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This paper proposes SquiggleMilli, a system that approximates traditional Synthetic Aperture Radar (SAR) imaging on mobile
millimeter-wave (mmWave) devices. The system is capable of imaging through obstructions, such as clothing, and under low
visibility conditions. Unlike traditional SAR that relies on mechanical controllers or rigid bodies, SquiggleMilli is based on the
hand-held, fluidic motion of the mmWave device. It enables mmWave imaging in hand-held settings by re-thinking existing
motion compensation, compressed sensing, and voxel segmentation. Since mmWave imaging suffers from poor resolution due
to specularity and weak reflectivity, the reconstructed shapes could be imperceptible by machines and humans. To this end,
SquiggleMilli designs a machine learning model to recover the high spatial frequencies in the object to reconstruct an accurate
2D shape and predict its 3D features and category. We have customized SquiggleMilli for security applications, but the model
is adaptable to other applications with limited training samples. We implement SquiggleMilli on off-the-shelf components and
demonstrate its performance improvement over the traditional SAR qualitatively and quantitatively.
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1 INTRODUCTION
Millimeter-wave (mmWave) systems enable through-obstruction imaging and are widely used for screening
in state-of-the-art airports and security portals [1, 2]. They can detect hidden contrabands, such as weapons,
explosives, and liquids, by penetrating wireless signals through clothes, bags, and non-metallic obstructions [3].
Besides, mmWave imaging systems could enable applications to track beyond line-of-sight [4–7], see through
walls [8–10], recognize humans through obstructions [10–12], and analyze materials without contaminating
them [13]. MmWave systems also have advantages over other screening modalities: Privacy preservation and
low-light condition usages over optical cameras; very weak ionization effect over X-Ray systems; and shape
detection of non-metallic objects over metal detectors. Furthermore, the ubiquity of mmWave technology in
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5G-and-beyond devices enable opportunities for bringing imaging and screening functionalities to hand-held
settings. Hidden shape perception by humans or classification by machines not only will enable applications,
such as in-situ security check without pat-down search, baggage discrimination without opening the baggage,
packaged inventory item counting without intrusions, discovery of faults in water pipes or gas lines without
tearing up walls, etc., but also will enable flexible, multi-purpose functionalities on 5G mobile networking devices.
Traditional mmWave imaging systems operate under the Synthetic Aperture Radar (SAR) principle [14–19].

They use bulky, mechanical motion controllers or rigid bodies that move the mmWave device in a pre-determined
trajectory forming an aperture [1, 2, 14]. As it moves along the aperture, the device transmits a wireless signal
and measures the reflections bounced off of the nearby objects. Combining all the reflected signals coherently
across the known trajectory allows the system to discriminate the objects with higher reflectivity against the
background noise. The spatial resolution of the final 2D or 3D shape depends on the span of the apertures in
horizontal and vertical axes and the bandwidth of the system [16, 20]. Besides, the reflections also need to be
collected from uniformly and densely spaced measurement locations to avoid aliasing in the object’s shape [14].
Mechanical controllers or rigid bodies are essential for satisfying such constraints in practice.
However, emulating the SAR principle on a hand-held mmWave device is challenging for two key reasons.
First, in the absence of a mechanical controller, a user would be required to move the device with a manual,

fluidic hand motion. Such movement would introduce two issues: Non-linearity and non-uniformity in the
aperture. While motion non-linearity could potentially be addressed by leveraging existing motion compensation
techniques [16], non-uniformity of the measurement locations depends solely on the hand-held movement. Slowly
moving the hand with fast signal sampling by the device could increase the measurement density, but the method
not only is time-consuming but also does not ensure that the locations are distributed uniformly. Furthermore,
appropriate SAR focusing requires the knowledge of the object’s depth, and focusing at an arbitrary depth yields
de-focused, blurry shapes. So, without addressing these issues, the measurements from the hand-held setting
would prohibit focusing the signals appropriately and retrieving the object’s shape correctly.

Second, mmWave signals are highly specular due to their small wavelength, i.e., many objects introduce
mirror-like reflections [21, 22]. Thus, the effective strength of the reflections from various parts of the object
depends highly on its orientation, w.r.t. the aperture plane. So, even if some parts of the object could reflect
mmWave signal strongly, those reflections may not arrive at the receiver. Consequently, some parts and edges of
the object do not appear in the reconstructed mmWave shape. What’s more, due to the weak reflectivity of various
materials, its reflected signals may be buried under the signals from strong reflectors. Thus, the weak reflecting
parts of the object may have poor, blurry resolution, or often be missing from the final shape completely, allowing
for a partial shape reconstruction only. The resultant shape could lack discriminating features for automatic
object classification as well as could be imperceptible by humans.
We propose SquiggleMilli, a system that enables high-quality mmWave imaging under hand-held settings by

overcoming these fundamental challenges. SquiggleMilli relies only on the hand-held movement of the mmWave
device to measure the reflected signals from objects. It employs a three-dimensional mmWave imaging framework
that can retrieve the 2D shape of hidden objects viewed from the hand-held movement plane and the objects’
3D features, such as mean depth and orientation in 3D plane. Rather than asking users to collect uniformly and
densely spaced measurements, SquiggleMilli lets the user freely squiggle the device over the air in front of the
target scene. Then, by processing the reflected signals, SquiggleMilli outputs human perceivable and interpretable
2D shapes, 3D features, and categories for all reflecting objects, hidden or in line-of-sight, in the scene in front of
the squiggle motion plane. To achieve this, SquiggleMilli employs two core design techniques:

