
Complexity of Regex Crosswords

Stephen Fenner Daniel Padé

February 2019

Abstract

In a regular expression crossword puzzle, one is given two non-empty lists 〈〈R1, . . . , Rm〉 and 〈C1, . . . , Cn〉〉
over some alphabet, and the challenge is to fill in an m×n grid of characters such that the string formed
by the ith row is in L(Ri) and the string in the jth column is in L(Cj). We consider a restriction of this
puzzle where all the Ri are equal to one another and similarly the Cj . We consider a 2-player version
of this puzzle, showing it to be PSPACE-complete. Using a reduction from 3SAT, we also give a new,
simple proof of the known result that the existence problem of a solution for the restricted (1-player)
puzzle is NP-complete.

1 Introduction

Regular expression crossword puzzles (regex crosswords, for short) share some traits in common with tra-
ditional crossword puzzles and with sudoku. One is typically given two lists R1, . . . , Rm and C1, . . . , Cn of
regular expressions labeling the rows and columns, respectively, of an m × n grid of blank squares. The
object is to fill in the squares with letters so that each row, read left to right as a string, matches (i.e., is
in the language denoted by) the corresponding regular expression, and similarly for each column, read top
to bottom. The solution itself may have some additional property, e.g., spelling out a phrase or sentence in
row major order.

Regex crosswords have enjoyed some recent popularity, having been discussed in several popular media
sources [AA13, Bla13], and thanks to some websites where people can solve the puzzles online [AAa, AAb].
Some variants of the basic puzzle have also been posed [AAc].

A natural complexity theoretic question to ask is: How hard is it to solve a regex crossword in general?1

The folklore answer—easy to show and apparently found by several people independently—is that it is
NP-hard, and the corresponding decision problem (“Does a solution exist?”) is NP-complete.

In this paper, we consider two variations on the basic regex crossword puzzle: (1) a restriction of the
puzzle where all the row regexes R1, . . . , Rm are equal and all the column regexes C1, . . . , Cn are equal;
and (2) a 2-player game where players take turns attempting to fill in successive rows and columns of the
grid. Variation (2) can also be restricted to having equal row regexes and equal column regexes for the two
players. These variants have corresponding decision problems: Let RC be the solution existence problem for
variation (1), RCG′ the first-player-win problem for variation (2), and RCG the first-player-win problem
for the restricted version of (2) (see Sections 3 and 4 for precise definitions). Our main result is that RCG′

and RCG are both PSPACE-complete (see Section 4, below). We give explicit polynomial reductions from
TQBF to RCG′ and from RCG′ to RCG.

The NP-completeness of RC was shown in [Fen14],2 but the polynomial reduction used there was
indirect and needlessly complicated for its purpose. As a warm-up to our main result, we give a simple,
straightforward polynomial reduction from 3SAT to RC.

In the spirit of the Post Correspondence Problem in computability, our results have the pedagogical
benefit of showing the hardness of some decision problems in automata theory that are simply stated and
accessible to any undergraduate theory student. The proofs given here are similarly accessible.

1Glen Takahashi posted this question to Stack Exchange in 2012 [Tak14a], but it has been asked by others independently.
2In the same paper, a restriction of RC where the unique row and column regexes are equal to each other was also shown

NP-complete.

1



1.1 Connections to other work

Regex crossword techniques bear some similarity to results in cellular automata, to the Cook-Levin theorem,
and to results of Berger from the 1960s showing the undecidability of tiling the plane with Wang tiles (the
so-called “domino problem” [Ber66], which was the first proof that there exist finite tile sets that tile the
whole plane but only aperiodically).

