
Proof Relevant Corecursive Resolution

Peng Fu1?, Ekaterina Komendantskaya1, Tom Schrijvers2, Andrew Pond1??

1 Computer Science, University of Dundee
2 Department of Computer Science, KU Leuven

Abstract. Resolution lies at the foundation of both logic programming
and type class context reduction in functional languages. Terminating
derivations by resolution have well-defined inductive meaning, whereas
some non-terminating derivations can be understood coinductively. Cy-
cle detection is a popular method to capture a small subset of such
derivations. We show that in fact cycle detection is a restricted form of
coinductive proof, in which the atomic formula forming the cycle plays
the rôle of coinductive hypothesis.
This paper introduces a heuristic method for obtaining richer coinduc-
tive hypotheses in the form of Horn formulas. Our approach subsumes
cycle detection and gives coinductive meaning to a larger class of deriva-
tions. For this purpose we extend resolution with Horn formula resolvents
and corecursive evidence generation. We illustrate our method on non-
terminating type class resolution problems.
Keywords: Horn Clause Logic, Resolution, Corecursion, Haskell Type
Class Inference, Coinductive Proofs.

1 Introduction

Horn clause logic is a fragment of first-order logic known for its simple syntax,
well-defined models, and efficient algorithms for automated proof search. It is
used in a variety of applications, from program verification [3] to type inference
in object-oriented programming languages [1]. Similar syntax and proof methods
underlie type class inference in functional programming languages [24,17]. For
example, the following declaration specifies equality class instances for pairs and
integers in Haskell:

instance Eq Int where ...
instance (Eq x ,Eq y)⇒ Eq (x , y) where ...

It corresponds to a Horn clause program ΦPair with two clauses κInt and κPair :

κInt : Eq Int
κPair : (Eq x ,Eq y)⇒ Eq (x , y)

Horn clause logic uses SLD-resolution as an inference engine. If a derivation
for a given formula A and a Horn clause program Φ terminates successfully with

? This author is supported by EPSRC grant EP/K031864/1.
?? This author is supported by Carnegie Trust Scotland.

substitution θ, then θA is logically entailed by Φ, or Φ ` θA. The search for a
suitable θ reflects the problem-solving nature of SLD-resolution. When the unifi-
cation algorithm underlying SLD-resolution is restricted to matching, resolution
can be viewed as theorem proving: the successful terminating derivations for A
using Φ will guarantee Φ ` A. For example, Eq (Int , Int) Eq Int ,Eq Int
Eq Int ∅. Therefore, we have: ΦPair ` Eq (Int , Int). For the purposes of this
paper, we always assume resolution by term-matching.

To emphasize the proof-theoretic meaning of resolution, we will record proof
evidence alongside the derivation steps. For instance, Eq (Int , Int) is proven by
applying the clauses κPair and κInt . We denote this by ΦPair ` Eq (Int , Int) ⇓
κPair κInt κInt .

Horn clause logic can have inductive and coinductive interpretation, via the
least and greatest fixed points of the consequence operator FΦ. Given a Horn
clause program Φ, and a set S containing (ground) formulas formed from the
signature of Φ, FΦ(S) = {σA | σB1, . . . , σBn ∈ S and B1, . . . Bn ⇒ A ∈ Φ} [18].
Through the Knaster-Tarski construction, the least fixed point of this operator
gives the set of all finite ground formulas inductively entailed by Φ. Extending
S to include infinite terms, the greatest fixed point of FΦ defines the set of all
finite and infinite ground formulas coinductively entailed by Φ.

Inductively, SLD-resolution is sound: if Φ ` A, then A is inductively entailed
by Φ. It is more difficult to characterise coinductive entailment computationally;
several approaches exist [22,18,16]. So far the most popular solution is to use
cycle detection [22]: given a Horn clause program Φ, if a cycle is found in a
derivation for a formula A, then A is coinductively entailed by Φ.

Consider, as an example, the following Horn clause program ΦAB :

κA : B x ⇒ A x
κB : A x ⇒ B x

It gives rise to an infinite derivation A x B x A x By noticing
the cycle, we can conclude that (an instance) of A x is coinductively entailed
by ΦAB . We can construct a proof evidence that reflects the circular nature of
this derivation: α = κA (κB α). This being a recursive equation expecting the
greatest fixed point solution, we can represent it with the greatest fix point ν
operator, να.κA (κB α). Now we have ΦAB ` A x ⇓ να.κA (κB α). From now
on, we call the evidence containing ν-term a corecursive evidence.

According to Gibbons and Hutton [7] and inspired by Moss and Danner [20],
a corecursive program is defined to be a function whose range is a type de-
fined recursively as the greatest solution of some equation (i.e. whose range is
a coinductive type). We can informally understand the Horn clause ΦAB as the
following Haskell data type declarations:

data B x = KB (A x)
data A x = KA (B x)

So the corecursive evidence να.κA (κB α) for A x corresponds to the corecursive
program (d :: A x) = KA (KB d). In our case, the corecursive evidence d is
that function, and its range type A x can be seen as a coinductive type.

2

Corecursion also arises in type class inference. Consider the following mutu-
ally recursive definitions of lists of even and odd length in Haskell:

data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

They give rise to Eq type class instance declarations that can be expressed using
the following Horn clause program ΦEvenOdd:

κOdd : (Eq a,Eq (EvenList a))⇒ Eq (OddList a)
κEven : (Eq a,Eq (OddList a))⇒ Eq (EvenList a)

When resolving the type class constraint Eq (OddList Int), Haskell’s standard
type class resolution diverges. The state-of-the-art is to use cycle detection [17]
to terminate otherwise infinite derivations. Resolution for Eq (OddList Int) ex-
hibits a cycle on the atomic formula Eq (OddList Int), thus the derivation can
be terminated, with corecursive evidence να.κOdd κInt (κEven κInt α).

The method of cycle detection is rather limited: there are many Horn clause
programs that have coinductive meaning, but do not give rise to detectable
cycles. For example, consider the program ΦQ:

κS : (Q (S (G x)),Q x)⇒ Q (S x)
κG : Q x ⇒ Q (G x)
κZ : Q Z

It gives rise to the following derivation without cycling:
Q (S Z) Q Z,Q (S (G Z)) Q Z,Q (G Z), Q (S (G (G Z))) When
such derivations arise, we cannot terminate the derivation by cycle detection.

Let us look at a similar situation for type classes. Consider a datatype-generic
representation of perfect trees: a nested datatype [2], with fixpoint Mu of the
higher-order functor HPTree [12].

data Mu h a = In {out :: h (Mu h) a }
data HPTree f a = HPLeaf a | HPNode (f (a, a))

These two datatypes give rise to the following Eq type class instances.

instance Eq (h (Mu h) a)⇒ Eq (Mu h a) where
In x ≡ In y = x ≡ y

instance (Eq a,Eq (f (a, a)))⇒ Eq (HPTree f a) where
HPLeaf x ≡ HPLeaf y = x ≡ y
HPNode xs ≡ HPNode ys = xs ≡ ys

≡ = False

The corresponding Horn clause program ΦHPTree consists of ΦPair and the fol-
lowing two clauses :

κMu : Eq (h (Mu h) a)⇒ Eq (Mu h a)
κHPTree : (Eq a,Eq (f (a, a)))⇒ Eq (HPTree f a)

3

The type class resolution for Eq (Mu HPTree Int) cannot be terminated by
cycle detection. Instead we get a context reduction overflow error in the Glasgow
Haskell Compiler, even if we just compare two finite data structures of the type
Mu HPTree Int .

