will

check that the proof p. Also, Gottlob will perform this process for any algebraic data

type.

7.3 Future Improvements

There are a lot of rooms for improvements for Gottlob.

Equality Reasoning. We want to implement an automatic equality rea-

soning feature to relieve the burden of simple equality proofs. Gottlob uses Leib-

111

niz equality extensively, so it is quite cumbersome to construct simple proofs about

equality even with the help of tactic. We would need to implement this feature at

meta-level and generate checkable proof of equality, then we do not need to trust

the equality reasoning engine. We think this feature will greatly simplify the current

equality proof while still give the author enough information to know the underlying

mechanism.

Reasoning about States. Some algorithms (for example, graph algorithms)

are natural to describe with the help of state, to really demonstrate the usefulness of

Gottlob, we would need to do a case study on verifying this kind of algorithm. So we

would need to provide a form of monadic framework in Gottlob.

Polymorphic Type Checking. Currently, the type checking system for

Gottlob can only handle rank-1 polymorphism. It would be interesting to explore

possible extensions of the type checking system to support richer notion of types

while not requiring extensive annotations.

On a more practical side, the author would need to think about the issues of

compilation, I/O and efficiency issues. It would also be nice to have an interpretor-like

environment for the author to interact with the Gottlob system.

112

BIBLIOGRAPHY

[1] M. Abadi and L. Cardelli. A Theory of Primitive Objects - Second-Order Sys-
tems. In European Symposium on Programming (ESOP), pages 1–25, 1994.

[2] A. Abel and B. Pientka. Wellfounded recursion with copatterns: a unified ap-
proach to termination and productivity. In G. Morrisett and T. Uustalu, editors,
International Conference on Functional Programming (ICFP), pages 185–196,
2013.

[3] K.Y. Ahn, T. Sheard, M. Fiore, and A.M. Pitts. System Fi. In Typed Lambda
Calculi and Applications, pages 15–30. 2013.

[4] Z. Ariola and J. Klop. Lambda calculus with explicit recursion. Information and
Computation, 139(2):154 – 233, 1997.

[5] H. Barendregt. The lambda calculus: Its syntax and semantics, volume 103.
North Holland, 1985.

[6] H. Barendregt. Lambda calculi with types, handbook of logic in computer science
(vol. 2): background: computational structures, 1993.

[7] B. Barras. Sets in coq, coq in sets. Journal of Formalized Reasoning, 3(1), 2010.

[8] A. Bove, P. Dybjer, and U. Norell. A brief overview of agda–a functional language
with dependent types. In Theorem Proving in Higher Order Logics, pages 73–78.
Springer, 2009.

[9] V. Capretta. General recursion via coinductive types. Logical Methods in Com-
puter Science, 1(2), 2005.

[10] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs
in a dependently typed language. In Proceedings of the 41st annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
33–46. ACM, 2014.

[11] A. Church. A formulation of the simple theory of types. The journal of symbolic
logic, 5(2):56–68, 1940.

[12] A. Church. The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics
Studies). Princeton University Press, Princeton, NJ, USA, 1985.

113

[13] M. Coppo, M. Dezani-Ciancaglini, and S. R. D. Rocca. (semi)-separability of
finite sets of terms in scott’s D∞-models of the lambda-calculus. In Proceedings of
the Fifth Colloquium on Automata, Languages and Programming, pages 142–164,
London, UK, UK, 1978. Springer-Verlag.

[14] T. Coquand. Metamathematical investigations of a calculus of constructions.
Technical Report RR-1088, INRIA, September 1989.

[15] T. Coquand and G. Huet. The calculus of constructions. Inf. Comput., 76(2-
3):95–120, February 1988.

[16] H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic, Volume II.
North-Holland, 1972.

[17] G. Frege. The basic laws of arithmetic: Exposition of the system, translated and
edited with an introduction by montgomery furth, 1967.

[18] P. Fu and A. Stump. Self Types for Dependently Typed Lambda Encodings,
2014. Extended version available from http://homepage.cs.uiowa.edu/~pfu/

document/papers/rta-tlca.pdf.

[19] P. Fu, A. Stump, and J. Vaughan. A framework for internalizing relations into
type theory. In PSATTT’11: International Workshop on Proof-Search in Ax-
iomatic Theories and Type Theories, 2011.

[20] H. Geuvers. Inductive and Coinductive Types with Iteration and Recursion. In
B. Nordstrom, K. Petersson, and G. Plotkin, editors, Informal proceedings of the
1992 workshop on Types for Proofs and Programs, pages 183–207, 1994.

[21] H. Geuvers. Induction Is Not Derivable in Second Order Dependent Type Theory.
In Typed Lambda Calculi and Applications (TLCA), pages 166–181, 2001.

[22] E. Gimenez. Un calcul de constructions infinies et son application a la verification
de systemes communicants. PhD thesis, 1996.

[23] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur, 1972.

[24] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge University
Press, New York, NY, USA, 1989.

[25] T. Hardin. Confluence results for the pure strong categorical logic ccl. λ-calculi
as subsystems of ccl. Theoretical Computer Science, 65(3):291–342, July 1989.

http://homepage.cs.uiowa.edu/~pfu/document/papers/rta-tlca.pdf
http://homepage.cs.uiowa.edu/~pfu/document/papers/rta-tlca.pdf

114

[26] W. S. Hatcher. The logical foundations of mathematics, volume 10. Pergamon
Press Oxford, 1982.

[27] J. Hickey. Formal objects in type theory using very dependent types. In K. Bruce,
editor, In Foundations of Object Oriented Languages (FOOL) 3, 1996.