The particular problems we study here are perhaps chiefly inspired by results in the theory of two-
dimensional languages (picture languages) from formal language theory [GR97]. Given two regexes R and C
for the rows and columns, respectively, the unbounded (R,C)-crossword problem asks whether a solution grid
exists of any size. One can show that the recognizable picture languages coincide exactly with the letter-to-
letter projections of (R,C)-crossword solutions [GR97, Theorem 8.6] (except that the empty picture may also
be included in the language). Recognizable picture languages can be defined in terms of finite objects known
as tiling systems [GR92] (cf. [GR97, Definition 7.2]), and given a tiling system T , it is not hard to show
that one can effectively find two regular expressions R and C (over some alphabet) and a projection π that
defines the same picture language as T . The existence problem for recognizable picture languages (“Given
a tiling system, does it define a nonempty language?”) is known to be undecidable ([GR97, Theorem 9.1]),
and so, putting these results together, we get that the existence problem for unbounded (R,C)-crosswords is
undecidable as well. A much more direct reduction from the halting problem to unbounded (R,C)-crossword
existence was given in [Fen14], where it was also shown that one could even fix the column regex C once
and for all, as well as restricting R and C to be over a binary alphabet.

The unbounded regex crossword problem naturally assumes one regex R for all rows and one regex C
for all columns, since the number of rows and columns is unspecified. This directly motivates us to impose
similar restrictions on the bounded regex crossword problems we study here, where the dimensions of the
grid are given as part of the input.

We give some basic concepts and definitions in Section 2. Section 3 gives our polynomial reduction
from 3SAT to RC. This reduction suggests the technique we use to show our main results about 2-player
crossword games in Section 4. We give open problems in Section 5.

2 Preliminaries

We fix an alphabet Σ once and for all and assume it contains the symbols 0 and 1 at least. For the NP-
completeness result of Section 3, one can assume that Σ = {0, 1}. For the PSPACE-completeness result of
Section 4, it suffices that Σ = {0, 1, 2}.

2.1 3SAT

An instance of 3SAT is described by a Boolean formula ϕ over k variables x1, . . . , xk, given in conjunctive
normal form:

ϕ := Ci ∧ · · · ∧ Cd

where each Ci is a clause of three literals (each a variable or its negation) connected by disjunctions:

Ci := `i,1 ∨ `i,2 ∨ `i,3

The question is, is ϕ true (is it satisfied) for some assignment of the variables. This is the canonical
complete problem for NP. In Section 3 we show that the language RC — the language of (R,C)-crosswords
— is NP-complete by giving reduction from 3SAT.

2.2 TQBF

An instance of TQBF is described by a closed Boolean formula ϕ, given in prenex normal form:

ϕ := ∃x0∀y0 · · · ∃xk−1∀yk−1∃xkϕ̃(x0, y0, . . . , xk−1, yk−1, xk) (1)

2



where ϕ̃ is a quantifier-free Boolean formula which can be assumed to be in conjunctive normal form with c
clauses and 2k + 1 variables, for some positive c and k.

The sentence ϕ is naturally viewed as a two-player game, where the players alternate choosing truth
values for the variables in order, the first player wishing to make the formula ϕ̃ true and second player
wishing to make it false. The question to be answered is whether ϕ is true when the quantified variables
range over the Boolean values False and True. 3 That is, whether the first player has a winning strategy
in the corresponding game.

As 3SAT is for NP, TQBF is the canonical complete problem for PSPACE. In Section 4, RCG —
the language of (R,C)-crossword games (defined below) with a winning strategy for the first player — is
PSPACE-complete by reduction from TQBF.

3 (R,C)-crosswords

For two given regexes R and C over Σ, an (R,C)-crossword solution is a two-dimensional m by n grid of
symbols from the alphabet. Interpreting rows and columns as strings, each row must match R and each
column must match C.

An (R,C)-crossword is represented as a 4-tuple 〈0m, 0n, R, C〉 where the number of rows and columns
are given in unary as m and n, and R and C are row and column regexes over Σ (defined in the usual way,
using the operators ∪, ‖, ∗, where ‖ or juxtaposition both indicate concatenation).

Definition 1. The language RC is the set of all (R,C)-crosswords for which there exists an (R,C)-crossword
solution of the given dimensions.

RC was shown to be NP-complete in [Fen14] via an indirect, complicated reduction. In this section, we
give a much more straightforward polynomial reduction from 3SAT to RC.