To find a solution to the above problems, let us view infinite resolution from
the perspective of coinductive proof in the Calculus of Coinductive Constructions
[4,8]. There, in order to prove a proposition F from the assumptions F1, .., Fn, the
proof may involve not only natural deduction and lemmas, but also F , provided
the use of F is guarded. We could say that the existing cycle detection methods
treat the atomic formula forming a cycle as a coinductive hypothesis. We can
equivalently describe the above-explained derivation for ΦAB in the following
terms: when a cycle with a formula A x is found in the derivation, ΦAB gets
extended with a coinductive hypothesis α : A x . So to prove A x coinductively,
we would need to apply the clause κA first, and then clause κB , finally apply
the coinductive hypothesis. The resulting proof witness is να. κA (κB α).

The next logical step we can make is to use the above formalism to extend
the syntax of the coinductive hypotheses. While cycle detection only uses atomic
formulas as coinductive hypotheses, we can try to generalise the syntax of coin-
ductive hypotheses to full Horn formulas.

For example, for program ΦQ, we could prove a lemma e : Q x ⇒ Q (S x)
coinductively, which would allow us to form finite derivation for Q (S Z), which
is described by (e κZ). The proof of e : Q x ⇒ Q (S x) is of a coinductive
nature: if we first assume α : Q x ⇒ Q (S x) and α1 : Q C, then all we need
to show is Q (S C).3 To show Q (S C), we apply κS , which gives us Q C ,
Q (S (G C)). We first discharge Q C with α1 and then apply the coinductive
hypothesis α which yields Q (G C), and can be proved with κG and α1. So we
have obtained a coinductive proof for e, which is να.λα1.κS (α (κG α1)) α1.
We can apply similar reasoning to show that ΦHPTree ` Eq (Mu HPTree Int) ⇓
(να.λα1.κMu (κHPTree α1 (α (κPair α1 α1)))) κInt using the coinductively proved
lemma Eq x ⇒ Eq (Mu HPTree x) 4.

To formalise the above intuitions, we need to solve several technical problems.

1. How to generate suitable lemmas? We propose to observe a more general
notion of a loop invariant than a cycle in the non-terminating resolution. In Sec-
tion 3 we devise a heuristic method to identify potential loops in the resolution
tree and extract candidate lemmas in Horn clause form.

In general, it is very challenging to develop a practical method for generating
candidate lemmas based on loop analysis, since the admissibility of a loop in
reduction is a semi-decidable problem [25].

2. How to enrich resolution to allow coinductive proofs for Horn formulas?
and how to formalise the corecursive proof evidence construction? Coinductive
proofs involve not only applying the axioms, but also modus ponens and gener-
alization. Therefore, the resolution mechanism will have to be extended in order
to support such automation.

3 Note that here C is an eigenvariable.
4 The proof term can be type-checked with polymorphic recursion.

4

In Section 4, we introduce proof relevant corecursive resolution – a calculus
that extends the standard resolution rule with two further rules: one allows us
to resolve Horn formula queries, and the other to construct corecursive proof
evidence for non-terminating resolution.

3. How to give an operational semantics to the evidence produced by corecur-
sive resolution of Section 4? In particular, we need to show the correspondence
between corecursive evidence and resolution seen as infinite reduction. In Sec-
tion 5, we prove that for every non-terminating resolution resulting from a simple
loop, a coinductively provable candidate lemma can be obtained and its evidence
is observationally equivalent to the non-terminating resolution process.
In type class inference, the proof evidence has computational meaning, i.e. the
evidence will be run as a program. So the corecursive evidence should be able
to recover the original infinite resolution trace.

In Sections 6 and 7 we survey the related work, explain the limitations of our
method and conclude the paper. We have implemented our method of candidate
lemma generation based on loop analysis and corecursive resolution, and incor-
porated it in the type class inference process of a simple functional language.
Additional examples and implementation information are provided in the ex-
tended version.

2 Preliminaries: Resolution with Evidence

This section provides a standard formalisation of resolution with evidence to-
gether with two derived forms: a small-step variant of resolution and a reification
of resolution in a resolution tree.

We consider the following syntax.

Definition 1 (Basic syntax).

Term t ::= x | K | t t′
Atomic Formula A,B,C,D ::= P t1 ... tn
Horn Formula H ::= B1, ..., Bn ⇒ A
Proof/Evidence e ::= κ | e e′
Axiom Environment Φ ::= · | Φ, (κ : H)

We consider first-order applicative terms, where K stands for some constant
symbol. Atomic formulas are predicates on terms, and Horn formulas are de-
fined as usual. We assume that all variables x in Horn formulas are implicitly
universally quantified. There are no existential variables in the Horn formulas,
i.e.,

⋃
i FV(Bi) ⊆ FV(A) for B1, . . . , Bn ⇒ A. The axiom environment Φ is a set

of Horn formulas labelled with distinct evidence constants κ. Evidence terms e
are made of evidence constants κ and their applications. Finally, we often use A
to abbreviate A1, ..., An when the number n is unimportant.

The above syntax can be used to model the Haskell type class setting as
follows. Terms denote Haskell types like Int or (x , y), and atomic formulas de-
note Haskell type class constraints on types like Eq (Int , Int). Horn formulas
correspond to the type-level information of type class instances.

5

Our evidence e models type class dictionaries, following Wadler and Blott’s
dictionary-passing elaboration of type classes [24]. In particular the constants
κ refer to dictionaries that capture the term-level information of type class in-
stances, i.e., the implementations of the type class methods. Evidence application
(e e′) accounts for dictionaries that are parametrised by other dictionaries. Horn
formulas in turn represent type class instance declarations. The axiom environ-
ment Φ corresponds to Haskell’s global environment of type class instances. Note
that the treatment of type class instance declaration and their corresponding ev-
idence construction here are based on our own understanding of many related
works ([15,14,23]), which are also discussed in Section 6.

In order to define resolution together with evidence generation, we use res-
olution judgement Φ ` A ⇓ e to state that the atomic formula A is entailed by
the axioms Φ, and that the proof term e witnesses this entailment. It is defined
by means of the following inference rule.

Definition 2 (Resolution). Φ ` A ⇓ e

Φ ` σB1 ⇓ e1 · · · Φ ` σBn ⇓ en
Φ ` σA ⇓ κ e1 · · · en

if (κ : B1, ..., Bn ⇒ A) ∈ Φ

Using this definition we can show ΦPair ` Eq (Int , Int) ⇓ κPair κInt κInt .
In case resolution is diverging, it is often more convenient to consider a small-

step resolution judgement (in analogy to the small step operational semantics)
that performs one resolution step at a time and allows us to observe the inter-
mediate states.