(1) It leverages the camera system in the hand-held device to self-localize the relative locations of the squiggle
motion path and applies multi-antenna based optimization to estimate reflected signals in a majority of the
uniform grid locations. Then, SquiggleMilli exploits a compressed sensing based technique on the reflected signals
to recover the samples missing from some of the uniform locations. Since mmWave wireless signal exhibits high
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signal sparsity, this method can converge quickly and estimate the missing samples accurately. Finally, on the
reconstructed volume, SquiggleMilli applies a multi-focusing and voxel segmentation to reconstruct the 3D shape
of individual objects without their prior depth information.

(2) Even if the reconstructed shapes could bemissing high spatial frequency, such as the edges, due to specularity
and weak reflectivity, the low-frequency, partial shape information provides opportunities for a machine learning
model to improve the shape quality effectively and classify objects automatically. SquiggleMilli is inspired by
the existing works in enhancing low resolution visual images to high resolution using conditional Generative
Adversarial Networks (cGAN) [23, 24], and it aims to not only improve the resolution but also restore the missing
high spatial frequency information. Finally, SquiggleMilli uses the fully reconstructed shapes to quantify their
3D features and classify them into categories. Although in this work, SquiggleMilli’s classifier is customized for
hand-held security applications, the class labels could be adapted by re-training and fine-tuning the networks
with limited samples for different applications, such as packaged inventory counting.

We have prototyped SquiggleMilli on an off-the-shelf mmWave device and conducted field experiments with
multiple objects and multiple squiggle motions to verify its performance. Due to the lack of large-scale real
training data, SquiggleMilli is trained in two phases: Large-scale training with synthesized data and fine-tuning
with real, measured data. We build a realistic data synthesizer that uses CAD models of various objects and
generates 3D mmWave shapes. Our synthesized dataset consists of 9800 samples (14.7 GB) of various objects’
shapes generated by squiggle motion paths. Furthermore, we have built a real-world data collection platform that
integrates a Google Tango based AR device [25] with a 77–81 GHz mmWave device [26] to collect real, hand-held
squiggle motion based mmWave reflected signals from objects. Our real dataset consists of 1568 samples (2.4
GB) with 9 object categories, each with an average 10 sub-categories. These real measurements are used to both
fine-tune our machine learning models and benchmark the effectiveness of the two design components. We find
that SquiggleMilli can reconstruct the 2D shapes with a similarity score ranging from 0.85 to 0.95 (1 is a perfect
match) w.r.t. to the ground-truth shape. For 3D features, SquiggleMilli can predict the mean depth with less than
1% error and rotation angle below 1.5◦ error for 90th percentile of shapes. It can classify the objects in categorical
and binary labels with an average 90% and 96% accuracy, respectively.

In sum, we make the following contributions: (1) We design a framework for mmWave shape reconstruction
in hand-held settings by re-thinking the traditional motion compensation, compressed sensing, and voxel
segmentation. To the best of our knowledge, SquiggleMilli is the first system to enable 3D mmWave imaging with
a free-hand, squiggle device motion. (2) We design customized deep convolution networks to not only improve the
shape resolution but also recover the missing spatial frequencies, retrieve 3D features, and categorize the objects
automatically. Our results demonstrate that SquiggleMilli is generalizable under real conditions with different
background noise and environmental movements. To catalyze the hand-held mmWave imaging research, we will
open-source the measured dataset, data synthesizer, and cGAN implementation through our project repository.

2 BACKGROUND AND CHALLENGES

2.1 3D Millimeter-Wave Image Reconstruction
Traditional SAR imaging relies on a moving antenna that periodically transmits and receives FrequencyModulated
Continuous Wave (FMCW) signals. The transmitter sends the signal during a short time period, and the receiver
measures the reflections bounced off of the nearby objects. The objects’ shapes could be discriminated against
the background by estimating the reflection strengths at different distances. To obtain the object’s 3D shape, the
traditional SAR system moves the device in a 2D grid and measures the reflections at uniformly and densely
spaced grid locations [14]. Consider that the object consists of a set of N reflecting points, each at a coordinate
(xn ,yn , zn) with reflectivity σn . As long as the imaging system can estimate the reflectivity σn at the correct
coordinate, it can recover the object’s shape. The FMCW device, moving along a 2D grid, sends a chirp signal p(t)
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from its location (x ,y, 0) and receives the reflection. The reflected signal consists of reflections from all object
points and can be modeled as: s(x ,y, t) =

