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Abstract—We propose mNetS, a system that enables the
coexistence of indoor millimeter-wave (mmWave) networking
and sensing for at-home physical rehabilitation and continuous
health diagnostics. Although mmWave signal has been shown to
effectively capture human activities/posture, running networking
and sensing applications simultaneously remains a challenge.
Typically, sensing can only be performed opportunistically to
minimize the impact on networking, resulting in low-rate data
capture with irregular spacing that affects sensing accuracy.
To overcome this challenge, mNetS leverages idle times within
the data transfer process to perform sensing opportunistically.
Next, using a customized Dynamic Graph Convolutional Neural
Network (DGCNN), mNetS extracts relevant features from low-
rate sensing samples that are adaptively combined and regressed
to estimate high-rate sensing samples. To demonstrate the ef-
fectiveness of mNetS, we collect signal reflections from various
human activities that involve diverse movements of different body
parts. We train and test mNetS on these data samples, and our
results show a significant improvement in estimating high-rate
signal samples, qualitatively and quantitatively. Such high-rate
signal samples estimated by mNetS improves the performance
of a typical human activity sensing application such as the
classification of activity markedly over reduced rate samples or
high-rate samples estimated through a naive linear interpolation.

Index Terms—mmWave, Sensing, PCD, Graph Neural Net-
works

I. INTRODUCTION

Continuous sensing of human activity at home has proved
to be useful for numerous health applications, such as remote
physical therapy, injury prevention, and detection of abnormal
posture or gait. In-person appointments for physical ther-
apy can be time-consuming and inconvenient, especially for
patients with adverse physical health conditions. Moreover,
fixed appointments may not be enough to diagnose certain
health conditions or events. For example, a person’s pos-
ture or gait may become increasingly abnormal over time.
This could be an indicator for worsening physical fitness -
increasing fatigue, reduced bone density, increasing obesity
etc.- or, worse, an early onset of stroke. Such conditions may
be hard to detect properly over a short diagnosis window.
Sudden collapse at home is also a widely recurring health
event, especially for senior citizens, which requires imme-
diate detection and medical attention. Recovering patients
with surgical wounds or injury may also require continuous
monitoring due to the requirements of specific sleeping or
sitting postures. Furthermore, the COVID-19 pandemic has
highlighted the importance of systems which allow at home
physical therapy or health diagnosis [1]–[7]. Camera-based

systems can achieve high precision in such continuous human
sensing, including estimation of 3D posture. However, there
are two major problems with such systems. Firstly, cameras
pose privacy issue due to capturing clear true-color images at
home. Recently, there has been several reports of camera-based
monitoring systems being hijacked by third-party adversaries
[8]–[10] which makes such a camera-based approach highly
unattractive for at home human sensing. Secondly, a camera-
based system would require sufficient lighting condition which
is impractical for at home continuous sensing.

Fortunately, next-generation wireless networking devices,
such as 5G wireless routers [11], [12], operating at high-
frequency millimeter-wave (mmWave), provide an opportunity
to bring privacy non-invasive and low-cost human activity
sensing systems to the masses which is also capable of work-
ing in any lighting condition. These mmWave networking de-
vices are designed to offer multi-Gbps of throughput and sub-
ms data transfer latency, enabling 5G-and-beyond applications.
Also, existing research works have demonstrated the potential
of mmWave wireless sensing for a range of applications,
such as tracking and identifying human subjects [1], [2],
[13] recognizing gait cycles [6], [7], estimating postures or
silhouettes [14]–[16], or recognizing gestures [17]–[19]. The
small wavelength and large bandwidth of the mmWave signals
enable high-resolution monitoring of activities compared to
the traditional Wi-Fi or LTE systems. Additionally, mmWave
devices provide an advantage over camera-based systems at
home, as wireless signals can work under dark environments,
and preserves privacy. However, the design of mmWave sens-
ing on networking devices presents two challenges.

First, although mmWave devices can serve as effective
human activity sensors, simultaneously running sensing and
networking applications is challenging. For instance, when a
user moves in front of a mmWave streaming device, the Line-
of-Sight (LOS) communication path may become disrupted,
and redirecting the beam towards a Non-Line-of-Sight (NLOS)
path can compromise both sensing accuracy and streaming
quality. One solution to enable the coexistence of networking
and sensing applications is to equip devices with specialized
sensing hardware that operates on distinct mmWave spectrum
segments or spatial regions to avoid interference. However,
such an approach is not ideal for the widespread deploy-
ment of sensing applications on many existing, inexpensive
mmWave devices currently in use or in development. Second,
mmWave devices are vulnerable to more specular and variable



reflectivity challenges (compared to Wi-Fi or LTE) due to
their high-frequency operations. So, depending on the location,
orientation, and absorption properties of objects and humans,
some of the signals transmitted may not reach back to the
device [20]. Consequently, the representation of signals in 3D
can be challenging, leading to a loss of information about the
target human shape.

To address these challenges, we propose mNetS, that en-
ables coexistence of mmWave networking and at home human
activity sensing. The key idea is to first translate the reflections
of the mmWave signal into a 3D view with sparse cluster of
points in a Point Cloud Data (PCD), and then use the PCD for
human activity sensing. Prior research on mmWave sensing
for human activity has relied on high sample acquisition
rate of sensing radar. [6], [7], [14], [15], [17]. In contrast,
mNetS explores sensing with reduced sample acqusition rate
due to the need for time sharing sensing with networking.
To address this challenge, mNetS leverages opportunistic idle
times within the data transfer process for sensing. As a result,
only partial temporal observations are available, necessitating
the use of a deep learning model to recover the missing
information over time. To this end, mNetS designs a set of
feature extraction modules to extract relevant high-dimensional
features from the PCD samples in the ground truth low-
temporal rate PCD sequence; the high-dimensional features
are then adaptively combined based on the relative temporal
nearness of the measured PCD to estimate the missing PCDs
at an intervening time step. Such a learning model works
since many human activities comprise a temporal series of
well-defined movements, so missing PCD can be learned from
several existing data samples. To extract the relevant features,
mNetS designs a customized Dynamic Graph Convolutional
Neural Network (DGCNN) [21], which is effective for data
with structural irregularity and order invariance, such as the
PCD [21]–[23].