3.1 The reduction

Given a Boolean formula ϕ with k ≥ 1 variables and d clauses as defined in Section 2.1 above (where we can
assume d ≥ 3), we construct an instance 〈0d+1, 0k+d, R, C〉 of RC as follows: For 1 ≤ i ≤ d, we define ti to
be the regex

ti = 0i−110d−i = 0 · · ·0︸ ︷︷ ︸
i−1

1 0 · · ·0︸ ︷︷ ︸
d−i

.

Then we define

S = 1d0∗

R =

(
d⋃

i=1

tiRi

)
∪ S

C = 1 (0∗10∗) ∪ 0(0∗ ∪ 1∗)

where S is called the ‘spine,’ and for 1 ≤ i ≤ d, Ri is derived from the formula ϕ as follows:

Ri = (ai,1 · · · ai,k) ∪ (bi,1 · · · bi,k) ∪ (ci,1 · · · ci,k)

where, for 1 ≤ j ≤ k,

ai,j =

 1 if the first literal in the ith clause is xj
0 if the first literal in the ith clause is xj
(1 ∪ 0) otherwise

and bi,j , ci,j are set similarly according to the second and third literals in each clause.
We show that ϕ is satisfiable iff an (R,C)-crossword solution exists.

3More precisely, the question is whether the sentence ∃x0∀y0 · · · ∃xk−1∀yk−1∃xk[ϕ̃(x0, y0, . . . , xk−1, yk−1, xk) = True] holds
in the two-element Boolean algebra ({False,True},∧,∨,¬).

3



First, assuming that ϕ is satisfiable, where 〈z1, . . . , zk〉 is a satisfying assignment, then this sets up a d+1
by d+ k crossword solution of the following form:

c1 c2 c3 . . . cd cd+1 . . . cd+k

r0 1 1 1 . . . 1 0 . . . 0

r1 1 0 0 . . . 0 z1 . . . zk

r2 0 1 0 . . . 0 z1 . . . zk

...
...

...
. . .

...
...

z1 . . . zk

rc 0 0 0 . . . 1 z1 . . . zk

Figure 1: Solution

Here, the first row is the spine (matching S); the block on the left below the spine is akin to an identity
matrix; and the block on the right consists of columns where each column is either all 1’s or all 0’s (save the
first element, which is always 0), according to each zi. An overview representation is shown below:

Spine

Calibration
Region

Clause
Verification

Where the spine is the string that matches S. The ‘clause verification region’ is determined by the
satisfying assignment to ϕ, i.e., if zj is true in the satsifying assignment, then column cd+j will match the
regex 01∗; otherwise it will match 00∗.

By construction, it is clear that if ϕ is satisfiable, then the (R,C)-crossword constructed above is solvable.
In other words, there is a way to fill in the crossword such that all rows match the regular expression R, and
all columns match the regular expression C.

In fact, since the calibration region requires only one 1 per row and column, the solution given in table 1
is not the only valid one. It is easy to see that once any solution is given, any rearranging of the (non-spine)
rows gives another valid solution. Due to this fact it is guaranteed that for each i, some row matches tiRi,
which is important for the converse below.

3.2 An (R,C)-crossword solution guarantees ϕ is satisfiable

To complete the proof, it must be shown that if the crossword is solvable, this implies that ϕ is satisfiable.
We do this via a series of lemmas.

Here we assume an (R,C)-crossword solution exists with rows 〈r0, . . . , rd〉 and columns 〈c1, . . . , cd+k〉.
Observe that since each rj matches R, it must either start with d many 1’s or else have exactly one 1

among its first d symbols.

Lemma 2. The string r0 matches S.

Proof. Assume not. Then r0 must match tiRi for some 1 ≤ i ≤ d. Fix such an i. The picture below shows
the case where r0 matches t2R2, i.e., r0 = 010 · · · :

c1 c2 c3 c4 . cd . .

r0 0 1 0 0 . 0

...

4



From the definition of C, we see that ci must match 1(0∗10∗), that is, ci = 10j−110d−j for some 1 ≤ j ≤ d.
The picture below shows the case where i = 2 and j = 2, that is, where ci = c2 = 10100 · · · 0:

c1 c2 c3 c4 . cd . .

r0 0 1 0 0 . 0

r1 0

r2 1

r3 0

...
...