∑
n∈N σn · p[t − 2dn/c], where c is the wireless propagation speed (∼

3×108 m/s), and 2dn is the round-trip distance between the nth reflecting point and the measurement location
[16]. The SAR imaging system then converts and combines the measured reflections from all 2D grid locations to
construct the 3D shape of the object. First, it applies two-successive Fourier Transforms, a 1D FFT across the time
t , and a 2D FFT across the space x and y, to obtain the spatial frequencies in the object [14]:

s(x ,y,ω) = FFTt [s(x ,y, t)] s(kx ,ky ,ω) = FFT(x,y)[s(x ,y,ω)] (1)
where (kx ,ky ) are the spatial frequencies in the 2D grid, and ω is the temporal frequency [14]. Then, it focuses
the frequencies at the mean depth of the object z0 by applying a matched filter on s(kx ,ky ,ω) [14]:

F (kx ,ky ,kz ) = s(kx ,ky ,ω)e
−jkzz0 (2)

where kz is the spatial frequency across z (depth). Since the mean depth of the object is unknown before
reconstructing the shape, the system uses the centroid of the reconstruction volume as the mean depth. Finally, it
applies a 3D Inverse Fourier Transform to obtain the reflectivity of the object at different (xn ,yn , zn).

f (x ,y, z) = IFFT(kx ,ky,kz )[F (kx ,ky ,kz )] and,σn = | f (xn ,yn , zn)| (3)
where | · | denotes the absolute value, i.e., the strength of the reflecting points. Even if the measurement locations
could be uniformly spaced by precise mechanical movement of the device, F(kx ,ky ,kz ) is non-uniformly sampled
across the third dimension. This is because kz is a non-linear function of kx , ky , andω [14]. Thus, a straightforward
IFFT in Eq. (3) does not work. To overcome the challenge, the SAR system applies interpolation on the spatial
frequency signal F (kx ,ky ,kz ) before obtaining a focused 3D image [14]. Besides, the imaging framework requires
the uniformly spaced grid locations to adhere to the Nyquist criterion so that the reconstruction is alias-free [14].
Figure 1(a) shows an example 2D slice output of the uniformly and densely spaced SAR image reconstruction
with a 77 GHz mmWave device [26]. The object is a 12 cm long scissor placed 30 cm away from the 2D grid.
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Figure 1. Shape reconstruction with traditional SAR: (a) Uniform and dense 2D grid based aperture. (b) Hand-held motion
based aperture. (c) Uniform and dense 2D grid but focused at a depth off by 2 cm. (d) Object with 5◦ incorrect alignment
w.r.t. the aperture plane. Traditional SAR in hand-held setting distorts and blurs the shape and misses its features.

2.2 Challenges in Hand-held Settings
In practice, emulating SAR on a hand-held mmWave system is challenging for two reasons:

(1) Non-linear, Undersampled Measurement Locations: The image reconstruction in Section 2.1 depends
on uniformly and densely spaced measurement locations on the 2D grid. Unfortunately, both the requirements
are impractical under hand-held settings. Even if the device’s relative locations could be precisely estimated,
(following [25, 27]), focusing the reflected signals measured from non-linear movements would produce a distorted
shape. Furthermore, obtaining dense measurements, especially along the vertical axis, is challenging and time-
consuming. Undersampling of measurements in space creates shape alias in the scene, resulting in ghost objects.
To understand such effect, we try to emulate the movement along 2D grid using the hand-held device and apply
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the traditional 3D SAR imaging on the measured reflections of the same scissor object. Figure 1(b) shows the
resulting object shape: It is completely distorted, showing multiple spurious, strong reflections at incorrect
coordinates, forming ghost objects where no object exists. Besides, focusing the reflected signals at an unknown
depth yields a de-focused shape. Figure 1(c) further shows that the shape is de-focused even with reflections
from the uniform and dense 2D grid, when signals are focused at depth off by just 2 cm.
(2) Variable Reflectivity and Specularity: Various parts of an object reflect mmWave signals differently.

While the metallic part would likely reflect strong signals, the reflections from the non-metallic parts could be
buried under the additivity of all reflections. Besides, due to the small wavelength of the mmWave signal and
specular reflections from objects, the shapes could be fully reconstructed only when the objects are oriented in
parallel to the aperture plane. Such fundamental limitations would lead to a partial shape reconstruction only.
Figure 1(d) illustrates this effect by reconstructing the shape when the object is aligned incorrectly by 5◦ only w.r.t.
the 2D grid, and contrast the result with the reconstructed shape in Figure 1(a). We have two observations: First,
even if in Figure 1(a), the object is perfectly aligned, various edges and parts are missing from the non-metallic
parts, such as the scissor handle. Second, for incorrectly aligned scissor in Figure 1(d), the specular reflections
prohibit reconstructing all of the metallic parts, such as the scissor blades, and misses important object features.