The basic idea is to rewrite the initial query A step by step into its evidence e.
This involves mixed terms on the way that consist partly of evidence, and partly
of formulas that are not yet resolved.

Definition 3 (Mixed Terms).

Mixed term q ::= A | κ | q q′
Mixed term context C ::= • | C q | q C

At the same time we have defined mixed term contexts C as mixed terms with
a hole •, where C[q] substitutes the hole with q in the usual way.

Definition 4 (Small-Step Resolution). Φ ` q → q′

Φ ` C[σA]→ C[κ σB]
if (κ : B ⇒ A) ∈ Φ

For instance, we resolve Eq (Int , Int) in three small steps: ΦPair ` Eq (Int , Int)→
κPair (Eq Int) (Eq Int), ΦPair ` κPair (Eq Int) (Eq Int) → κPair κInt (Eq Int)
and ΦPair ` κPair κInt (Eq Int) → κPair κInt κInt . We write Φ ` q →∗ q′ to
denote the transitive closure of small-step resolution.

The following theorem formalizes the intuition that resolution and small-step
resolution coincide.

Theorem 1. Φ ` A ⇓ e iff Φ ` A→∗ e.

6

Eq (Mu HPTree Int)

Eq (HPTree (Mu HPTree) Int)

Eq (Mu HPTree (Int, Int))

Eq (HPTree (Mu HPTree) (Int, Int))

......

κ1
HPTree κ2

HPTree

κ1
Mu

Eq Int

�

κInt

κ1
HPTree

κ2
HPTree

κ1
Mu

Fig. 1: The infinite resolution tree for ΦHPTree ` Eq (Mu HPTree Int) ⇑

The proof tree for a judgement Φ ` A ⇓ e is called a resolution tree. It
conveniently records the history of resolution and, for instance, it is easy to
observe the ancestors of a node. This last feature is useful for our heuristic loop
invariant analysis in Section 3.

Our formalisation of trees in general is as follows: We use w, v to denote
positions 〈k1, k2, ..., kn〉 in a tree, where ki > 1 for 1 6 i 6 n. Let ε denote the
empty position or root. We also define 〈k1, k2, ..., kn〉 · i = 〈k1, k2, ..., kn, i〉 and
〈k1, k2, ..., kn〉 + 〈l1, ..., lm〉 = 〈k1, k2, ..., kn, l1, ..., lm〉. We write w > v if there
exists a non-empty v′ such that w = v+v′. For a tree T , T (w) refers to the node
at position w, and T (w, i) refers to the edge between T (w) and T (w · i). We use
� as a special proposition to denote success.

Resolution trees are defined as follows, note that they are a special case of
rewriting trees [13,16]:

Definition 5 (Resolution Tree). The resolution tree for atomic formula A is
a tree T satisfying:

– T (ε) = A.
– T (w · i) = σBi and T (w, i) = κi with i ∈ {1, ..., n} if T (w) = σD and

(κ : B1, ..., Bn ⇒ D) ∈ Φ. When n = 0, we write T (w·i) = � and T (w, i) = κ
for any i > 0.

In general, the resolution tree can be infinite, this means that resolution is
non-terminating, which we denote as Φ ` A ⇑. Figure 1 shows a finite fragment
of the infinite resolution tree for ΦHPTree ` Eq (Mu HPTree Int) ⇑.

We note that Definitions 2 and 4 describe a special case of SLD-resolution
in which unification taking place in derivations is restricted to term-matching.
This restriction is motivated by two considerations. The first one comes directly
from the application area of our results: type class resolution uses exactly this
restricted version of SLD-resolution. The second reason is of more general nature.
As discussed in detail in [6,16], SLD-derivations restricted to term-matching

7

reflect the theorem proving content of a proof by SLD-resolution. That is, if A
can be derived from Φ by SLD-resolution with term-matching only, then A is
inductvely entailed by Φ. If, on the other hand, A is derived from Φ by SLD-
resolution with unification and computes a substitution σ, then σA is inductively
entailed by Φ. In this sense, SLD-resolution with unification additionally has
a problem-solving aspect. In developing proof-theoretic approach to resolution
here, we thus focus on resolution by term-matching.

The resolution rule of Definition 2 resembles the definition of the consequence
operator [18] used to define declarative semantics of Horn clause Logic. In fact,
the forward and backward closure of the rule of Definition 2 can be directly used
to construct the usual least and greatest Herbrand models for Horn clause logic,
as shown in [16]. There, it was also shown that SLD-resolution by term-matching
is sound but incomplete relative to the least Herbrand models.

3 Candidate Lemma Generation

This section explains how we generate candidate lemma from a potentially in-
finite resolution tree. Based on Paterson’s condition we obtain a finite pruned
approximation (Definition 8) of this resolution tree. Anti-unification on this ap-
proximation yields an abstract atomic formula and the corresponding abstract
approximated resolution tree. It is from this abstract tree that we read off the
candidate lemma (Definition 11).

We use Σ(A) and FVar(A) to denote the multi-sets of respectively function
symbols and variables in A.

Definition 6 (Paterson’s Condition). For (κ : B ⇒ A) ∈ Φ, we say κ
satisfies Paterson’s condition if (Σ(Bi) ∪ FVar(Bi)) ⊂ (Σ(A) ∪ FVar(A)) for
each Bi.

Paterson’s condition is used in Glasgow Haskell Compiler to enforce termina-
tion of context reduction [23]. In this paper, we use it as a practical criterion to
detect problematic instance declarations. Any declarations that do not satisfy
the condition could potentially introduce diverging behavior in the resolution
tree.

If κ : A1, ..., An ⇒ B, then we have κi : Ai ⇒ B for projection on index i.

Definition 7 (Critical Triple). Let v = (w · i) + v′ for some v′. A critical
triple in T is a triple 〈κi, T (w), T (v)〉 such that T (v, i) = T (w, i) = κi, and κi

does not satisfy Paterson’s condition.

We will omit κi from the triple and write 〈T (w), T (v)〉 when it is not impor-
tant. Intuitively, it means the nodes T (w) and T (v) are using the same prob-
lematic projection κi, which could give rise to infinite resolution.

The absence of a critical triple in a resolution tree means that it has to be
finite [23], while the presence of a critical triple only means that the tree is
possibly infinite. In general the infiniteness of a resolution tree is undecidable
and the critical triples provide a convenient over-approximation.

8

Definition 8 (Closed Subtree). A closed subtree T is a subtree of a resolution
tree such that for all leaves T (v) 6= �, the root T (ε) and T (v) form a critical
triple.

The critical triple in Figure 1 is formed by the underlined nodes. The closed
subtree in that figure is the subtree without the infinite branch below node
Eq (Mu HPTree (Int , Int)). A closed subtree can intuitively be understood as
a finite approximation of an infinite resolution tree. We use it as the basis for
generating candidate lemma by means of anti-unification [21].