We implement and evaluate mNetS on a Commercial-off-
the-shelf (COTS) mmWave testbed by collecting data samples
for 7 distinct activities, such as walking, squatting, lunges, etc.,
for about 1 hour for each activity, over a period of 2 months.
The 7 activities capture wide variations in human posture
sequences, enabling our system to be robust for most indoor
activities. We collect this dataset at 40 ms sensing intervals,
which serves as the ground truth high rate samples, and we
use various undersampling with random intervals to emulate
opportunistic sensing. In total, we have collected nearly 7,100
data samples (total size: 84 GB), with approximately equal
distribution across the 7 activity classes - 800 to 1100 in each
class; we use 5,700 samples for training, and the rest of the
samples are used for testing and benchmarking mNetS. Our
results show that mNetS estimates missing PCD with a median
L1 Chamfer Distance (L1-ChD) of 31 cm and a median Earth
Mover’s Distance (EMD) of 7 cm, when the undersampling
rates are varied from 3× to 8×, which indicate a good match.
Such high-rate PCD also improves the performance of human
activity sensing systems over PCD with missed frames or
estimated with linear interpolation. For example, estimated

PCD from mNetS can improve the performance of a typical
human activity classification application over PCD estimated
by linear interpolation from 49.5% to 71.7%.

In summary, mNetS enables human activity sensing and net-
working without requiring additional hardware in an indoor
and privacy-preserving manner. By estimating high-rate sam-
ples from a low-rate sample sequence, mNetS overcomes
missing sensing samples caused by co-existing networking
applications. To achieve this, mNetS translates the sensing
frames to PCD representation, and then, estimates the missing
PCDs. Our approach is the first to estimate high-rate PCD from
low-rate PCD in the mmWave signal domain. The estimated
PCD generated by mNetS can improve various human activity
sensing applications in scenarios where high-rate sampling of
sensing is infeasible due to co-existing networking.

II. BACKGROUND AND CHALLENGES

A. PCD from mmWave Signal Reflections

To sense the activities from mmWave devices, a wide
bandwidth signal is transmitted from multiple antennas, and
the reflections received from this transmission are combined
to determine the intensity at different spatial locations (Figure
1[a]). The transmitted signal reflects off of various objects
in the scene, including both the dynamic target and static
reflectors. The reflections are received as a weighted sum
of time-delayed transmitted signals from all reflecting points,
weighted by the reflectivity of each point. However, the
reflections from some static objects may be strong enough
to overshadow the desired target points, making it necessary
to remove the static background.

To remove the static background from mobile objects,
we can use the Doppler information present in consecutive
reflections. When the signal reflects off a dynamic object,
the round trip delays of the consecutive reflections either
increase or decrease, depending on whether the object is
moving further away or getting closer. To identify the strong
reflections corresponding to objects at distinct pairs of range
and Doppler velocity, we can use a 2D Fast Fourier Transform
(FFT) on the reflected signals and generate a range-Doppler
heatmap (Figure 1[b]). We then use a Constant False Alarm
Rate algorithm to identify reflectors as {range, Doppler} pairs.
Each pair is then decomposed into its distinct Direction of
Arrivals (DoA) in azimuth and elevation, (θaz, θel), to generate
all points, and a threshold is applied to remove the static points
and construct a Point Cloud Data (PCD) for dynamic targets.
Figure 1(c) shows examples of three depth images and the
corresponding PCD for a human performing different activities
around 2 to 3 meters away from a mmWave device.

B. Challenges with Joint Networking-Sensing

MmWave networking relies on directional beams between
the Access Point (AP) and user, with continuous steering of
the beam towards mobile users. In cases where sensing is
integrated into the same system, the beam must also be steered
towards sensing target, which can impact the networking
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Fig. 1: (a) The transmitted signal reflects off the scene and captured by the mmWave device. (b) Range-doppler heatmap and
angle information resolve the reflectors in distance, velocity, and direction. (c) Distinct human activity maps to distinct PCD.
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Fig. 2: (a) Introducing sensing reduces the networking
throughput and increases the latency. Sensing interval: 200
ms. (b) Increasing sensing interval degrades sensing accuracy.

throughput. Besides, allocating different beams or spectrums
for sensing and networking is infeasible due to the require-
ment of additional hardware and/or interference [13], [24]–
[27]. Another approach could be time-multiplexing sensing
and networking operations; but this leads to a tradeoff in
performance between the two. Therefore, integrating sensing
with networking in mmWave networks remains a challenging
problem.