For rj , we have two cases, both leading to contradiction:

rj matches S: This requires that all of the first d columns other than ci match 01∗, which means rj′ starts
with 1i−101d−i · · · for all j′ ≥ 1 such that j′ 6= j. These rows do not match R.

rj matches tiRi, that is, rj = 0i−110d−i · · · : This requires that all of the first d columns other than ci
match 0∗, which means no rows other than rj and r0 will match R, since they all start with 0d.

This proves the lemma.

By Lemma 2, the first d columns must match 1(0∗10∗); we call such columns calibration columns.

Lemma 3. No row other than r0 matches S.

Proof. Again assume this not the case. By the previous lemma, r0 must match S. Suppose rj also matches
S for some j ≥ 1. Then C forces rj′ to start with d many 0’s for all 1 ≤ j′ 6= j, because the calibration
columns are only allowed a single 1 below the spine. Thus none of these rj′ matches R.

Lemma 4. For any i, 1 ≤ i ≤ d, some row matches tiRi

Proof. By Lemmas 2 & 3, we have that r0 is the only row to match the spine S. Since R = (
⋃d

i=1 tiRi)∪ S,
it follows that each of the other rows matches tiRi for some i. For the purposes of contradiction, assume that
there is some tiRi not matched by any row. Then by the pigeonhole principle, there must be two distinct
rows rn and rm both matching t`R` for the same `. By the definition of t`, the column c` will thus have at
least two 1’s:

c1 . c`−1 c` c`+1 . cd cd+1 .

r0 1 . 1 1 1 . 1 .

...
...

rn 0 . 0 1 0 . 0 .

...
...

rm 0 . 0 1 0 . 0 .

...

But then column c` does not match C. This completes the proof.

Lemma 5. ϕ is satisfiable.

5



Proof. Because of the spine in the first row, note that for 1 ≤ j ≤ k, cd+j matches either 01∗ or 00∗. Set

zj =

{
1 if cd+j matches 01∗,
0 if cd+j matches 00∗.

We show that 〈z1, . . . , zk〉 is a satisfying truth assignment for ϕ. Consider the ith clause Ci of ϕ. By
Lemma 4, some non-spine row matches tiRi. Let r be the suffix of that row obtained by removing its first
d symbols. Then r matches either ai,1 · · · ai,k, bi,1 · · · bi,k, or ci,1 · · · ci,k. Suppose r matches ai,1 · · · ai,k (the
other two cases are handled similarly). Let xj be the variable mentioned by the first literal `i,1 of Ci. If
`i,1 = xj , then ai,j = 1, whence r has a 1 as its jth symbol, whence cd+j matches 01∗, whence zj = 1, which
makes `i,1 true, satisfying Ci. Similarly, if `i,1 = xj , then zj = 0, also satisfying Ci.

Since i was arbitrary, we have that ϕ is satisfied by 〈z1, . . . , zk〉.

4 (R,C)-crossword games

For two given regexes R and C over Σ, an (R,C)-game is a two-player combinatorial game that can be
thought of as follows: we start with a two-dimensional grid X with m rows and n columns (m and n are
positive integers). X is initially empty. Player 1, who we call Rose, fills in the first row of X with symbols
from Σ to form a string matching R.

Player 2, who we call Colin, responds by filling the remainder of the first column of X with symbols from
Σ so that the entire column matches C. Rose then fills the remainder of the second row so that it matches
R, then Colin the remainder of the second column to match C, etc. The first player unable to fill a row
(respectively, column) in this way loses, and the other player wins.4

We represent an (R,C)-game as a 4-tuple 〈0m, 0n, R, C〉, where m and n are positive integers (the number
of rows and columns of the grid, respectively), and R and C are the corresponding regexes over Σ (defined
in the usual way, using the operators ∪, ‖, ∗).

Note that the numbers m and n are given in unary.

Definition 6. The language RCG is the set of all (R,C)-games where Rose has a winning strategy.