3 SQUIGGLEMILLI DESIGN

3.1 Overview
SquiggleMilli aims to bring SAR imaging to cheap, ubiquitous mobile mmWave devices by addressing the practical
challenges in hand-held settings. It relies on the user freely moving the device in the air in a squiggle manner
and measures the reflected signals from the scene in front of the squiggle plane. Then, by processing the signals,
SquiggleMilli emulates the traditional SAR imaging system as if the reflections were measured from uniformly
and densely spaced grid locations. Still, the fundamental limits of specularity and weak reflectivity of mmWave
signals yield poor resolution and only allow for partial shape reconstruction. To this end, SquiggleMilli uses
cGAN, an adversarial learning framework, to not only improve the resolution but also restore the missing parts
in the object’s shape. Figure 2 shows an overview of the SquiggleMilli system.

Figure 2. System overview of SquiggleMilli.

The reflected signals and squiggle aperture lo-
cations are used in a non-linear motion compen-
sation that maps squiggle locations to the nearest
uniform grid locations. Still, the number of squig-
gle locations may not be enough to map to all the
uniform grid locations. To this end, SquiggleMilli
leverages the sparse reflection properties of the
mmWave domain and applies a compressed sens-
ing based framework [13] to recover the missing
samples. Then, it focuses the reflected signals at
different depths from the squiggle plane and ap-
plies voxel segmentation to extract 3D mmWave
shape of individual objects.
Since specularity and weak reflectivity may

not allow reconstructing the full shape, Squig-
gleMilli designs a full shape recovery and auto-
matic classification framework. It leverages a pre-trained model using cGAN that learns, from thousands of
previous examples, the association between the 3D mmWave shape to its ground-truth shape. This model is
generalizable for various objects and can determine an object’s accurate 2D shape given the partial 3D mmWave
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Figure 3. (a) User draws a virtual 2D grid and squiggles the device. (b) Non-linear motion compensation maps squiggle
locations to nearest uniform grid locations. (c) Multiple antennas receive reflections from the same set of reflectors.

shape. Besides, the framework can quantify various 3D features of the object, e.g., its mean depth and orientation
in 3D plane, and classify the objects into different categories. We now describe these design components in detail.

3.2 Squiggle Correction and Objects Extraction
Traditional 3D SAR imaging ensures accurate focusing and no aliasing of the shape by requiring the 2D grid
locations to be spaced within λ/2 distance, where λ is the signal wavelength [14] (for example, λ ≈ 3.9 mm for
77 GHz). Even if the camera system, such as in AR smartphones [25], could self-localize the device within that
precision, such uniform and dense measurement constraints are impractical in hand-held settings. Thus, instead
of relying on this constraint, SquiggleMilli uses whatever the user could measure with the device’s squiggle
motion in the air and applies corrections. Still, the reconstructed shape resolution is fundamentally limited by the
aperture span in both horizontal and vertical axes, and the number of measurement locations. So, SquiggleMilli
would like to maximize the measurements to improve its focusing ability.

To this end, it leverages the AR camera service to guide the user through visual aid: Camera feed overlaid with
the device’s locations on the screen, such as in Google Tango [25, 28]. First, as the user points her hand-held
device towards a scene, SquiggleMilli asks the user to draw a virtual boundary of a 2D grid within which she
will squiggle her device (Figure 3[a]). This virtual boundary helps the AR system to continuously track and
provide feedback when the user is overshooting out of the area. Second, as the user moves the device over the air,
the overlaid display helps her see the squiggle locations in real-time, implicitly prompting her to collect more
measurements at sparser areas, similar to existing Tango services [28]. Finally, when the user stops, SquiggleMilli
sets a maximum area boundary and minimum grid resolution. The 2D area is set based on the density of the
measured locations above a threshold, and the resolution is selected based on the condition to avoid shape aliasing
[14]. Once SquiggleMilli has collected all the reflected signals, aperture locations, and determined the boundary
and resolution of the virtual 2D grid, it aims for: (1) Squiggle correction with non-linear motion compensation;
(2) Missing grid locations recovery; and (3) Object extraction with multi-focusing and voxel segmentation.