Definition 9 (Anti-Unifier). We define the least general anti-unifier of atomic
formulas A and B (denoted by A t B) and the least general anti-unifier of the
terms t and t′ (denoted by t t t′) as:

– P t1 ..., tn t P t′1 ..., t
′
n = P (t1 t t′1) ... (tn t t′n)

– K t1 ... tn tK t′1 ... t
′
n = K (t1 t t′1) ... (tn t t′n)

– Otherwise, AtB = φ(A,B), tt t′ = φ(t, t′), where φ is an injective function
from a pair of terms (atomic formulas) to a set of fresh variables.

Anti-unification allows us to extract the common pattern from different
ground atomic formulas.

Definition 10 (Abstract Representation). Let 〈T (ε), T (v1)〉, ..., 〈T (ε), T (vn)〉
be all the critical triples in a closed subtree T . Let C = T (ε)tT (v1)t ...tT (vn),
then the abstract representation T ′ of the closed subtree T is a tree such that:

– T ′(ε) = C
– T ′(w · i) = σBi and T ′(w, i) = κi with i ∈ {1, ..., n} if T ′(w) = σD and (κ :
B1, ..., Bn ⇒ D) ∈ Φ. When n = 0, we write T ′(w · i) = � and T ′(w, i) = κ
for any i > 0.

– T ′(w) is undefined if w > vi for some 1 6 i 6 n.

The abstract representation unfolds the anti-unifier of all the critical triples.
Thus the abstract representation can always be embedded into the original closed
subtree. It is an abstract form of the closed subtree, and we can extract the
candidate lemma from the abstract representation.

Definition 11 (Candidate Lemma). Let T be an abstract representation of a
closed subtree, then the candidate lemma induced by this abstract representation
is T (v1), ..., T (vn)⇒ T (ε), where the T (vi) are all the leaves for which T (vi)⇒
T (ε) satisfies Paterson’s condition.

Figure 2 shows the abstract representation of the closed subtree of Figure 1.
We read off the candidate lemma as Eq x ⇒ Eq (Mu HPTree x).

The candidate lemma plays a double role. Firstly, it allows us to construct a
finite resolution tree. For example, we know that Eq (Mu HPTree Int) gives
rise to infinite tree with the axiom environment ΦHPTree . However, a finite
tree can be constructed with Eq x ⇒ Eq (Mu HPTree x), since it reduces

9

Eq (Mu HPTree x)

Eq (HPTree (Mu HPTree) x)

Eq (Mu HPTree (x , x))Eq x

κ1
HPTree

κ2
HPTree

κ1
Mu

Fig. 2: The abstract representation of the closed subtree of Figure 1

Eq (Mu HPTree Int) to Eq Int , which succeeds trivially with κInt . Next we
show how to prove the candidate lemma coinductively, and such proofs will
encapsulate the infinite aspect of the resolution tree. Since an infinite resolu-
tion tree gives rise to infinite evidence, the finite proof of the lemma has to be
coinductive. We discuss such evidence construction in detail in Section 4 and
Section 5.

4 Corecursive Resolution

In this section, we extend the definition of resolution from Section 2 by intro-
ducing two additional rules: one to handle coinductive proofs, and another – to
allow Horn formula goals, rather than atomic goals, in the derivations. We call
the resulting calculus corecursive resolution.

Definition 12 (Extended Syntax).

Proof/Evidence e ::= κ | e e′ | α | λα.e | να.e
Axiom Environment Φ ::= · | Φ, (e : H)

To support coinductive proofs, we extend the syntax of evidence with func-
tions λα.e, variables α and fixed point να.e (which models the recursive equation
α = e expecting the greatest solution). Also we allow the Horn clauses H in the
axiom environment Φ to be supported by any form of evidence e (and not nec-
essarily by constants κ).

Definition 13 (Corecursive Resolution). The following judgement for core-
cursive resolution extends the resolution in Definition 2.

Φ ` σB1 ⇓ e1 · · · Φ ` σBn ⇓ en
Φ ` σA ⇓ e e1 · · · en

if (e : B1, ..., Bm ⇒ A) ∈ Φ

Φ, (α : A⇒ B) ` A⇒ B ⇓ e HNF(e)

Φ ` A⇒ B ⇓ να.e (Mu)
Φ, (α : A) ` B ⇓ e
Φ ` A⇒ B ⇓ λα.e (Lam)

Note that HNF(e) means e has to be in head normal form λα.κ e. This require-
ment is essential to ensure the corecursive evidence satisfies the guardedness

10

condition.5 The Lam rule implicitly assumes the treatment of eigenvariables,
i.e. we instantiate all the free variables in A⇒ B with fresh term constants.

We implicitly assume that axiom environments are well-formed.

Definition 14 (Well-formedness of environment).

· ` wf
Φ ` wf

Φ,α : H ` wf
Φ ` wf

Φ, κ : H ` wf

Φ ` H ⇓ e
Φ, e : H ` wf

As an example, let us consider resolving the candidate lemma Eq x ⇒
Eq (My HPTree x) against the axiom environment ΦHPTree . This yields the
following derivation, where Φ1 = ΦHPTree , (α : Eq x ⇒ Eq (Mu HPTree x)) and
Φ2 = Φ1, (α1 : Eq C):

Φ2 ` Eq C ⇓ α1

Φ2 ` Eq C ⇓ α1 Φ2 ` Eq C ⇓ α1

Φ2 ` Eq (C ,C) ⇓ (κPair α1 α1)

Φ2 ` Eq (HPTree (C ,C)) ⇓ α (κPair α1 α1)

Φ2 ` Eq (HPTree (Mu HPTree C)) ⇓ κHPTree α1 (α (κPair α1 α1))

(Φ2 = Φ1, α1 : Eq C) ` Eq (Mu HPTree C) ⇓ κMu (κHPTree α1 (α (κPair α1 α1)))

Φ1 ` Eq x ⇒ Eq (Mu HPTree x) ⇓ λα1.κMu (κHPTree α1 (α (κPair α1 α1)))

ΦHPTree ` Eq x ⇒ Eq (Mu HPTree x) ⇓ να.λα1.κMu (κHPTree α1 (α (κPair α1 α1)))

Once we prove Eq x ⇒ Eq (Mu HPTree x) from ΦHPTree by corecursive resolu-
tion, we can add it to the axiom environment and use it to prove the ground query
Eq (Mu HPTree Int). Let Φ′ = ΦHPTree , (να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) :
Eq x ⇒ Eq (Mu HPTree x)). We have the following derivation.

Φ′ ` Eq Int ⇓ κInt

Φ′ ` Eq (Mu HPTree Int) ⇓ (να.λα1.κMu (κHPTree α1 (α (κPair α1 α1)))) κInt

5 Operational Semantics of Corecursive Evidence

The purpose of this section is to give operational semantics to corecursive reso-
lution, and in particular, we are interested in giving operational interpretation
to the corecursive evidence constructed as a result of applying corecursive res-
olution. In type class applications, for example, the evidence constructed for a
query will be run as a program. It is therefore important to establish the ex-
act relationship between the non-terminating resolution as a process and the
proof-term that we obtain via corecursive resolution. We prove that corecursive
evidence indeed faithfully captures the otherwise infinite resolution process of
Section 2.