4.1 RCG ∈ PSPACE

It is straightforward to observe that RCG ∈ PSPACE. This follows from the properties of (R,C)-games:
Given an instance of RCG of size N = m · n,

• all game positions are representable by strings of polynomial length (in N),

• any play of the game lasts for at most polynomially many turns, and

• given any game position, whether a given next move is legal can be determined in polynomial space
(polynomial time, in fact).

For this it is crucial that the dimensions of the board be given in unary. If the dimensions were given in
binary, then we conjecture that the corresponding language would be complete for EXPSPACE. Also note
that the regex matching problem (“Given a regex E and string w, does w match E?”) is in P.

4.2 Hardness of RCG

Here is the main result of our paper.

Theorem 7. TQBF ≤p RCG.

4For the last move of the game, Rose or Colin may encounter a row or column, respectively, that is already completely filled
in. In this case, she or he wins if and only if the row or column matches the corresponding regular expression.

6



To prove Theorem 7, our main result, we first consider a variant of RCG, where each row and each
column may correspond to a different regex, that is, the input is a pair 〈〈R1, . . . , Rm〉, 〈C1, . . . , Cn〉〉 of lists
of regexes. Rose and Colin alternate turns as before, but on her ith turn, Rose must fill the remainder of the
ith row so that it matches Ri, and similarly, on his jth turn, Colin must fill the remainder of the jth column
so that it matches Cj . Call this variant RCG′.

We show our main result in two steps: in Lemma 8 we show how to polynomially reduce TQBF to
RCG′; then we give a polynomial reduction from RCG′ to RCG (Theorem 9 below). In using RCG′, the
goal is to first consider a ‘simpler’ game to verify that there is a correspondence between the formulæ in
TQBF and the possible games in RCG.

Lemma 8. TQBF ≤p RCG′.

Proof. Given an instance ϕ of TQBF as in Equation (1) of Section 2.2 with c clauses and 2k+1 variables, we
construct an equivalent instance of RCG′ with m := k+ c+1 rows and n := k+ c columns. The intersection
of the first k + 1 rows and first k + 1 columns we will call the variable region. There are c rows below this
region, one for each clause of ϕ̃, which we collectively call the clause region. The regular expressions for each
player in RCG′ are over the alphabet {0, 1} and are defined as follows (with an explanation afterward): for
1 ≤ i ≤ m, we let

Ri :=

{
(0 ∪ 1)

∗
0c−1 if 1 ≤ i ≤ k + 1,

(0 ∪ 1)
∗
1(0 ∪ 1)

∗
0c−1 if k + 2 ≤ i ≤ m,

and for all 1 ≤ i ≤ n, we let

Ci :=


⋃

a,b∈{0,1}
(0 ∪ 1)

i−1
ab(0 ∪ 1)

k−i‖Siab if 1 ≤ i ≤ k,⋃
a∈{0,1}

(0 ∪ 1)
k
a‖Ta if i = k + 1,

0∗ if k + 2 ≤ i ≤ n,

where given 1 ≤ i ≤ k + 1, and a, b ∈ {0,1}, the regexes Siab and Ta are defined as follows: First, for
1 ≤ j ≤ c let

uj :=

 0 if xi−1 occurs negatively in the jth clause,
1 if xi−1 occurs positively in the jth clause,
⊥ if xi−1 does not occur in the jth clause.

vj :=

 0 if yi−1 occurs negatively in the jth clause,
1 if yi−1 occurs positively in the jth clause,
⊥ if yi−1 does not occur in the jth clause.

Now for 1 ≤ j ≤ c, define

dj :=

{
1 if uj = a or vj = b,
0 otherwise.

ej :=

{
1 if uj = a,
0 otherwise.

Finally, we let Siab := d1‖ · · · ‖dn and Ta := e1‖ · · · ‖en.
Each of the first k+ 1 rows and columns corresponds to the truth value (0 or 1) of one or two particular

variables in the original formula, as depicted in Figure 2. The remainder of the rows (c of them) correspond
to the clauses of ϕ.

x0 ? ? . ?

y0 x1 ? . . . ?