Impact on Throughput Performance. To understand the
impact of allocating dedicated time slots for sensing on
networking throughput performance, we conduct a simulation
of the IEEE 802.11ad network [28] operating in an indoor
environment. The details of our simulation is discussed in
Section IV-B. A mmWave AP streams data to a mobile user
(“user”), and aims to sense the activities of a dynamic target
(“target”) simultaneously. The user’s mobility is simulated as
a random walk within the span of the indoor setting, and the
RSS at the user is obtained by the Ray-tracing method [29],
[30]. The RSS is then translated to the downlink throughput by
simulating a Single Carrier communication in IEEE 802.11ad
[28]. To inject periodic sensing, the networking packets are
switched off for a fixed period τs, at every interval of τp, where
τs is the sensing duration. Figure 2(a) shows the frequent
drops in throughput due to sampling the sensing frames at
200 ms intervals with sensing duration of 40 ms, which
reduces the average throughput by 250 Mbps and increases
the standard deviation to 350 Mbps. The performance is
significantly affected due to frequent network disruption for
sensing packets. Additionally, a minimum of 40 ms latency
is introduced due to simultaneous sensing operation to the

network packet transmission which could adversely affect real-
time and critical applications [31].

Impact on Sensing Accuracy. While reducing the sensing
interval can potentially improve the throughput, it can result
in significant inaccuracies in classifying different activities of
the target. Activity classification requires sensing signal over
a window of time since an activity is composed of a set of
well-defined body movements over time. At reduced sensing
interval, an activity classifier has access to fewer samples of
sensing signal, and thus, it becomes more difficult to infer the
activity class. We use the reflected mmWave signals from the
dynamic target in the above setup for 18 different dynamic
activities such as squats, lunges, stretching, and static exercise
postures such as arms up, standing on one feet, etc., and use
the mmWave signal classifier from [3] to predict the classes.
Figure 2(b) shows that when the mmWave sensing samples is
captured at 40 ms interval, the classification accuracy could
be more than 90%. However, it quickly drops below 50% with
200 ms sensing interval. Therefore, the absence of high-rate
sensing samples impacts the accuracy of activity recognition,
which emphasizes the importance of reconstructing high-rate
sensing samples to improve sensing accuracy without affecting
networking performance.

III. mNetS DESIGN

A. Overview

mNetS aims to reconstruct high-rate, regularly spaced sens-
ing samples from an integrated networking-sensing mmWave
system. This system addresses the issue of missing temporal
information caused by joint networking and sensing opera-
tions, making it valuable for pervasive, indoor human activity
sensing applications. Additionally, repurposing existing net-
working infrastructure reduces installation overhead and costs.
To this end, mNetS first identifies strong reflectors in the
scene and filters out zero-doppler reflections to convert the
acquired signals into a PCD representation. It then designs a
customized deep learning framework that consumes a ground
truth low-rate PCD sequence and produces a high-rate PCD
sequence. The deep learning framework is composed of feature
extraction modules that cast a pair of real, sampled PCD into
a much higher-dimensional space than the input dimension.
By leveraging a stack of well-trained feature modules, mNetS
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Fig. 3: System overview of mNetS.

learns a deeper mapping of the PCD data, enabling the system
to estimate an intervening time step. The higher-dimensional
feature maps are adaptively combined based on the relative
temporal nearness of the two sampled PCD, and then regressed
to the point space through a stack of multi-layer perceptrons.
To effectively learn complex spatiotemporal features from real
PCD, mNetS uses a Dynamic Graph Convolutional Neural
Network (DGCNN) [21] and reconstruct high-quality, high-
rate PCD for better sensing performance. Figure 3 shows
an overview of mNetS, which takes two sensing samples at
opportunistic networking idle slots, and predicts a missing
PCD in between the two slots.

B. Temporal Prediction to Generate High-Rate PCD for Sens-
ing

While several past works in the computer vision domain
have addressed the problem of recovering missing PCD based
on trajectory based interpolation or upsampling [32]–[36],
there has been limited research in the mmWave domain.
Unlike vision PCD, mmWave PCD could be highly noisy
and missing a lot of points due to specular and multi-path
signal reflections. Thus, the point-to-point direct mapping
between adjacent frames is infeasible, making the trajectory
estimation method unsuitable for mmWave PCD sequences.
Instead, we exploit the stability of high-dimensional feature
maps to estimate an intervening frame, given opportunistically
sampled frames, and then regressing the combined feature
maps to lower three dimensions. The scaling of the adaptive
combination is based on the relative nearness of the time step.
Furthermore, PCD poses additional challenges due to their
structural irregularity and order invariance. Inspired by the
recent works on order-invariant and graph-based neural models
[21]–[23], we propose to extract the feature maps of each
mmWave PCD frame through a graph-based neural network.
The feature maps of the sampled PCD are then adaptively
combined and passed through an MLP-based decoder to
generate a PCD in an intervening time step, thus increasing the
sensing sample rates. Figure 4 shows the overall architecture
of mNetS’s temporal prediction network.

1) Extracting Feature Maps of mmWave PCD: PCD poses
a unique challenge in feature extraction due to their structural
irregularity and order invariance, and traditional convolutional
neural networks are not effective with such data structures.
Since PCD from mmWave reflections is highly sparse and
noisy, it is also important for our feature extractor to learn the
geometric features with both local and global context. Inspired
by the previous work [21], we use a DGCNN-based feature

extractor with EdgeConv layers to extract the features from
the mmWave PCD. The EdgeConv layers of DGCNN can
generate comprehensive contextual information by capturing
not only local and non-local features for every point but
also multi-scale geometric features; it also allows the feature
extractor to learn to be less susceptible to noisy points. At its
core, EdgeConv layers operate by dynamically generating a
local neighborhood graph, and then, applying convolution-like
operation on the graph edges. The graph is generated using the
k-nearest neighbors in the feature space and then, aggregating
the resulting feature maps with an aggregation operation. With
80 to 100 points in each PCD, the default setting of k = 20
and an aggregation operation of “max-pooling” is used in our
case.