5 See the extended version for a detailed discussion.

11

In general, we know that if Φ ` A →∗ C[σA], then we can observe the
following looping infinite reduction trace:

Φ ` A→∗ C[σA]→∗ C[σC[σ2A]]→∗ C[σC[σ2C[σ3A]]]→ ...

Each iteration of the loop gives rise to repeatedly applying substitution σ to the
reduction context C.

In principle, this mixed term context C may contain an atomic formula B that
itself is normalizing, but σB spawns another loop. Clearly this is a complicating
factor. For instance, a loop can spawn off additional loops in each iteration.
Alternatively, a loop can have multiple iteration points such as Φ ` A →∗
C[σ1A, σ2A, ..., σnA].6 These complicating factors are beyond the scope of this
section. We focus only on simple loops. These are loops with a single iteration
point that does not spawn additional loops.

We use |C| to denote the set of atomic formulas in the context C. If all
atomic formulas D ∈ |C| are irreducible with respect to Φ, then we call C a
normal context.

Definition 15 (Simple Loop). Let Φ ` B →∗ C[σB], where C is normal. If
for all D ∈ |C|, we have that Φ ` σD →∗ C′[D] with |C′| = ∅, then we call
Φ ` B →∗ C[σB] a simple loop.

In the above definition, the normality of C ensures that the loop has a single
iteration point. Likewise the condition Φ ` σD →∗ C′[D], which implies that
Φ ` σnD →∗ C′n[D], guarantees that each iteration of the loop spawns no
further loops.

Definition 16 (Observational Point). Let Φ ` B →∗ C′[σB] be a simple loop
and Φ ` B →∗ q. We call q an observational point if it is of the form C[δB]. We
use O(B)Φ to denote the set of observational points in the simple loop.

For example, we have the following infinite resolution trace generated by the
simple loop (with the subterms of observational points underlined).

ΦHPTree ` Eq (Mu HPTree x)→ κMu (Eq (HPTree (Mu HPTree) x))→
κMu (κHPTree (Eq x) (Eq (Mu HPTree (x, x))))→

κMu (κHPTree (Eq x) (κMu (Eq (HPTree (Mu HPTree) (x, x)))))→
κMu(κHPTree(Eq x)(κMu(κHPTree(Eq(x, x))(Eq(Mu HPTree ((x, x), (x, x)))))))→

κMu(κHPTree(Eq x)(κMu(κHPTree(κPair (Eq x)(Eq x)))(Eq (Mu HPTree ((x , x), (x , x))))))) → ...

In this case, we have σ = [(x , x)/x] and Φ ` σ(Eq x)→ κPair (Eq x) (Eq x).
The corecursive evidence encapsulates an infinite derivation in a finite fix-

point expression. We can recover the infinite resolution by reducing the corecur-
sive expression. To define small-step evidence reduction, we first extend mixed
terms to cope with richer corecursive evidence.

Definition 17. Mixed term q ::= A | κ | q q′ | α | λα.q | να.q

Now we define the small-step evidence reduction relation q q′.

6 Note that we abuse notation here to denote contexts with multiple holes. Also we
abbreviate identical instantiation of C[D, . . . ,D] those multiple holes to C[D].

12

Definition 18 (Small Step Evidence Reduction). q q′

C[να.q] ν C[[να.q/α]q] C[(λα.q) q′] β C[[q′/α]q]

Note that for simplicity we still use the mixed term context C as defined in
Section 2, but we only allow the reduction of an outermost redex, i.e., a redex
that is not a subterm of some other redex. In other words, reduction unfolds
the evidence term strictly downwards from the root, this follows closely the way
evidence is constructed during resolution.

We call the states where we perform a ν-transition corecursive points. Note
that ν-transitions unfold a corecursive definition. These correspond closely to
the observational points in resolution.

Definition 19 (Corecursive Point). Let q′ ∗ q. We call q a corecursive
point if it is of the form C[(να.e) q1... qn]. We use S(q′) to denote the set of
corecursive points in q′ ∗ q.

Let e ≡ να.λα1.κMu (κHPTree α1 (α (κPair α1 α1))). We have the following
evidence reduction trace (with the subterms of corecursive points underlined):

e (Eq x) ν (λα1.κMu (κHPTree α1 (e (κPair α1 α1)))) (Eq x) β

κMu (κHPTree (Eq x) (e (κPair (Eq x) (Eq x)))) ν

κMu (κHPTree (Eq x) ((λα1.κMu (κHPTree α1 (e (κPair α1 α1)))) (κPair (Eq x) (Eq x)))) β

κMu(κHPTree(Eq x)(κMu(κHPTree(κPair (Eq x)(Eq x))(e(κPair (κPair (Eq x)(Eq x))(κPair (Eq x)(Eq x)))))))
 ν ...

Observe that the mixed term contexts of the observational points and the
corecursive points in the above traces coincide. This allows us to show observa-
tional equivalence of resolution and evidence reduction without explicitly intro-
ducing actual infinite evidence.

The following theorem shows that if resolution gives rise to a simple loop,
then we can obtain a corecursive evidence e (Theorem 2 (1)) such that the
infinite resolution trace is observational equivalent to e’s evidence reduction trace
(Theorem 2 (2)).

Theorem 2 (Observational Equivalence). Let Φ ` B →∗ C[σB] be a simple
loop and |C| = {D1, ..., Dn}. Then:
1. We have Φ ` D1, ..., Dn ⇒ B ⇓ να.λα1....λαn.e for some e.
2. C[δB] ∈ O(B)Φ iff C[(να.λα.e) q] ∈ S((να.λα.e) D).

The proof can be found in the extended version.

6 Related Work

Calculus of Coinductive Constructions. Interactive theorem prover Coq pio-
neered implementation of the guarded coinduction principle ([4,8]). The Coq
termination checker may prevent some nested uses of coinduction, e.g. a proof

13

term such as (να.λx.κ0 (κ1 x (α (α x)))) κ2 is not accepted by Coq, while from
the outermost reduction point of view, this proof term is productive.

Loop detection in term rewriting. Distinctions between cycle, loop and non-
looping has long been established in term rewriting research ([5,25]). For us,
detecting loop is the first step of invariant analysis, but we also want to extract
corecursive evidence such that it captures the infinite reduction trace.

Non-terminating type-class resolution. Hughes (Section 4 [11]) observed the
cyclic nature of the instance declarations instance Sat (EqD a) ⇒ Eq a and
instance Eq a ⇒ Sat (EqD a). He proposed to treat the looping context
reduction as failure, in which case the compiler would need to search for an
alternative reduction.

The cycle detection method [17] was proposed to generate corecursive evi-
dence for a restricted class of non-terminating resolution. It is supported by the
current Glasgow Haskell Compiler.