? y1 x2 . . . ?

...
. . .

. . .
. . .

...

? ? . yk−1 xk

Figure 2: The layout of the variable region. The question marks represent either 0 or 1.

7



Here is how this RCG′ game reflects the original instance of TQBF viewed as a game. When Rose
plays the ith row (for 1 ≤ i ≤ k + 1) she is able to choose the truth value of xi−1 by placing a 0 or 1 in
the corresponding square in Figure 2 (Rose can play any binary string in the remainder of her row, because
Ri = (0 ∪ 1)

∗
). Then when Colin plays the remainder of the ith column according to Ci, he can similarly

choose the truth value of yi−1 by placing a 0 or 1 in the corresponding square. However, because of the Siab

component of Ci, Colin is forced to then place a 1 in each of the last c positions corresponding to a clause
that is satisfied by the truth settings of these two variables. (The minor exception is the (k + 1)st column,
where there is only the variable xk to consider.)

Also note that in order for Rose to complete the board, there must be a 1 in at least one of the first k+ 1
positions in every row of the clause region. That is, Rose can win just when the chosen truth values of the
variables satisfy all clauses of ϕ̃, making the two games equivalent. Our construction is clearly polynomial
time, which finishes the proof.

4.3 Constraining the Players

Theorem 9. RCG′ ≤p RCG.

The rest of this section is a proof of Theorem 9. To reduce from RCG′ to RCG we need to provide
a method to consolidate the families of regular expressions into one regex per player. Here, we present a
generic construction that forces the players to play in order, which can be applied to any RCG′ game —
forcing each player to play their families of regexes in index order.

Given an arbitrary instance G := 〈〈R1, . . . , Rm〉, 〈C1, . . . , Cn〉〉 of RCG′, we construct an equivalent
instance of RCG. Our construction requires the alphabet Σ to contain a third symbol “2” that is not part
of any string matching any of the Ri or Ci. We currently do not know how to remove this requirement.
We can assume that the given RCG′ grid is square, i.e., m = n: Suppose this is not the case; for example,
suppose m < n. Then we can pad the grid with n−m bottom rows by

• concatenating each Ci with 0n−m on the right, and

• defining Ri := 1∗ for m < i ≤ n,

yielding an evidently equivalent n× n game. We can do something similar if m > n. The instance of RCG
we construct from G will then be a (2n+ 1)× (2n+ 1) game H := 〈02n+1, 02n+1, R, C〉. We may also assume
that n ≥ 2.

The regular expressions R and C we construct for the respective players are given below, again with
explanations afterwards:

8



R := 210∗ ∪ (2)

n−2⋃
i=0

0i130n−i−2

I

‖0i10n−i−1

II

∪ (3)

00n−211
Ir

‖0n−11
II

∪ (4)

n⋃
i=1

0i10n−i

III

‖Ri (5)

(a) Rose’s regular expression. Regex (2) is the
‘spine’, while regexes (3–4) define the ‘calibra-
tion’ region (I, II). Regex (5) continues calibra-
tion in region III while also including the row
regexes from G.

C := 210∗ ∪ (6)

n−2⋃
i=0

0i130n−i−2

I

‖0i10n−i−1

III

∪ (7)

00n−211
Ic

‖0n−11
III

∪ (8)

n⋃
i=1

0i10n−i

II

‖Ci ∪ (9)

(0 ∪ 1 ∪ 100 ∪ 00∗10)2∗ (10)

(b) Colin’s regular expression. Regex (6) is the
‘spine’, regexes (7–8) are the calibration region
(I and III), regex (9) continues calibration in re-
gion II while also including the column regexes
from G, and regex (10) is a ‘bomb’ to punish
Rose for cheating.

Figure 3: The regular expressions wrapping games in RCG. Regexes are bracketed with the regions they
describe, illustrated in Figure 4a.

Figure 4a illustrates how H ‘wraps’ around the game G: players first fill in the spine, then regions I, II,
and III before simulating the game G in the lower right square (light grey).