Our feature extraction module takes two sampled PCD
and passes them through a stack of shared EdgeConv layers
to create the respective feature maps. The EdgeConv layers
successively raise the dimensionality space of each PCD from
3 to 16, 64, 64, 128, 256, and 512, and finally, the outputs
from each EdgeConv layer must undergo an activation function
to incorporate non-linearity. Since ReLU activation has the
tendency to make many neurons inactive (the dying neuron
problem), we use a Leaky-ReLU, which clips any value below
0 to a value close to 0 with a small gradient. Table I shows
the parameters of the EdgeConv layers.

2) Adaptive Combination of Feature Maps: mNetS adap-
tively combines two adjacent PCD to generate a missing PCD
in between. Intuitively, while a set of points could change
between successive PCD, especially when they are far apart
in time, their feature maps will more likely remain immune to
change. Moreover, feature maps of a PCD will have a greater
resemblance with the feature maps of a nearer PCD than a
further one. Let’s assume the feature maps of two ground truth
PCD, i.e., actively sensed from the target scene, Pi and Pj at
time steps ti and tj , are Fi,m and Fj,m, respectively. Here,
m is the dimensionality of the feature maps. To predict the
PCD P̂k at time step tk (where ti < tk < tj), we first predict
its feature map, F̂k,m as an adaptive combination of Fi,m and
Fj,m, and then deconvolve F̂k,m to generate P̂k. So, the feature
maps are adaptively combined through weighted summation:

F̂k,m = wi · Fi,m + wj · Fj,m (1)

where, wi =
tj − tk
tj − ti

; wj =
tk − ti
tj − ti

(2)

where the weights for the feature maps are determined based
on the time separation between the predicted and ground truth
PCD. However, adding the two feature maps from raw PCD
may not produce a coherently learnable feature space for two
reasons.

First, the points in each real PCD are ordered arbitrarily,
and one point in PCD, Pi could be far away from its most
corresponding point in the same index in PCD, Pj . To mitigate
this, we apply a point pairing operation to reorder the points
in Pj such that the corresponding pairs of points in the same
indices in Pi and Pj form the closest pairs. Second, the point
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Fig. 4: Temporal prediction network in mNetS.

TABLE I: Temporal prediction network’s parameters. ST: Spatial Transform; EC: Edge Convolution; MLP: Multi-Layer
Perceptron; LR: Leaky-ReLU.

Encoder ST EC1 EC2 EC3 EC4 EC5 EC6
Number of points N, N N, N N, N N, N N, N N, N N, N

Input channels 5 5 16 64 64 128 256
Output channels 5 16 64 64 128 256 512

Activation Function Linear LR LR LR LR LR LR
Decoder MLP1 MLP2 MLP3 MLP4 MLP5 MLP6 Output

Number of points N N N N N N N
Input channels 512 256+256 128+128 64+64 64+64 16+16 3

Output channels 256 128 64 64 16 3 3
Activation Function LR LR LR LR LR LR Sigmoid

coordinates in the input PCD may not be distributed in an
uniform scale. As a result, contributions to the neuron from
inputs spanning over a wider range in raw values tend to
overshadow contributions from inputs over a smaller range.
Therefore, we scale the input coordinates to scale (0,1) because
each of the layer employ Leaky ReLU activation which clips
any negative values close to 0. Thus, it is desirable that all
our information in our input data is above 0, which helps to
normalize the scale.

3) Deconvolution of Feature Maps to Point Space: Once
the feature maps are combined, mNetS aims to deconvolve it
to generate the PCD in real point space. A decoder network
is tasked to deconvolve the high-dimensional feature maps
into a 3-dimensional PCD in the polar coordinate/Euclidean
space and then converted to Cartesian/XYZ coordinates. The
decoder network employs a stack of MLP layers with de-
creasing output dimensions: 256, 128, 64, 64, 16, and 3
to regress the feature maps to the Euclidean space with
LeakyReLU as the activation function for all the layers. We
use MLP layers in the decoder since the EdgeConv layers
in the encoder already learn the essential complex features
which map the input PCD, Pi and Pj , to the corresponding
feature maps of the output PCD, P̂k. Thus, a vanilla MLP
model can regress to the Euclidean space from the adaptively
combined feature maps, F̂k,m, after successively reducing the
dimensionality. During training, however, such a deep network

with 6 EdgeConv layers in the encoder and 6 MLP layers
in the decoder suffer from the vanishing gradient problem,
where the training procedure of a neural network adjusts the
weights in each layer successively in proportion to the partial
derivative of the loss function with respect to the weight
through backpropagation. The problem arises when the partial
derivatives in the earlier layers become too small that the
corresponding weights become immune to any change. Thus,
the loss function asymptotically approaches a higher minimum
value than what is expected. To overcome this challenge,
we employ long skip connections between the encoder and
decoder [37]. Here, the lower dimensional features from the
encoder are combined through an aggregation operation to
the higher-dimensional outputs in the mirroring decoder layer
(see Figure 4). For PCD feature maps, “concatenation” is the
suitable option, which keeps all the feature channels from
both the encoder and the decoder, and enables the gradients to
have significant influence from the lower dimensional features.
Table I shows the parameters for the MLP layers.