Hinze and Peyton Jones [10] came across an example of an instance of the
form instance (Binary a,Binary (f (GRose f a))) ⇒ Binary (GRose f a),
but discovered that it causes resolution to diverge. They suggested the follow-
ing as a replacement: instance (Binary a,∀b . Binary b ⇒ Binary f b) ⇒
Binary (GRose f a). Unfortunately, Haskell does not support instances with
polymorphic higher-order instance contexts. Nevertheless, allowing such implica-
tion constraints would greatly increase the expressitivity of corecursive resolu-
tion. In the terminology of our paper, it amounts to extending Horn formulas
to intuitionistic formulas. Working with intuitionistic formulas would require a
certain amount of searching, as the non-overlapping condition for Horn formulas
is not enough to ensure uniqueness of the evidence. For example, consider the
following axioms:

κ1 : (A⇒ B x)⇒ D (S x)
κ2 : A,D x⇒ B (S x)

κ3 : ⇒ D Z

We have two distinct proof terms for D (S (S (S (S Z))))):

κ1 (λα1.κ2 α1 (κ1 (λα2.κ2 α1 κ3)))
κ1 (λα1.κ2 α1 (κ1 (λα2.κ2 α2 κ3)))

This is undesirable from the perspective of generating evidence for type class.
Instance declarations and (Horn Clause) logic programs. The process of sim-

plifying type class constraints is formally described as the notion of context
reduction by Peyton Jones et. al. [15]. Section 3.2 of the same paper also de-
scribes the form of type class instance declarations. Type class evidence in its
connection with type system is studied in Mark Jones’s thesis [14, Chapter 4.2].
Instance declarations can also be interpreted as single head simplification rules
in Constraints Handling Rules (CHR) [23], which implies that instance declara-
tions can be modeled as Horn formulas naturally. To our knowledge, the tradition
of studying logic programming proof-theoretically dates back to Girard’s sug-
gestion that the cut rule can model resolution for Horn formulas [9, Chapter

14

13.4]. Alternatively, Miller et. al. [19] model Horn formulas using cut-free se-
quent calculus. Context reduction, instance declaration and their connection to
proof relevant resolution are also discussed under the name of LP-TM (logic
programming with term-matching) in Fu and Komendantskaya [6, Section 4.1].

7 Conclusion and Future Work

We have introduced a novel approach to non-terminating resolution. Firstly,
we have shown that the popular cycle detection methods employed for logic
programming or type class resolution can be understood via more general coin-
ductive proof principles ([4,8]). Secondly, we have shown that resolution can be
enriched with rules that capture the intuition of richer coinductive hypothesis
formation. This extension allows to provide corecursive evidence to some deriva-
tions that could not be handled by previous methods. Moreover, corecursive
resolution is formulated in a proof-relevant way, i.e. proof-evidence construction
is an essential part of corecursive resolution. This makes it easier to integrate it
directly into type class inference.

We have implemented the techniques of Sections 3 and 4, and have incorpo-
rated them as part of the evidence construction process for a simple language
that admits previously non-terminating examples.7

Future Work In general, the interactions between different loops can be
complicated. Consider ΦPair with the following declarations (denoted by ΦM):

κM : Eq (h1 (M h1 h2) (M h2 h1) a)⇒ Eq (M h1 h2 a)
κH : (Eq a,Eq ((f1 a), (f2 a)))⇒ Eq (H f1 f2 a)
κG : Eq ((g a), (f (g a)))⇒ Eq (G f g a)

A partial resolution tree generated by the query Eq (M H G Int) is described
in Figure 3. In this case the cycle (underlined with the index 1) is mutually
nested with a loop (underlined with index 2). Our method in Section 3 is not
able to generate any candidate lemmas. Yet there are two candidate lemmas for
this case (with the proof of e2 refer to e1):

e1 : (Eq x ,Eq (M G H x))⇒ Eq (M H G x)
e2 : Eq x ⇒ Eq (M G H x)

We would like to improve our heuristics to allow generating multiple candidate
lemmas, where their corecursive evidences mutually refer to each other.

There are situations where resolution is non-terminating but does not form
any loop such as Φ ` A→∗ C[σA]. Consider the following program ΦD:

κ1 : D n (S m)⇒ D (S n) m
κ2 : D (S m) Z ⇒ D Z m

7 See the extended version for more examples and information about the implemen-
tation. Extended version is available from authors’ homepages.

15

Eq (M H G Int)
1

Eq (H (M H G) (M G H) Int

Eq ((M H G Int), (M G H Int))

Eq (M G H Int)
2

Eq (G (M G H) (M H G) Int)

Eq ((M H G Int), (M G H ((M H G) Int)))

Eq (M G H ((M H G) Int))
2

Eq (M H G Int)
1

κPair

κPair

κG

κM

Eq (M H G Int)
1

κ1
Pair

κ2
Pair

Eq Int

�

κInt

κ1
H

κ2
H

κM

Fig. 3: A Partial Resolution tree for ΦM ` Eq (M H G Int) ⇑

For query D Z Z , the resolution diverges without forming any loop. We would
have to introduce extra equality axioms in order to obtain finite corecursive ev-
idence.8 We would like to investigate the ramifications of incorporating equality
axioms in the corecursive resolution in the future.

We plan to extend the observational equivalence result of Section 5 to cope
with more general notions of loop and extend our approach to allow intuition-
istic formulas as candidate lemmas. Another avenue for future work is a formal
proof that the calculus of Definition 13 is sound relative to the the greatest Her-
brand models [18], and therefore reflects the broader notion of the coinductive
entailment for Horn clause logic as discussed in the introduction.

Acknowledgements

We thank Patricia Johann and the FLOPS’16 reviewers for their helpful com-
ments, and Frantǐsek Farka for many discussions. Part of this work was funded
by the Flemish Fund for Scientific Research.

References

1. D. Ancona and G. Lagorio. Idealized coinductive type systems for imperative
object-oriented programs. RAIRO - Theory of Information and Applications,
45(1):3–33, 2011.

2. R. Bird and L. Meertens. Nested datatypes. In Mathematics of program construc-
tion, pages 52–67. Springer, 1998.

8 See the extended version for a solution in Haskell using type family and more dis-
cussion.

16

3. N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko. Horn clause solvers
for program verification. In Fields of Logic and Computation II, volume 9300 of
Lecture Notes in Computer Science, pages 24–51. Springer, 2015.

4. T. Coquand. Infinite objects in type theory. In Types for Proofs and Programs,
pages 62–78. Springer, 1994.

5. N. Dershowitz. Termination of rewriting. Journal of symbolic computation, 1987.
6. P. Fu and E. Komendantskaya. A type-theoretic approach to resolution. In 25th

International Symposium, LOPSTR 2015. Revised Selected Papers, 2015.
7. J. Gibbons and G. Hutton. Proof methods for corecursive programs. Fundamenta

Informaticae Special Issue on Program Transformation, 66(4):353–366, 2005.
8. C. E. Gimenez. Un calcul de constructions infinies et son application a la

vérification de systèmes communicants. 1996.
9. J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types, volume 7. Cambridge

University Press Cambridge, 1989.
10. R. Hinze and S. Peyton-Jones. Derivable type classes. Electronic notes in theoretical

computer science, 41(1):5–35, 2001.
11. J. Hughes. Restricted data types in Haskell. In Haskell Workshop, volume 99,

1999.
12. P. Johann and N. Ghani. Haskell programming with nested types: A principled

approach. 2009.
13. P. Johann, E. Komendantskaya, and V. Komendantskiy. Structural Resolution for

Logic Programming. In Tech. Communications of ICLP’15, July 2015.
14. M. P. Jones. Qualified types: theory and practice, volume 9. Cambridge University

Press, 2003.
15. S. P. Jones, M. Jones, and E. Meijer. Type classes: An exploration of the design

space. In In Haskell Workshop, 1997.
16. E. Komendantskaya and P.Johann. Structural resolution: a framework for coin-

ductive proof search and proof construction in Horn clause logic. 2015. Submitted,
http://arxiv.org/abs/1511.07865.