Non-linear Motion Compensation: The core purpose of the motion compensation is to map as many mea-
surements on the squiggle motion path as possible to its nearest uniform grid location. First, let’s consider a
point reflector on the target object in Figure 3(b) with distance ds from the measurement location on the squiggle
path (black ×). From the measured sample s(x ,y,ω) at the point on the squiggle path, we will need to estimate
the equivalent sample su (xu ,yu ,ω), which would be received at the nearest point on the uniform grid (pink
·) with distance du between the point reflector and the point on the uniform grid. This is achieved through
a phase correction of the samples. Since the signal traverses twice the distance between the squiggle location
and point reflector, the reflector will contribute to the phase change of the reflected signal by e jk ·2ds , where k is
the wavenumber (k = 2π/λ). Similarly, the point reflector will contribute to the phase change at the uniform
location by e jk ·2du . We can then virtually move the squiggle location to the uniform location by correcting for
these phase changes: Subtracting the phase change at the squiggle location and adding the phase change at the
uniform location. Thus, we can estimate su (x ,y,ω) from s(x ,y,ω) as follows:
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Figure 4. (a) Ground-truth shape (of a CD) from a perfect 2D grid of measurements. Shape reconstruction results: (b) With
motion error; (c) With motion compensation; (d) With motion compensation and recovery of missing grid locations.

su (xu ,yu ,ω) = s(x ,y,ω) ·
e jk ·2du

e jk ·2ds
= s(x ,y,ω) · e jk ·2(du−ds ) (4)

Unfortunately, such a straightforward recovery does not work in practice for two reasons. (1) The object is not a
single point reflector but consists of many reflecting points (Figure 3[b]); each point contributes to various phase
changes, and the squiggle location measures only the sum contribution. (2) The phase correction only works if
the total required correction is less than 2π , i.e., the absolute distance difference |du − ds | is less than λ/2. To
overcome these challenges, SquiggleMilli leverages two opportunities: First, mmWave devices usually comprise
of multiple receive antennas that can measure the reflections simultaneously. Due to the antenna separation,
the measured signals are different, but the reflections come from the same set of points on the object (Figure
3[c]). Thus, accurate phase correction for each antenna from the squiggle location towards the same uniform grid
location should yield the same reflected signal. Said differently, if we can perform accurate phase correction of
each antenna’s signals, the resultant differences between recovered signals from any pair of antennas would be
close to zero. Second, practical objects are not a collection of random points, but can be considered as a collection
of “patches” with uniform reflectivity and phase change contributions [18]. So, the phase corrections are only
needed for the contribution of the individual patches.
Thus, observations from multiple receive antennas and limited unknowns with “patch” assumption allow

SquiggleMilli to formulate the phase correction as an optimization problem. Given any pair of receive antennas
{i, j}, assume that the corresponding phase corrected reflected signals on the uniform grid location from the
antennas are siu (xu ,yu ,ω) and s ju (xu ,yu ,ω), respectively. Since under a perfect phase correction, these two
reflected signals should be identical, the optimization problem could be modeled as:

min
∑

i ∈N , j ∈N ,i,j

���siu (xu ,yu ,ω) − s ju (xu ,yu ,ω)
���
k=ω/c

s. t. |du − ds | < λ/2 (5)

where N is the total number of receive antennas on the mmWave device. This optimization is applied to each
temporal frequency bin ω that comprises reflected signals from different distances. However, the number of
patches in the scene and the corresponding distances du and ds are unknown. Thus, SquiggleMilli sets a bounding
box of the 3D volume of the scene it will reconstruct and applies the optimization iteratively over the small
neighborhood voxel area. Figures 4(a–c) show an example 2D shape (of a CD) from the multi-antenna motion
compensation (Figure 4[c]) and compare it with no motion error compensation (Figure 4[b]). Clearly, the motion
compensation improves the quality, but could not produce as high quality shape as the ground-truth (Figure 4[a])
because not all squiggle locations could be compensated due to the constraint in Eq. (5).

Missing Grid Locations Recovery: Although the motion compensation could map the squiggle locations to the
nearest uniform locations, it alone does not ensure estimating the reflected signals at all the uniform locations.
Even if a user could squiggle multiple times to increase the scan density, some squiggle locations could still map
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onto the same grid locations; hence, some of the uniform grid locations may remain unavailable. Focusing the
reflected signals with missing grid samples would cause shape aliasing [14]. So, before focusing, SquiggleMilli
attempts to recover the missing reflected signals through the compressed sensing (CS) framework [29–
32]. Since mmWave signals are sparse in the reflected signal domain, the CS technique could estimate the missing
samples based on the spatial arrangement and adjacency of the uniform grid locations [13, 33].