4) Loss Function: For accurate estimation of missing PCD,
we must tune the EdgeConv and MLP layers through train-
ing. To this end, we use loss functions, which measure the
geometrical difference between the estimated PCD, P̂k, and
the corresponding ground truth PCD, Pk. Two widely used
metrics for quantitatively measuring the difference between
two point sets are the Chamfer Distance (ChD) and the Earth



Mover’s Distance (EMD). ChD involves comparing each point
in one set with the nearest point in the other set, and then
computing the average squared L2-norm distance between the
corresponding pairs, and is calculated as [38]:

LChD =
∑

p1∈S1

min
p2∈S2

||p1 − p2||22 +
∑

p2∈S2

min
p1∈S1

||p2 − p1||22

(3)

where S1 and S2 are two point sets, and N1 and N2 are the
number of points in them. However, training the network based
only on a point to point comparison does not suffice, especially
for mmWave PCD. This is because mmWave PCD may have
a lot of noisy points, and we observe that when the network
is trained only with ChD as the loss function, it struggles to
learn the overall geometric structure. So, we also add EMD
to the loss function, which determines the minimum cost of
transforming one point set into the other, where the cost is
defined as the distance between each pair of points [39]:

LEMD(S1, S2) =
1

N1
min

ϕ:S1→S2

∑
p1∈S1

||p1 − ϕ(p1)||2 (4)

where S1 and S2 are two point sets, N1 is the number of
points in S1 and ϕ : S1 → S2 is a one-to-one mathematical
correspondence function that maps each point in S1 to exactly
one point in S2. Since EMD is computationally expensive, we
resort to an approximate EMD based on Sinkhorn loss [39].
We combine the two losses by weighting them with hyper-
parameters (λC, λE) as:

L = λC · LChD + λE · LEMD (5)

We discuss the tuning of these parameters in Section IV-A3.
By using this combined loss during training, the network can
accurately learn to estimate missing PCD in a robust and
efficient manner.

IV. IMPLEMENTATION

A. Hardware, Data, and Training

1) Acquisition of PCD and Ground Truth: Due to the
lack of open-source mmWave datasets, we design a custom
hardware setup (Figure 5) by integrating mmWave transceivers
to capture reflection signals, and a Kinect v2 depth camera to
collect ground truth samples. Unfortunately, existing COTS
mmWave networking devices which operate at 60 GHz as per
IEEE 802.11ad standard [28] do not allow user access to raw
reflection signal. Thus, we build our system from two 76-
81 GHz mmWave transceivers, TI IWR1443BOOST [40], to
resolve the reflections in both azimuth and elevation directions.
[14] has shown that the 77 GHz signal band exhibits similar
reflection strength as 60 GHz after accounting for greater Friis
path loss. The two devices are attached in their place by rails
with a fixed horizontal and vertical separation of 11.1 cm and
5.5 cm, respectively. Each device consists of 3 transmit and 4
receive antennas that are positioned in two distinct rows with 8
and 4 linear channels, respectively, providing a best resolution

mmWave Devices 
with 

DCA1000EVM

Depth 
sensor

Fig. 5: Experimental platform with two mmWave transceivers
[40] and a co-located Kinect V2 [42] for ground truth samples.

of 14.3◦ in both azimuth and elevation directions. The small
number of transmit and receive antennas and their positioning
emulates a real networking device with constrained hardware
resources. The resolution in the depth dimension is given by
the bandwidth of the signal, and with 3.07 GHz bandwidth
in mNetS, the system achieves a depth resolution of 4.89 cm.
To capture data in real time, we also attach a data capture
module, TI DCA1000EVM [41], to each mmWave transceiver.
We follow Section II-A to translate the mmWave reflections,
and then merge two PCD from two transceivers by translating
one w.r.t. another following their X and Y-axes separations.
The setup is configured to generate PCD at 25 fps, which
serves as the ground truth to our temporal prediction network.
We resample the PCD in time to simulate lower sensing rates,
which serve as the input to the same network. The Kinect v2
depth camera captures RGB and depth images at 30 fps within
the same FoV as the mmWave transceivers, and provides visual
references.

2) Data Synchronization: Due to the lack of hardware
synchronization between the mmWave transceivers and depth
camera, we employ a software synchronization. To this end,
we first configure the mmWave devices and program to send
a command to the Kinect to begin capturing frames, and the
timestamp of this command is retained as the start time of the
Kinect. Next, the transceivers synchronize themselves by ex-
changing TCP packets, and we store the corresponding global
timestamps to start acquiring the mmWave reflections. During
pre-processing, the timestamps enable us to find the common
start time in which we have corresponding frames from all
three devices. Frames outside this time are discarded. Since
the transceivers and Kinect have 25 and 30 fps, respectively,
we employ frame interpolation to fill in the gap.

3) Network Training: We train the models on a GPU
server with 2 NVIDIA RTX A6000 cores by implementing
the network on Tensorflow using Python 3.7 and use the
“Adam” optimizer for fine-tuning. The entire dataset is split
into non-overlapping training, validation, and testing sets. The



proposed network is trained for undersampling rates from 3×
to 8× which emulate low rate sampling under varying network
traffic: heavy traffic forces the sensing module to sample at
very low rate (high undersampling) and vice versa. For each
epoch, training is achieved by outputting an average training
loss, and then the validation dataset is passed through the
trained model to generate the average loss on the validation
set. We allow the networks to train until convergence, which is
when the average validation loss does not decrease more than
10 times in the last 20 epochs. The training is repeated with
several choices of hyper-parameters, λC and λE , and we find
that a choice of (λC , λE) = (0.3, 0.7) gives us the best result
in terms of structural output. There are two possible reasons:
First, the ChD component has a higher range in our data, so
this choice of hyper-parameters brings the contribution from
ChD down. Second, the network gives more importance to
reconstructing the global shape rather than details at the point
level. Across all our datasets, the network converged in 95
epochs, taking approximately 100 minutes to complete, with
an initial learning rate of 1× 10−3 and an exponential decay
at a rate of 0.7. Once the model has been trained, the network
takes less than 2 ms to generate a PCD, indicating that mNetS
could infer activities in near real-time.