[28] R. Hindley. The principal type-scheme of an object in combinatory logic. Trans-
actions of the american mathematical society, pages 29–60, 1969.

[29] M. P. Jones. Typing haskell in haskell. In Haskell workshop, volume 43, page 45,
1999.

[30] G. Kimmell, A. Stump, H. D. Eades III, P. Fu, T. Sheard, S. Weirich, C. Cas-
inghino, V. Sjöberg, N. Collins, and K. Y. Ahn. Equational reasoning about
programs with general recursion and call-by-value semantics. In Proceedings of
the sixth workshop on Programming languages meets program verification, pages
15–26. ACM, 2012.

[31] J.-L. Krivine. Lambda-calculus types and models. 2002.

[32] D. Leivant. Reasoning about functional programs and complexity classes asso-
ciated with type disciplines. In Foundations of Computer Science, 1983., 24th
Annual Symposium on, pages 460–469. IEEE, 1983.

[33] P. Martin-Löf and G. Sambin. Intuitionistic type theory, volume 17. Bibliopolis
Naples,, Italy, 1984.

[34] R. Matthes. Extensions of system F by iteration and primitive recursion on
monotone inductive types. Herbert Utz Verlag, 1999.

[35] R. Milner. A theory of type polymorphism in programming. Journal of computer
and system sciences, 17(3):348–375, 1978.

[36] A. Miquel. Le Calcul des Constructions implicite: syntaxe et sémantique. PhD
thesis, PhD thesis, Université Paris 7, 2001.

[37] T. Mogensen. Efficient self-interpretation in lambda calculus. Journal of Func-
tional Programming, 2:345–364, 1994.

[38] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s
Type Theory: An Introduction. Oxford University Press, USA, July 1990.

[39] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A Nominal Theory of Objects
with Dependent Types. In L. Cardelli, editor, 17th European Conference on
Object-Oriented Programming (ECOOP), pages 201–224, 2003.

115

[40] M. Parigot. Programming with Proofs: A Second Order Type Theory. In
H. Ganzinger, editor, Proceedings of the 2nd European Symposium on Program-
ming (ESOP), pages 145–159, 1988.

[41] G. Peano. Arithmetices principia: nova methodo. Fratres Bocca, 1889.

[42] S. L. Peyton Jones. The implementation of functional programming languages
(prentice-hall international series in computer science). Prentice-Hall, Inc., 1987.

[43] C. RAFFALLI. L’ Arithmétiques Fonctionnelle du Second Ordre avec Points
Fixes. PhD thesis, L’université Paris VII, 1994.

[44] J. Rehof. Strong normalization for non-structural subtyping via saturated sets.
Inf. Process. Lett., 58:157–162, May 1996.

[45] D. Schepler. bijective function implies equal types is provably inconsistent with
functional extensionality in coq. message to the Coq Club mailing list, December
12, 2013.

[46] V. Sjöberg and A. Stump. Equality, Quasi-Implicit Products, and Large Elim-
inations. In B. Venneri, editor, Workshop on Intersection Types and Related
Systems (ITRS), 2010.

[47] M. Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):120–
127, 1995.

[48] G. Takeuti. Proof Theory. Volume 81 of Studies in logic and the foundations of
mathematics, ISSN 0049-237X. North-Holland Publishing Company, 1975.

[49] The Coq Development Team. The coq proof assistant reference manual. Version
8.3. INRIA, 2010.

[50] J. A. Vaughan. Aura: Programming with Authorization and Audit. PhD thesis,
University of Pennsylvania, Philadelphia, 2009.

[51] B. Werner. A Normalization Proof for an Impredicative Type System with Large
Elimination over Integers. In B. Nordström, K. Petersson, and G. Plotkin, edi-
tors, International Workshop on Types for Proofs and Programs (TYPES), pages
341–357, 1992.

[52] B. Werner. Une théorie des constructions inductives. PhD thesis, Université
Paris VII, 1994.

	CHAPTER
	Introduction
	Motivation

	Preliminaries
	Abstract Reduction System
	Lambda Encodings
	Church Encoding
	Scott Encoding
	Parigot Encoding

	Confluence
	Tait-Martin Löf's Method
	Hardin's Interpretation Method

	Confluence of Lambda-Mu Calculus
	Lambda-Mu Calculus
	A Fail Attempt to Prove Confluence of Lambda-Mu Calculus
	Confluence of Local Lambda-Mu Calculus

	An Attempt to Expressive Type Theory Through Internalization
	Backgrounds
	The Base system F
	Interpretation of Types in F
	Type Soundness

	Internalized Structure
	Reflective Relational Sentence-D
	Elimination Relation-E
	Interpretation-I
	Soundness Properties

	Internalized System
	Examples
	Subtyping
	Term Equality and Term-Type Inhabitation

	Summary

	Lambda Encodings with Dependent Types
	Introduction
	Overview of System S
	Induction Principle
	The Notion of Contradiction

	System S
	Lambda Encodings in S
	Natural Numbers
	Vector Encoding

	Metatheory
	Strong Normalization
	Confluence Analysis
	Morph Analysis

	0 = 1 in S
	Summary

	Lambda Encoding with Comprehension
	Frege's System F
	System G
	Consistency of System G
	Preservation Theorem for G[p]

	A Polymorphic Dependent Type System G[t]
	Proving Peano's Axioms
	Reasoning about Programs
	Termination Analysis in System G
	Preliminary
	Head Normalization
	Leibniz Equality in G

	Summary

	Implementation and Future Improvements
	The Gottlob System
	The Implemented Features of Gottlob
	Future Improvements

	BIBLIOGRAPHY