The key intuition is that even if the uniform grid is missing a few samples, combining several measurements
around the missing location could yield an accurate prediction since a majority of objects in mmWave spatial
frequency domain has high-degree of sparsity [34–37]. Equation 6(i) illustrates the sparsity of the reflected signal,
s ∈ CN×1. This is decomposed on a sparsifying matrix Ψ to a sparse representation f . Ψ is an N × N sparsifying
matrix, and f (∈ CN×1) is the sparse signal. f is called k-sparse if there are only k significantly large samples.
Since we have missing samples from our reflected signal y, this can be represented as Equation 6(ii), where Φ is
the measurement matrix. If we have only M of the total N samples in y (M < N ; N - M missing samples), then Φ
is an M × N matrix. Equation 6(ii) also represents the relation between y and f through A, where A = ΦΨ. Thus,
6(ii) becomes an under-determined system of linear equations with infinitely many solutions. However, when
k ≪ N, the vector f can be recovered with high reliability [38], and Equation 6(i) can then be used to recover
the full signal s . We formulate the recovery of f as an L1-norm minimization problem, as shown in Equation
6(iii). SquiggleMilli leverages the 1D sparse recovery technique in [39] and extends it for the 2D. Considering the
motion compensated samples on the uniform grid locations as the “compressed measurements,” SquiggleMilli
applies the Discrete Cosine Transform (DCT) as the sparsifying matrix. Then, the L1-norm minimization (Equation
6[iii]) is solved by the unconstrained basis pursuit de-noising method in [39].

(i) s = Ψ f ; (ii) y = Φs = Af ; (iii) min | | f | |1 s. t. y = Af (6)
However, there are two practical challenges in applying the CS technique in SquiggleMilli. First, the L1-norm

based minimization typically fails to converge, or outputs unreliable estimation, if the missing sample locations
are not randomized enough. This could be an issue with an unguided scan since users could often be biased to
scan over a certain grid area, leaving other areas sparser. Fortunately, the visual aid in SquiggleMilli, with an
overlaid camera feed and device’s locations, helps the user randomize the squiggle and distribute the measurement
locations throughout the virtual 2D grid. In case our CS recovery fails to converge, SquiggleMilli can prompt
the user for a repeat scan too. Second, since SquiggleMilli receives the reflected signals using a wide-bandwidth
mmWave device, each squiggle location’s signals are too unwieldy for efficient CS recovery, and oftentimes
recovery fails to converge. However, the signals include reflections from all objects in the scene, even far away.
For example, with 256 samples in each squiggle location and 4 GHz bandwidth, our system is capable of measuring
reflections up to 9.6 m. Clearly, objects from such a far away distance may not only reflect very weak signals
but also be irrelevant for short-range imaging applications. Thus, SquiggleMilli considers a maximum range and
removes the samples that are beyond the threshold. In our evaluation (with 1350 test samples), CS reconstruction
always converges by setting a maximum range of 4 m. Figure 4(d) shows the output image with the CS technique.

Multi-Focusing and Voxel Segmentation: Appropriate focusing of the signals requires the knowledge of the
mean depth of the object (Eq. (2)). However, a practical scene may consist of multiple objects at different depths,
and focusing the signals at a single mean depth will not only yield poor shape resolution but also blur some of
the objects. A straightforward approach could be first to focus the signal at the mean depth, then apply existing
voxel segmentation to separate multiple objects [40], and finally, apply post-processing to improve sharpness. But
this approach does not work because focusing signals at an incorrect depth suppresses some of the high spatial
frequency features [41]. Instead, SquiggleMilli focuses the signals multiple times, each time extracting
out a strongest reflecting object and subtracting its contribution from measured reflections.
First, SquiggleMilli uses the mean depth, estimated from the median time-of-flight of the reflected signals,

to reconstruct a volume following Section 2.1. Since this volume may consist of multiple objects, SquiggleMilli
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applies a k-means clustering [42] with 2 clusters to separate out the object and the background voxels. Since
objects likely have higher reflections than the background, one of the clusters would consist of only the voxels
from multiple objects. Then, SquiggleMilli leverages the existing DBSCAN segmentation [40] within the object
cluster to automatically segment multiple objects and sort the segments based on the sum energy of voxels. So,
the first segment likely consists of a de-focused object with the strongest reflections. SquiggleMilli finds the
first segment’s voxel centroid, applies processes in reverse order in Section 2.1 to get back the reflected signals
corresponding to the strongest object only, and then applies focusing at the correct depth. Finally, SquiggleMilli
subtracts the contributions of the strongest object from the original reflected signal, and the process repeats . . .,
until k-means could no longer separate the background and object clusters.

Still, effective DBSCAN segmentation relies on two search parameters [40]: Minimum number of voxels in each
segment, µ; and the radius of “neighborhood” around a voxel, ϵ . While [40] proposed a heuristic for computing
appropriate ϵ , µ is application/context-dependent. The challenge is that setting a too large µ would enforce
DBSCAN to put multiple objects to the same segment, and setting a too small µ would create many segments. To
balance between the choices, we set µ to the number of voxels corresponding to the smallest object that we can
reconstruct with the resolution limit [14]. Still, this method could generate separate small segments for the same
object. SquiggleMilli merges these small segments based on whether the closest points of approach for each pair
of segments are above the resolution criteria. For example, with 20 × 20 cm2 aperture and 4 GHz bandwidth, the
resolutions across the horizontal, vertical, and depth axes are 9.49 mm, 9.49 mm, and 3.75 cm, respectively. The
resulting segments now contain the 3D mmWave shape of the individual objects in the target scene.