B. IEEE 802.11ad Network Simulation

Since our custom-made system does not support a real-time
evaluation of the joint mmWave networking and sensing oper-
ations, we evaluate the effectiveness of mNetS by simulating
the IEEE 802.11ad protocol based on an open-source, realistic
Ray-Tracing method [29]. The Ray-Tracing method is more
accurate than conventional simulations that rely on Friis path
loss models because it takes into account the environmental
layout and provides a more precise channel estimation. We
estimate the indoor channels and modified the IEEE 802.11ad
MAC layer to enable data scheduling to the user and sensing
tasks for human activity recognition at opportunistic time slots.
This allowed us to accurately quantify the data throughput and
sensing performance of mNetS in various indoor scenarios.

1) Channel Estimation and Throughput Calculation: To
estimate the channel in a realistic indoor environment, we first
capture the visual PCD from an AR-capable smartphone [43].
Then, we apply a Ray-tracing method by varying the position
of the AP and mobile users within the PCD. Specifically, for
each combination of AP and user location and beam direction
from the AP, we compute the expected signal reflection profile
for a downlink channel using the approach proposed in [29].
To evaluate the performance of the channel, we compute
the signal-to-noise ratio (SNR) based on the IEEE 802.11ad
receiver sensitivity parameters, and simulate data transmission
via the Single Carrier PHY payloads with the MCS varying
from 2 to 13 [28]. Each MCS supports a pre-defined maximum
bitrate, and we select the optimal MCS to minimize the packet
error rate. To this end, we process the received packets through
synchronization in time, demodulation, and frequency offset
correction, and compare the recovered bits with the transmitted
bits to classify each packet as either ‘erroneous’ or ‘correct’.

Based on this classification, we determine the MCS expected
to achieve the lowest packet error rate at the estimated SNR.

To translate the SNR and MCS to effective throughput, we
adjust the PHY throughput using the MAC layer efficiency.
The efficiency is computed as the ratio between the MAC
payload and the PHY packet length, which includes various
fields such as the preamble, channel estimation, beam training,
and interframe spacing [28]. In our simulation, we model the
mobile users as performing a random walk at each time step,
with a step interval of 10 ms. We evaluate our approach across
three different environments, considering both ‘mobile’ and
‘static’ scenarios. For the ‘mobile’ scenario, we assume the
user moves at a typical walking speed between 1.2 to 1.4 m/s.
At each time step, we compute the channel between the AP
and the user, and then estimate the effective throughput.

2) Injecting Sensing Packets into Networking Protocols: To
simulate joint networking and sensing, we introduce special
packets dedicated to sensing, which temporarily suspend data
transfer during their duration. At each time interval, the AP
executes one of three possible actions: beam search, sensing
packet transmission, or data packet transmission. Beam search
is performed periodically at intervals of 100 ms, introducing a
beam search latency of approximately 2 ms for a single user
and a 16-antenna AP, following the IEEE 802.11ad standard
beam searching protocol [28], [44]. Sensing frame acquisition
is performed at a specified frame rate, introducing a sensing
delay at each interval, during which the system switches the
beam from networking users to the sensing target to acquire
a frame of sensing data. The remaining time is used for
data transfer. This process allows us to compute the effective
throughput when the sensing and networking applications run
simultaneously.

V. PERFORMANCE EVALUATION

A. Microbenchmark results

1) Quantitative Results: We first evaluate mNetS’s ability
to predict the PCD when the sensing samples are captured
at a lower rate, and compare the quality of PCD when they
are captured at a higher rate. To this end, the ground truth
reflection signals are captured at 40 ms intervals, and we
downsample them by different factors in time, and use them
as the input to the temporal prediction framework. For each
trial, we have a sequence of PCD, and we create samples for
different undersampling rates, N , by selecting a sequence of
N + 1 back to back PCDs such that the first and the last
PCD are used as inputs to the temporal prediction network to
predict the 2nd, 3rd, 4th, · · · (N−1)th PCD at the corresponding
time steps. This undersampling rates vary from 3× to 8×.
Note that our model only takes two captured PCDs rather
than a sequence of captured PCDs to estimate PCDs in the
intervening time steps. Thus, the model can still estimate high
temporal rate PCD sequence from an irregularly sampled PCD
sequence as long as the model is trained to estimate from a se-
quence with smallest temporal rate possible. We collect nearly
7,100 mmWave reflection samples from a human performing
7 different human activities following [3], demonstrating large
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Fig. 6: Performance of temporal prediction compared with a
trajectory-based linear interpolation: (a) L1-ChD; (b) EMD.

variations in human movements, and our model is trained
and validated with nearly 5,700 samples and tested with
additional 1,400 samples. In addition, we implement a linear
trajectory interpolation method that estimates the missing PCD
by finding the closest pairs of points in the two sampled
PCD, and then, interpolating based on linear trajectory at the
required time step.

Figure 6 presents the Cumulative Distribution Function
(CDF) of the ChD and EMD metrics, which are used to
evaluate the quality of the predicted PCD generated by the
linear interpolation and mNetS, in comparison to the ground
truth. The results indicate that the mNetS outperforms the
linear interpolation method, with a median improvement of
24 cm or 43.6% in L1-ChD metric. Also, the 90th percentile
L1-ChD value is only 38 cm, suggesting that the mNetS
produces PCD that closely resembles the ground truth. Ad-
ditionally, the median EMD value is improved by 8 cm or
53.3% with mNetS, indicating that the model enhances the
overall geometric structure of the predicted PCD. This shows
mNetS is able to generate the missing information in time
and improve predictions over trajectory estimation through
linear interpolation. The resulting estimated PCD sequence
can further assist in better human activity sensing without
compromising the networking performance.