17. R. Lämmel and S. Peyton-Jones. Scrap your boilerplate with class: Extensible
generic functions. In Proc. 10th ACM SIGPLAN Int. Conference on Functional
Programming, ICFP ’05, pages 204–215, New York, NY, USA, 2005. ACM.

18. J. W. Lloyd. Foundations of logic programming. Springer Science & Business
Media, 1987.

19. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foun-
dation for logic programming. Annals of Pure and Applied logic, 51(1):125–157,
1991.

20. L. S. Moss and N. Danner. On the foundations of corecursion. Logic Journal of
IGPL, 5(2):231–257, 1997.

21. G. D. Plotkin. A note on inductive generalization. Machine intelligence, 1970.
22. L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending

logic programming with coinduction. In Automata, Languages and Programming,
pages 472–483. Springer, 2007.

23. M. Sulzmann, G. J. Duck, S. L. Peyton Jones, and P. J. Stuckey. Understand-
ing functional dependencies via constraint handling rules. J. Funct. Program.,
17(1):83–129, 2007.

24. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proc. 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 60–76. ACM, 1989.

25. H. Zantema and A. Geser. Non-looping rewriting. Universiteit Utrecht, Faculty of
Mathematics & Computer Science, 1996.

17

A Proof of Theorem 2

Theorem 3. Let Φ ` B →∗ C[D1, ..., Dn, σB] with |C| = ∅ and Di are normal
for all i. Suppose Φ ` σDi →∗ Ci[Di], where |Ci| = ∅ for any Di. We have the
following:

1. Φ ` D1, ..., Dn ⇒ B ⇓ να.λα1....λαn.e.

2. Let e′ ≡ να.λα1....λαn.e. We have:

C′[σmB] ∈ O(B)Φ iff C′[e′ Cm1 [D1]... Cmn [Dn]] ∈ S(e′ D).

Proof. 1. We have the following finite derivation.

...
Φ, α : D ⇒ B,α : D ` B ⇓ e

Φ, α : D ⇒ B ` D ⇒ B ⇓ λα1....λαn.e

Φ ` D ⇒ B ⇓ να.λα1....λαn.e

By Theorem 1, we just need to reduce B to a proof term using the rules
Ψ1 = Φ, α : D ⇒ B,α : D. We have the following reduction:

Ψ1 ` B →∗ C[D1, ..., Dn, (σB)]→∗ C[α1...αn, (σB)]→
C[α1, ..., αn, (α (σ D1)...(σ Dn))]→∗ C[α1, ...αn, (α C1[D1]...Cn[Dn])]→

C[α1...αn(α C1[α1]... Cn[αn])]

Thus we have the corecursive evidence να.λα1...αn.e for D1, ..., Dn ⇒ B,
and e ≡ C[α1, ...αn, (α C1[α1] ... Cn[αn])].

2. Using the same notation in (1), let e′ ≡ να.λα1...αn.e, we can observe fol-
lowing equivalence reduction traces:

Φ ` B →∗ C[D1, ..., Dn, (σB)]→∗
C[D1, ..., Dn, C[C1[D1], ..., Cn[Dn], (σ2B)]]→ ...

(e′ D1... Dn) ∗ C[D1, ...Dn, (e
′ C1[D1] ... Cn[Dn])] ∗

C[D1, ..., Dn, C[C1[D1], ..., Cn[Dn], (e′ (C1[C1[D1]]) ... (Cn[Cn[Dn]]))]] ∗ ...

We proceed by induction on m. When m = 0, it is obvious. Let m = k + 1.
By IH, we know that C′[σkB] ∈ O(B)Φ iff C′[e′ Ck1 [D1]... Ckn[Dn]] ∈ S(e′ D).
We have Φ ` C′[σkB]→∗ C′[C[σkD1, ..., σ

kDn, (σ
k+1B)]]→∗

C′[C[Ckn[D1], ..., Ckn[Dn], (σk+1B)]].

On the other hand, C′[e′ Ck1 [D1]... Ckn[Dn]] ∗

C′[C[Ckn[D1], ..., Ckn[Dn], (e′ Ck+1
1 [D1]... Ck+1

n [Dn])]]. Thus we have the obser-
vational equivalence.

18

B Weak Head Normalization of Corecursive Evidence

Definition 20.

Formula F,G ::= A | ∀x.F | F ⇒ F ′

Evidence/Proofs e ::= κ | α | λα.e | e e′ | να.e
Contexts/Axioms Φ ::= · | e : F,Φ

We write G1, ..., Gn ⇒ A as a shorthand for G1 ⇒ ...⇒ Gn ⇒ A. Note that
Horn formulas are special case of formulas.

Definition 21. Weak Head reduction context C ::= • | C e

Definition 22 (Weak Head Reduction). e e′

C[να.e] ν C[[να.e/α]e] C[(λα.e) e′] β C[[e′/α]e]

Note that weak head reduction context do not allow reduction under the
constant κ. It is more restricted than the context in Section 2.

Definition 23 (General Corecursive Resolution).

Φ ` σG1 ⇓ e1 · · · Φ ` σGn ⇓ en
Φ ` σA ⇓ κ e1 · · · en

if (e : G1, ..., Gm ⇒ A) ∈ Φ

Φ, α : F ` F ⇓ e HNF(e)

Φ ` F ⇓ να.e
Φ, α : G ` B ⇓ e
Φ ` G⇒ B ⇓ λα.e

Definition 24 (Howard’s Type System).

(a : F) ∈ Φ
Φ ` a : F

(Assump)
Φ ` e1 : F ′ Φ ` e2 : F ′ ⇒ F

Φ ` e2 e1 : F
(App)

Φ, α : F ′ ` e : F

Φ ` λα.e : F ′ ⇒ F
(Abs)

Φ ` e : F x /∈ FV(Φ)

Φ ` e : ∀x.F (Gen)

Φ ` e : ∀x.F
Φ ` e : [t/x]F

(Inst)
Φ, α : F ` e : F HNF(e)

Φ ` να.e : F
(Mu)

Theorem 4. If Φ ` F ⇓ e, then Φ ` e : F .

Proof. By induction on the derivation of Φ ` F ⇓ e.

Theorem 5. If Φ ` e : F , then e is terminating with respect to weak head
reduction.