3.3 Full Shape Recovery and Automatic Classification
The reconstructed 3D shapes from Section 3.2 may not always be human perceptible due to specularity and weak
reflectivity of objects. For example, Figures 1(a) and (d) show example cases where a scissor could be perceivable
in (a), but not in (d) because it is missing a majority of the edges and parts. To improve the human perceptibility
of the mmWave shapes, we propose to use cGAN [23, 24, 43]. The high-level idea is intuitive: SquiggleMilli
trains a cGAN framework by showing thousands of examples of mmWave shapes from squiggle correction and
reconstruction and the corresponding ground-truth shapes. cGAN framework uses a Generator G to learn the
association between the 3D mmWave shape to the 2D ground-truth shape, and uses a Discriminator D that
teaches G to learn better association at each iteration [43]. During the run-time, when cGAN has been trained
appropriately, G can estimate an accurate 2D depthmap outlining the shape without the ground-truth. In addition
to the shape, we also use a Quantifier Q that predicts the mean depth and orientation in the 3D plane, and a
Classifier C to automatically classify the objects into different categories. In what follows, we first describe the
GAN fundamentals briefly and then discuss the network components in detail.
GAN Fundamentals: Generative modeling is the classical machine learning area where unsupervised learning

could be used to automatically discover and learn the regularities and patterns in input data; so that the model
can generate a new dataset, plausibly correlated with the original dataset. GAN advances the concept further
by re-structuring the problem as a supervised learning and improving the quality of the new outputs, and even
producing outputs in different domains than inputs [44]. GAN uses two sub-models: (1) Generator G, which it
trains to generate new examples; and (2) Discriminator D, which tries to discriminate examples as either real
(from ground-truth) or generated (by G) and outputs the probability that the example is real. The problem is
formulated as a zero-sum, adversarial game [45], until D could no longer discriminate between real or generated
examples, which indicates that G is trained enough to be able to generate plausible examples. Mathematically, if
V (D,G) is the expected value in the GAN architecture, then the objective function could be modeled as [44]:

min
G

max
D

V (D,G) = Ex∼pdata(x )[logD(x)] + Ez∼pz (z)[log(1 − D(G(z)))] (7)
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Here the first term represents the expected value from D correctly identifying real samples, i.e., ground-truth,
and the second term represents the expected value from incorrectly identifying generated samples, i.e., generated
by G. The probabilities that the samples being drawn from the real or the generated dataset are denoted by
pdata(x) and pz (z), respectively. With no condition provided to the generative model, there is no way to control
the modes of data being generated or restrict it to a certain domain [44]. Therefore, in SquiggleMilli, we propose
a conditional GAN (cGAN) based architecture [43], where the ground-truth dataset is only restricted to the
mmWave generated shapes and shape output is conditioned on the visual ground-truth shape.
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Figure 5. Overview of the SquiggleMilli learning model.

SquiggleMilli Learning System: Figure 5 shows the machine learning model in SquiggleMilli. The model
consists of 4 network blocks: Generator (G), Discriminator (D), Quantifier (Q), and Classifier (C). G and D
networks together constitute the cGAN architecture that generates the full object shape. Q network leverages
the cGAN outputs and ground-truth image features to learn and predict the mean depth and the orientation of
the object in the 3D plane. Finally, C network leverages the cGAN outputs and supervised class labels to learn
and classify the objects into different categories automatically.
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Figure 6. (a) Generator and (b) Discriminator networks of the SquiggleMilli system.

Generator: The core purpose of the Generator G is to convert the imperceptible 3D mmWave shape to a human
perceivable 2D shape with all the edges, parts, and high spatial frequencies. To this end, we use the traditional
encoder-decoder architecture [46]. The encoder layer converts the 3D mmWave shape into 1D feature vector
using multiple 3D convolution layers and an end flatten layer; this 1D representation compresses the 3D shape so
that the deeper layers could learn the high-level abstract features. By the end of 3D convolutions, we convert the
spatial 3D data to 1×1×1, and at this point, the number of channels has been increased to hold these abstract
features. The decoder layer leverages these 1D features, and applies multiple deconvolution layers to decrease
the number of channels and increase the spatial dimensions. Deconvolution stops when we reach the desired
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output size, and at that point, we have a single channel for a 2D shape. In our design, we follow [47] to use 6 3D
convolution layers and the 8 2D deconvolution layers at the encoder and the decoder, respectively (Figure 6[a]).
However, our training set of samples could not exhaustively account for all possible hand-held squiggle motions.
To generalize G to many squiggle possibilities, we concatenate 3D gaussian noise layer to the convolutional layers
to boost the network immunity [48].
Yet, passing the 3D mmWave shape through the encoder-decoder layers in the network may yield a loss of