2) Qualitative Results: mNetS’s approach to predict an
intervening frame from a pair of real frames is by learning
a set of features from the real frames which are adaptively
combined. This allows mNetS to predict the salient shape
information which is passed from one frame to the next. The
approach first learns to identify clusters of points, and then,
predicts whether an identified cluster is a valid, real cluster, or
it is due to noisy points. Noisy points are ignored by mNetS
since they do not pass information from one frame to the
next coherently, and only the global structural information
is retained. Figure 7 shows a set of examples of predicted
PCD from mNetS, and their corresponding ground truths.
mNetS predicts the major cluster(s) in the ground truths, which
are large numbers of dense points that are unlikely to be
noisy, while any minor cluster(s) are predicted only if there
is sufficient common information in the real frames. Figure 8
shows an example of PCD prediction in a sequence of frames
in 2 seconds. The global shape information passes successively
through the frames by means of the major cluster, and the
smaller cluster begins to fade away as we move to the last
frame from the beginning.

3) Effect of Different Activities: To understand the impact
of different activities on mNetS, we evaluate its relative
performance across 7 different human activities that involve
varying body movements, including ‘Lunges’, ‘Squat’, ‘Walk-
ing’, among others. Figures 9(a–b) show the ChD and EMD
results, as bar plots with median and standard deviations.
Overall, mNetS performs similarly across most of the activities,
with errors falling within an acceptable range. However, we
observe that activities involving faster body movements or
more extensive coverage with arms or legs lead to increased
errors. This is particularly noticeable for the ‘Squat’ activity
where the likelihood of specular reflections is higher due
to faster movement of the entire body. Despite this, across
different activity types, the median L1-ChD and EMD ranges
from 28 to 36 cm and 8 and 11 cm, respectively, indicating
that mNetS can still accurately predict the PCD for a range of
activities.

4) Performance of Joint Networking and Sensing: We now
evaluate the ability of mNetS to enable joint networking and
sensing operations by estimating the effect of networking
throughput at different sensing overheads and comparing PCD
prediction performance. Our networking simulation is carried
out in an indoor environment, following Section IV-B, where
a single AP serves a mobile networking user and senses
activities of another human from sensing frames. The sensing
frame spans 40 ms, and the sensing overhead is gradually
increased by introducing sensing delay at intervals of 200 ms,
100 ms, 60 ms, and 50 ms, resulting in sensing overheads
of 20%, 40%, 60%, and 80%. We carry out 7 trials at each
sensing overhead, across three different indoor environments,
including one corridor and two office rooms. Figure 10 shows
the networking throughput and the performance of mNetS in
terms of estimating missing PCD at each sensing overhead.
The results show a tradeoff between sensing and networking
performance, and mNetS attempts to improve this tradeoff. By
reducing sensing overhead by 5×, mNetS allows sensing at
the same frame rate as 100%, predicting the missed frames
with L1-ChD that is approximately 45% lower than the linear
interpolation. The reduction of networking throughput will be
minimized to approximately 250 Mbps, keeping the through-
put above 1 Gbps. In Section V-C, we will also evaluate the
effect of this better PCD prediction in terms of human activity
classification.

B. Ablation Study

1) Effect of EMD Loss: Next, we evaluate the effect of
adding EMD loss during training. Recall that while ChD
makes a point-to-point comparison, EMD measures the global
shape distortion, and could improve the network performance.
We use the same training and testing samples as before, and
re-train our model with and without the EMD loss component
(Section III-B4). Figures 11(a-b) show that there is a slight
improvement in PCD prediction in terms of both L1-ChD
and EMD due to adding the EMD loss component during
training. The improvement is relatively small since our feature
extraction from the mmWave PCD uses DGCNN with Edge-
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Fig. 7: Examples of PCD predicted by mNetS for different human activities.
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Fig. 8: Examples of PCD predicted by mNetS for human activity in time for 2 seconds.
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Fig. 9: Performance of temporal prediction across different
activities. Faster activities increase the prediction errors, but
within a tolerable range. (a) L1-ChD; (b) EMD.
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Fig. 12: Effect of intensity channel on mNetS’s prediction
performance in terms of (a) L1-ChD, and (b) EMD.

Conv layers that already learns a global view of the features
at each point. Thus, when mNetS is trained with only ChD,
the feature set at each point still retains global shape. EMD
still makes a small but significant improvement in predictive
performance of mNetS; the median L1-ChD of 31 cm vs. 34
cm and median EMD of 7 cm vs. 10 cm with and without
EMD loss, respectively.

2) Effect of Intensity Channel: In the prediction of
mmWave PCD, noisy points from specular or multi-path
reflections pose a significant challenge, as their appearance is
random, and their features do not map coherently onto the next
frame. To address this issue, we can exploit the fact that valid
reflections generally have higher signal strength than random
noisy points in mmWave PCD. Therefore, we add an additional
channel to our input PCD to carry the reflection intensity
information associated with each point, so that the network
can learn to ignore those points. Figures 12(a-b) show the
effect of training with and without the intensity information.
The results show an improvement in predicting the PCD due to
the inclusion of the intensity channel. Specifically, we observe
a median reduction of 5 cm (14.3%) in L1-ChD and a median
reduction of 3.5 cm (36.8%) in EMD.