I

Ir

Ic

III IV

II

S
p

in
e

Spine

(a) Regions of the board
(b) An example of normal play

Figure 4: Regions to constrain the players. Each ‘block’ is a n× n square.

4.4 Normal Play

By a round, we mean a pair of consecutive turns, starting with Rose. We index the rounds starting with
round 0. Normal play is in three stages:

Spine: In round 0, both players play the spine, i.e., a string matching 210∗.

Calibration: In round i, where 1 ≤ i ≤ n, Rose and Colin each play a ‘calibration string,’ i.e. either the
string matching 0i130n−i−2‖0i10n−i−1 (if i < n) or 00n−211‖0n−11 (if i = n).

Simulation: Rose and Colin now simulate the given RCG′ game: In round (n + i), for 1 ≤ i ≤ n, Rose
plays a string matching 0i10n−i−1‖Ri (if she can), and Colin plays a string matching 0i10n−i−1‖Ci

(if he can).

9



Figure 4b illustrates the state of the grid after round n of normal play (here, n = 16). If either player
deviates from normal play, we say that the first player to do so is cheating. The next lemmas show that
Colin cannot cheat, and if Rose cheats, then Colin can force her to lose in a constant number of rounds by
playing a bomb, i.e., a string matching (0 ∪ 1 ∪ 100 ∪ 00∗10)2∗, once or twice.

Lemma 10. In round 0, if Rose does not play the spine, then Colin can win; otherwise, Colin must also
play the spine.

Proof. If Rose does not play 210∗, she has two choices for the first character. If she chooses 0, say, then
Colin has a quick kill by playing a bomb (see Figure 5), with similar results if she cheats with a 1.

0:

0 ? ? ? 0 ? ? ?

2

2

2

1:

0 ? ? ?

2 1 0 0

2

2

0 1 ? ?

2 1 0 0

2 1

2 0

2:

0 1 ? ?

2 1 0 0

2 1 0 0

2 0

0 1 1 ?

2 1 0 0

2 1 0 0

2 0 2

Figure 5: Each round when Rose cheats with 0 · · · in her first move and Colin plays a bomb. Note that
Rose has no regex to match the prefix 20. We replace a ‘?’ with a 1 in round 1 to show the worst case, where
Colin must survive through round 2 (not required in the 0 case).

In either case, Rose would quickly lose. If Rose does play 210∗ on her first turn, Colin must play a string
prefixed with 2, his only option matching the regex 210∗.

Lemma 11. After normal play through round (i − 1) for 1 ≤ i ≤ n, Rose prefers regex (3) to regex (5) in
round i.

Proof. If i = 1, then Rose must play a string with prefix 1, and so she must play a string matching regex (3).
Now suppose i ≥ 2, and consider the following portion of the board at the start of round i when both players
have been playing normally:

1 1 0 0

1 1 1 0

0 1

0 0

10



Rose has a choice of regexes (3) or (5), as each can match a string prefixed by 0i−11. Say Rose chooses
regex (5), thus playing a string matching 0i−110n−i‖Ri−1. Colin can then respond with a bomb:

1 1 0 0

1 1 1 0

0 1 0 0

0 0

(a) Rose plays regex (5)

1 1 0 0

1 1 1 0

0 1 0 0

0 0 2

(b) Colin plays regex (10),
Rose loses

Rose cannot then play any string with prefix 0i2, so she loses in round (i+ 1).

Lemma 12. Colin cannot cheat in rounds 1 through n.

Proof. By Lemma 10, we begin round 1 with the spine having been played by both players. Rose is then
forced to play a string prefixed with 1, the only matching regex being regex (3) with i = 0: 1110n−2‖10n−1.
From this point on through round n, assuming Rose plays normally, Colin will be faced with prefix 0i−111
in round i, and thus must play a string matching regex (7) or (8), i.e., play normally.

The preceding lemmas show that normal play is optimal for both players (even required for Colin) through
round n. Thus we can assume normal play through round n, filling regions II and III of the grid with 1’s
along their diagonals and 0’s elsewhere (as with the identity matrix).