19

Proof. Sketch. The proof is very similar to standard normalization proof for
simply typed lambda calculus. The only tricky rule is the Mu rule:

Φ, α : G⇒ A ` e : G⇒ A HNF(e)

Φ ` να.e : G⇒ A

We want to show να.e is in the reducible set of type G⇒ A. Since e = λα.κ e,
we just need to show for any reducible u of type G, we have (να.e) u ν

(λα.κ [να.e/α]e) u is terminating. This is the case due to the expression is
guarded by κ.

C Examples

In this section, we show several examples with the prototype that we developed.
They are also available from the examples directory in https://github.com/

Fermat/corecursive-type-class.

C.1 Example 1

module bush where

axiom (Eq a, Eq (f (f a))) => Eq (HBush f a)

axiom Eq (f (Mu f) a) => Eq (Mu f a)

axiom Eq Unit

auto Eq (Mu HBush Unit)

The keyword axiom introduces an axiom and the keyword auto requests
the system to prove the formula automatically using the heuristic corecursive
hypothesis generation that we described in Section 3. If we save the above code
in the bush.asl file, and, at the command line, type asl bush.asl, then we
get the following output:

Parsing success!

Type Checking success!

Program Definitions

Ax0 :: (Eq (f (Mu f) a)) => Eq (Mu f a)

= Ax0

Ax1 :: (Eq a, Eq (f (f a))) => Eq (HBush f a)

= Ax1

Ax2 :: Eq Unit

= Ax2

genLemm4 :: (Eq var_1) => Eq (Mu HBush var_1)

= \ b0 . Ax0 (Ax1 b0 (genLemm4 (genLemm4 b0)))

goalLem3 :: Eq (Mu HBush Unit)

= genLemm4 Ax2

Axioms

Ax2 :: Eq Unit

20

https://github.com/Fermat/corecursive-type-class
https://github.com/Fermat/corecursive-type-class

Ax1 :: (Eq a, Eq (f (f a))) => Eq (HBush f a)

Ax0 :: (Eq (f (Mu f) a)) => Eq (Mu f a)

Lemmas

goalLem3 :: Eq (Mu HBush Unit)

genLemm4 :: (Eq var_1) => Eq (Mu HBush var_1)

The corecursive hypothesis generated is genLemm4 :: (Eq var_1) => Eq

(Mu HBush var_1), its proof is \ b0 . Ax0 (Ax1 b0 (genLemm4 (genLemm4

b0))). The proof for Eq (Mu HBush Unit) is genLemm4 Ax2.

Using axiom and auto allows us to quickly experiment with different small
examples. Here is the corresponding type-class code.

module bush where

data Unit where

Unit :: Unit

data Maybe a where

Nothing :: Maybe a

Just :: a -> Maybe a

data Pair a b where

Pair :: a -> b -> Pair a b

data HBush f a where

HBLeaf :: HBush f a

HBNode :: a -> (f (f a)) -> HBush f a

data Mu f a where

In :: f (Mu f) a -> Mu f a

data Bool where

True :: Bool

False :: Bool

class Eq a where

eq :: Eq a => a -> a -> Bool

and = \ x y . case x of

True -> y

False -> False

instance => Eq Unit where

eq = \ x y . case x of

Unit -> case y of

Unit -> True

21

instance Eq a, Eq (f (f a)) => Eq (HBush f a) where

eq = \ x y . case x of

HBLeaf -> case y of

HBLeaf -> True

HBNode a c -> False

HBNode a c1 -> case y of

HBLeaf -> False

HBNode b c2 -> and (eq a b) (eq c1 c2)

instance Eq (f (Mu f) a) => Eq (Mu f a) where

eq = \ x y . case x of

In s -> case y of

In t -> eq s t

term1 = In HBLeaf

term2 = In (HBNode Unit term1)

test = eq term2 term1

test1 = eq term2 term2

reduce test

reduce test1

Inspecting the output of this code, we see that the result of the evaluation
of test (resp. test1) is False (resp. True). It is quite verbose and probably
irrelevant to see the type-class code, so in the following we will show examples
using only the axiom, auto and lemma keywords.

C.2 Example 2

module lam where

axiom Eq (f (Mu f) a) => Eq (Mu f a)

axiom (Eq a, Eq (f a), Eq (f a), Eq (f (Maybe a))) => Eq (HLam f a)

axiom Eq Unit

axiom Eq a => Eq (Maybe a)

lemma (Eq x) => Eq (Mu HLam x)

lemma Eq (Mu HLam Unit)

Of course, our heuristic auto Eq (Mu HLam Unit) also works for this case.
But we can specify the corecursive hypothesis as lemma and guided our mini-
prover to prove the final goal Eq (Mu HLam Unit).

C.3 Example 3

Are there any examples where auto fails, but where we can come to the rescue
with a lemma? The answer is yes.

axiom (Eq a, Eq (Pair (f1 a) (f2 a))) => Eq (H1 f1 f2 a)

22

axiom Eq (Pair (g a) (f (g a))) => Eq (H2 f g a)

axiom Eq (h1 (Mu h1 h2) (Mu h2 h1) a) => Eq (Mu h1 h2 a)

axiom (Eq a, Eq b) => Eq (Pair a b)

axiom Eq Unit

auto Eq (Mu H1 H2 Unit)

If we run this code, our mini-prover diverges, since this example require multiple
lemmas in order to prove the final goal Eq (Mu H1 H2 Unit).

axiom (Eq a, Eq (Pair (f1 a) (f2 a))) => Eq (H1 f1 f2 a)

axiom Eq (Pair (g a) (f (g a))) => Eq (H2 f g a)

axiom Eq (h1 (Mu h1 h2) (Mu h2 h1) a) => Eq (Mu h1 h2 a)

axiom (Eq a, Eq b) => Eq (Pair a b)

axiom Eq Unit

lemma (Eq x, Eq (Mu H2 H1 x)) => Eq (Mu H1 H2 x)

lemma Eq x => Eq (Mu H2 H1 x)

lemma Eq (Mu H1 H2 Unit)

C.4 Example 4

Are there any examples where even lemma does not work? We believe that the
following is such an example.

axiom D n (S m) => D (S n) m

axiom D (S m) Z => D Z m

Note that auto D Z Z will not work because the corecursive hypothesis gen-
erated by our method is not provable. The following is a solution in Haskell using
type families. We want to point out that using type families is a way to intro-
duce equality axioms for addition, and these equality axioms are not derivable
from the original axioms. The ability to learn addition seems to require a higher
notion of intelligence.

{-# LANGUAGE Rank2Types, TypeFamilies, UndecidableInstances #-}

data Z

data S n

data D a b

type family Add m n

type instance Add n Z = n

type instance Add m (S n) = Add (S m) n

k1 :: D n (S m) -> D (S n) m

k1 = undefined

k2 :: D (S m) Z -> D Z m

k2 = undefined

f :: (forall n. D n (S m) -> D (S (Add m n)) Z) -> D Z m

f g = k2 (g (f (g . k1)))

23

	Proof Relevant Corecursive Resolution