3) Performance at Different Time Steps: mNetS must pre-
dict missing frames at different time steps relative to the real
sampled frames. For instance, if sensing frames are unavailable
for the last 320 ms, to generate sensing frames at 40 ms
intervals, mNetS must reconstruct frames at 40 ms, 80 ms,
. . ., 280 ms time steps to achieve the desired rate. Intuitively,
predicted frames closer to the ground truth should exhibit
better performance. Figure 13 illustrates this phenomenon.
The best performance occurs at time steps 40 ms and 280
ms, which are the closest to the ground truth at 0 ms and
320 ms, respectively. Still, for the other time steps, mNetS’s
performance does not degrade significantly, and L1-ChD w.r.t.
ground truth still remains within 40 cm.
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Fig. 13: (a) mNetS’s prediction performance at different time
steps. (b) mNetS improves identifying activity types at reduced
framerate.

C. Activity Classification Results

Finally, we evaluate mNetS’s ability to improve the perfor-
mance of human activity classification. We create a classi-
fication network by adding an LSTM block after the MLP
regression in our temporal prediction network and a set of
dense layers to output class probabilities for 7 distinct classes.
The network has 4 EdgeConv layers with 16, 64, 128, and
256 output channels, 5 MLP layers with 256, 128, 64, 16,
and 1 output channels, an LSTM layer, and finally, 4 dense
layers with 64, 32, 16, and 7 outputs. It takes a sequence
of frames and extracts spatio-temporal features to predict
class probabilities. We train the network on our data with a
sequence of input frames spanning a 2-second interval and a 40
ms sensing rate. After training, we evaluate the classification
performance on our test dataset and achieve 93.1% accuracy.
The accuracy for each of the 7 classes is close to 90% with the
lowest being 87% and the highest being 98%. This represents
the ground truth performance when high rate sensing samples
are available.

Then, we undersample the input data at different rates
and replace the missing data frames with frames predicted
by mNetS and trajectory-based linear interpolation. We also
train the network to take inputs at the undersampled sensing
intervals and evaluate the classification performance. Figure
13(b) shows the results. We observe that undersampled sensing
rates can affect the classification performance significantly,
dropping the accuracy from 93.1% at 40 ms sensing interval
to 49.5% at 200 ms interval. The trajectory interpolation also
shows a similar degradation in performance. In contrast, mNetS
show a marked improvement over both the approaches, clearly
sustaining the classification accuracy above 72%, even for
200 ms sensing interval. In summary, the high rate predicted
PCD from mNetS directly helps to improve the human activity
classification performance.

VI. RELATED WORKS

Sensing with RF Signals: Traditional contactless approaches
on human activity sensing involve the use of vision or depth
cameras, such as Kinect [45], which have privacy concerns
as they generate a clear shape of the human body, and they
are dependent on proper lighting conditions. To address these
challenges, wireless signals have been extensively adopted for
activity sensing. Existing works have been able to extract RF
signatures from humans in an indoor environment, even in



the presence of clutter, obstacles, and multi-person scenarios,
and identify activities [4], [46]. Next-generation wireless in-
frastructure is expected to incorporate much higher frequency
signals in the mmWave bands, promising a better sensing
performance due to higher bandwidth, smaller wavelength, and
larger number of antennas [6], [7], [17]. But most existing
works on mmWave sensing do not work simultaneously with
networking without affecting the performance. In contrast to
the previous works, mNetS aims to enable the coexistence of
networking and sensing for mmWave indoor networks.

Joint Networking and Sensing: Sensing human activity using
RF signals requires leveraging the Channel State Information
(CSI) between the networking device and the environment,
which includes networking users and sensing targets. The
existing body of works in integrating sensing on networking
systems still present some limitations in applicability and
tradeoff between networking throughput and sensing accuracy
[13], [24]–[26], [47]. Some earlier works [25], [26] have
proposed multi-armed beams for simultaneous networking and
sensing. However, the challenge in creating multiple beams
is to limit interference energy from one beam to the other,
and this requires more expensive, sophisticated phased-array
antennas. The interference issue in using multi-armed beams
is more significant when the sensing beam must be sufficiently
wide to capture reflections from all the points in the target. [13]
proposes using the TRN fields of IEEE 802.11ay packets to
estimate the CSI for multi-path propagation of signals between
the networking system and the sensing targets. However, the
temporal resolution of acquired micro-doppler signatures of
human activities is limited by the beam training period, and
thus, to achieve more fine-grained sensing, beam training
frequency is increased at the cost of reduced throughput in
networking. [24], [47] explored reusing networking packets for
sensing. To address the bursty nature of networking packets,
[24], [47] have explored compressed sensing techniques to
exploit the inherent sparsity in mmWave reflections to re-
construct a full sequence of high temporal rate signal from
low rate signal. However, this requires that the sensing can
be invoked at specific time slots to optimize the performance
of sparse recovery, which may be infeasible in a system
where sensing frames are only captured opportunistically. In
contrast to these existing works, mNetS is designed to execute
mmWave sensing in a networking environment by repurposing
the same hardware. Instead of imposing additional overhead
or interference, mNetS opportunistically senses the target and
then fills in missing information in time with deep learning.

VII. CONCLUSION

In this work, we present mNetS, an enabling technology for
the coexistence of human activity sensing on networking sys-
tems. Such human activity sensing brings valuable applications
in remote physical therapy and continuous health diagnostics
at the users’ home - without any modification to indoor
infrastructure . mNetS achieves this by overcoming missing
information in sensing samples resulting from concurrent

networking. mNetS employs the feature extraction capability of
a dynamic graph convolutional network to adaptively combine
features from real sensing samples and estimate missing sam-
ples. Our experimental evaluation shows that mNetS effectively
overcomes the challenges of mmWave signals and shows
significant improvement in sample estimation, which improves
the performance of sensing without affecting networking sig-
nificantly.
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