PHYS 704
Homework 5

Daniel Padé
March 2, 2016

1. (a) Construct the free-space Green function G(x,y;z’,y’) for two-
dimensional electrostatics by integrating 1/R with respect to (2’ —
z) between the limits +£7 where Z is taken to be very large. Show
that apart from an inessential constant, the Green function can
be written alternately as

Gr,y:0',y) = —In (2 =) + (y = y/)’]
= —In [0® + 0* — 200 cos(¢ — ¢')]
Solution. Use the following definitions:
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Expanding to first order in %—Z yields

2+;7
062
272
472 + o?
o2
=1In (422 + az) —Ina?
G(Z > a)=mn47* —Ina?

G=1In

=1In

~ G,y 2, y) = —Ina?
——In[(@-2)+(y-y)’]
Changing to cylindrical coordinates yields
Gz, y;0',y) = —In [0* + 0 — 200 cos(¢ — ¢')]

(b) Show explicitly by separation of variables in polar coordinates
that the Green function can be expressed as a Fourier series in
the azimuthal coordinate,

1 o= . ,
_ im(¢p—¢’) /
G = Py _E e gm(0,0)

where the radial Green functions satisfy

li ( ,agm) _ 22 — _47TM
000 \° 0¢ 2 0

Note that g,,(p, ¢') for fixed p is a different linear combination of
the solutions of the homogenous radial equation (2.68) for ¢’ < o
and for ¢’ > p, with a discontinuity of slope at ¢’ = ¢ determined
by the source delta function

Solution. The defining equations of the greens function

/S;VQG(Qv ¢y 0, ¢")o'do'd¢' = —4x
V?Glo, ;0 ¢') x 6(0— 0)d(¢ — ¢')
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can be satisfied if

de—)do— )
0

V?G = —4

Applying the laplacian to the given expansion yields:
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Showing that the expansion is correct.

(c) Complete the solution and show that the free-space Green function
has the expansion

Glo.0id ) = ~m(@2) +2 Y (%) -coslmio — )
m=1 >

where o (0-) is the smaller (larger) of ¢ and ¢’

Solution. Since g,,(0,0) = P(p,¢') is a solution to the (split)
Laplace equation, g, can be given by

( /) o Amglm QI < Q
gm0, 0 B.d o> g

Continuity dictates that

AQO = Bmg_m

Am = amgim7 Bm == amgm
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Giving

N m

Qi (%) o <o
gm(@a QI) = 0 m

Qi (?) o >0

The discontinuity in the derivative is determined by the laplace
equation for the Green function:
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From part a, go = — In p2, so
G(o,0) In(0-2) + i L (9<)|m| im(¢—¢')
0,0)=—1In(o — (=] e
g Im| \ o>

m=—00,m#0

— 1 (0<\" oo 1 o \" o
= —In(p 4+ —(—> e~ im(é—¢") + _(_ eim(¢—¢")
CRRD G 2l
00 1 m ‘ , ‘ ,
=—In(e-%) + Y — (Q_<) (6_m<¢_¢) | pim(o—0 ))
m=1 0>

(0?42 mi (%) costnto - )

Where the absolute values preserve the relations on o, 0~
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2. Two dimensional electric quadrupole focusing fields for particle acceler-
ators can be modeled by a set of four symmetrically placed line charges,
with linear charge densities )\ as shown in the left hand figure (the
right-hand figure shows the electric field lines)

The charge density in two dimensions can be expressed as

(0.0) =23 (150 -5 (6- )

n=0

(a) Using the Green function expansion from Problem 2.17c¢, show
that the electrostatic potential is

=1

2(0.0) = ﬂioz%ﬂ(&) cos [(4k + 2)¢]
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Solution.

¥(0.0) = o [ (0G0 010 ) s
A 3

= o {— (@) +23 1 (%) on mio - ) }

n=0
A 1 [o\" 5 " nm
B 2#60;E<g> ;(_ )" cos [m(gb— 7)}

Since the In term cancels after summing over n
Expanding the second sum yields:

nz: " cos [ (¢ — —)]
= cos(m¢) — cos (m(b — %) + cos (m¢ — mm) — cos ( ¢ — 3771_7?)
= cos(mo) — cos(me) cos (5 ) + sin(me) sin (7= ) +---

The first two terms show that m must be a multiple of 2, and the

second two show that it must be an odd multiple of 2 (otherwise
the sum is 0):

i " cos [ (¢ — —)] = 2 cos(mo)

for m =22k +1) =4k +2

A 9 1 o< 4k+2
voo)= o> g () emln 2

(b) Relate the solution of part a to the real part of the complex func-
tion

o) P [(z—z’a)(eria)]

47eg (z—a)(z+a)

where z = z + iy = pe’®. Comment on the connection to Problem
2.3
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Solution.

Since
Z 1 | 1+ 7
— = —In -
1—-Z7
n odd
1 l
= 9(0.0) = R {1 l
n
o 27€
1 _
\ L
(1 Ll w (1 w
A 0< "oo
=3 R < In
o <1+— w) (1 Q>e’¢)
\ B O< O<
The interior solution has oo = p and o~ = a so the solution
becomes
A +iae™®) (o — iae®
d(p,0) = R < In (g A ) (Q . )
27eg (0 + ae™?) (o — ae'?)
= R{w(o)]
The exterior solution has o~ = p and oo = a so the solution
becomes

(¢ + ae®) (0 — ae®)

B(0.0) = 7 {m (ic -+ ac®) (ig - >] }

Multiply the fraction by i* to obtain ® = R [w(o)]
This is related to problem 2.3 since that problem can be solved
with the original line charge and 3 image charges, corresponding
to the 4 line charges surrounding the accelerator. Simply take one
of the line charges to be at (g, yo) where zq = yo
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(c) Find expressions for the Cartesian components of the electric field
near the origin, expressed in terms of x and y. Keep the k = 0
and k = 1 terms in the expansion. For y = 0 what is the relative
magnitude of the & =1 (2%-pole) contribution to E, compared to
the k = 0 (22-pole or quadrupole) term?

Solution. The Cartesian components of the electric field are given

by
0P sinf 0o
E,=—cos— + —_—
do o 0¢
0P cosfod
E,=—sinf— — —
Y sin 90 s 00

For ¢ < a we have

0 _ 2\ <§)4k+1 cos [p(4k + 2)]

0_Q N aTmey

109 2) f: <£)4'““ sin [p(4% + 2)]

006~ ame 2= \a

k=0

Substituting into the original expressions for the components of

E:

E. = (j:;o ; <§>4k+1 {cos [¢ (4k + 2)] cos ¢ + sin [¢ (4k + 2)] sin ¢ }
20 0t
() sk

Ly = _cjr);o z:: (§>4k+1 —sin ¢ cos [¢ (4k + 2)] — cos ¢ sin [¢ (4k + 2)]}

Up to k = 1, this yields:
2 5
E, = A {Q cos ¢ + (g) 00854

a

ameg | a
2 5
B, = F sin 3¢ + (9) sin 74
amey | a a



PHYS 704 Homework 5 Daniel Padé

Fory=0, ¢ =0,

5
B, =12 {Qi(g> ]
amey | a a

The relative strength of the k = 0 and k& = 1 terms is o*