Lemma 13. Assume normal play through round n. For 1 ≤ i ≤ n, in round (n+ i), Rose must play a string
matching 0i10n−i‖Ri and Colin must play a string matching 0i10n−i‖Ci.

Proof. In round (n + i), Rose and Colin are both faced with prefix 0i10n−i, and the only regexes that this
matches are the respective regexes given above for Rose and Colin.

In rounds (n+ 1) through 2n, the players are essentially playing the game G in region IV, so the winner
of H is the winner of G. This completes the proof of Theorem 9.

5 Open Problems

The most immediate question arising from our work is whether RCG is PSPACE-hard restricted to a
binary alphabet. Our proof shows only that it is PSPACE-hard for a ternary alphabet. Doing without the
third symbol “2” in the alphabet currently seems like a daunting task, despite the fact that under normal
play, that symbol appears only once in the upper left-hand corner.

Another question is whether we still get PSPACE-hardness if we restict the regexes R and C to be equal
to each other. If one can show PSPACE-hardness for RCG′ restricted so that Ri = Ci for all i, then it
may be easy to get R = C for the constructed instance of RCG, since these two latter regexes are close to
being equal anyway.

Acknowledgments

We would like to thank Thomas Thierauf for several interesting discussions on this topic and to Joshua
Cooper for finding for us a particularly challenging and fun regex crossword puzzle. We are also grateful to
Klaus-Jörn Lange for suggesting the connection between our work and the theory of picture languages.

11



References

[AAa] http://regexcrossword.com.

[AAb] http://www.regexcrosswords.com.

[AAc] MIT Mystery Hunt. http://www.mit.edu/ puzzle.

[AAd] Royal dinner. http://regexcrossword.com/challenges/experienced/puzzles/1.

[AA13] February 2013. Slashdot discussion, http://games.slashdot.org/story/13/02/13/2346253/can-you-
do-the-regular-expression-crossword.

[Ber66] Robert Berger. The Undecidability of the Domino Problem. Number 66 in Memoirs of the
American Mathematical Society. American Mathematical Society, Providence, Rhode Island, 1966.
MR0216954.

[Bla13] Lucy Black. Can you do the regular expression crossword? I Programmer, February
2013. http://www.i-programmer.info/news/144-graphics-and-games/5450-can-you-do-the-regular-
expression-crossword.html.

[Fen14] S. Fenner. The complexity of some regex crossword problems, 2014.

[GR92] D. Giammarresi and A. Restivo. Recognizable picture languages. International Journal of Pattern
Recognition and Artificial Intelligence, pages 31–46, 1992.

[GR97] D. Giammarresi and A. Restivo. Two-dimensional languages. In A. Salomaa and G. Rosenberg,
editors, Handbook of Formal Languages, volume 3, chapter 96, pages 215–267. Springer-Verlag,
1997.

[LS97] M. Latteux and D. Simplot. Recognizable picture languages and domino tiling. Theoretical Com-
puter Science, 178(1-2):275–283, 1997. Note.

[RR79] Azriel Rosenfeld and Werner Rheinboldt. Picture Languages. Formal Models for Picture Recogni-
tion. Computer science and applied mathematics. Elsevier Inc, Academic Press Inc, 1979.

[Tak14a] Glen Takahashi. Are regex crosswords NP-hard?, September 2014. CS Stack Exchange question
30143, answered by FrankW; http://cs.stackexchange.com/questions/30143/are-regex-crosswords-
np-hard.

[Tak14b] Glen Takahashi. Are regex crosswords NP-hard? CS Stack Exchange question 30143, answered
by FrankW, 2014.

12

http://cs.stackexchange.com/questions/30143/are-regex-crosswords-np-hard.
http://cs.stackexchange.com/questions/30143/are-regex-crosswords-np-hard.

	Introduction
	Connections to other work

	Preliminaries
	3SAT
	TQBF

	(R,C)-crosswords
	The reduction
	An (R,C)-crossword solution guarantees phi is satisfiable

	(R,C)-crossword games
	RCG in PSPACE
	Hardness of RCG
	Constraining the Players
	Normal Play

	Open Problems