detailed high-frequency information during encoding [49]. This is because the object could spread over the
reconstructed volume, but only a few 2D slices contain the high spatial frequencies; however, the encoder
compresses them while converting the 3D shape into abstract 1D features. To preserve such high-frequency
details, G employs a skip connection [47, 49] between the input layer to the 6th deconvolutional layer .
The skip connection extracts the highest energy 2D slice from the 3D shape and concatenates it to the 2D
deconvolution layer. However, due to different orientations of the object, various parts of it may not appear
at a single highest energy slice; thus, a single 2D slice may not capture all the relevant high-frequency depth
information and might cause instability in the network [47]. Therefore, G first finds the plane that intersects with
the 3D voxel and likely has the highest energy from the object. Then, it selects a few neighboring 2D slices parallel
to the highest-energy plane towards and away from the squiggle plane. In practice, 4 neighboring slices from
both sides of the highest energy plane perform well. Finally, G leverages the feedback from the Discriminator to
adjust the weights of its encoder-decoder layers to learn and predict the accurate 2D shapes. Table 1 summarizes
the G network parameters.

Table 1. Generator Network Parameters. 3DC: 3D Convolution (with batch normalization); 2DDC: 2D DeConvolution (with
batch norm.); Act. Fcn: Activation Function; LRelu: LeakyRelu; Output layer uses linear activation.

3DC1 3DC2 3DC3 3DC4 3DC5 3DC6 2DDC1 2DDC2 2DDC3 2DDC4 2DDC5 2DDC6 2DDC7 2DDC8 Output
Filter # 16 32 64 128 256 1024 1024 512 256 128 64 16 8 1

Filter Size 6x6x6 6x6x6 6x6x6 6x6x6 6x6x6 6x6x6 4x3 4x4 4x4 4x4 4x4 4x4 4x4 4x4
Dilation 2x2x2 2x2x2 2x2x2 2x2x2 2x2x2 2x2x2 1x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Act. Fcn LRelu LRelu LRelu LRelu LRelu LRelu Relu Relu Relu Relu Relu Relu Relu Relu Linear

Discriminator: The purpose of the Discriminator D is to teach G a better association between the 3D mmWave
shape and its 2D ground-truth shape. D achieves this by distinguishing real and generated samples during the
training process. It takes two inputs in the form of the 3D mmWave shape and the 2D shape that either is a real
shape or is generated by G and produces output as a probability that the input is real (Figure 6[b]). Recall that the
goal of D is to increase the expected value from correctly discriminating between real and generated samples (Eq.
(7)). To this end, D uses a similar architecture of the encoder layers in G to represent the 3D mmWave shape into
a 1D feature vector. But instead of the decoder layers of G, D uses multiple 2D convolution layers that convert
input 2D shapes to the same length 1D feature vector. Finally, the two 1D feature vectors from both 3D and 2D
convolutions are cascaded and fed into 2 fully-connected dense layers that finally reach the single neuron output
layer. The output layer is passed through a sigmoid activation function and outputs the probability that the given
2D shape is real. By G trying to minimize the expected value (Eq. (7)) and D trying to maximize it, the entire
cGAN will converge when D consistently outputs close to 0.5 probability of recognizing inputs correctly, i.e., real
and generated shapes have an equal probability of being real. This ensures that G has learned enough to produce
the correct 2D shapes. Table 2 summarizes the D network parameters.

Table 2. Discriminator Network Parameters. 3DC: 3D Convolution (with batch norm.); FC: Fully Connected; 2DC: 2D
Convolution (with batch norm.); Act. Fcn: Activation Function; LRelu: LeakyRelu; Output layer uses sigmoid activation.

3DC1 3DC2 3DC3 3DC4 3DC5 3DC6 FC1 2DC1 2DC2 2DC3 2DC4 2DC5 2DC6 2DC7 FC2 FC3 FC4 Output
Filter # 16 32 64 128 256 1024 4 8 16 32 64 128 256

Filter Size 6x6x6 6x6x6 6x6x6 6x6x6 6x6x6 6x6x6 4x3 6x6 6x6 6x6 6x6 6x6 6x6
Dilation 2x2x2 2x2x2 2x2x2 2x2x2 2x2x2 2x2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Act. Fcn LRelu LRelu LRelu LRelu LRelu LRelu Relu LRelu LRelu LRelu LRelu LRelu LRelu LRelu Relu Relu Relu Sigmoid
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Figure 7. (a) Quantifier and (b) Classifier networks of the SquiggleMilli system.

Quantifier: Although our cGAN can recover most of the missing edges and parts of the objects, its output
is only a 2D shape. Rather than predicting the entire 3D shape directly from the cGAN, which would be not
only computationally expensive but also hard to learn due to inadequate input 3D data [50, 51], SquiggleMilli
leverages a QuantifierQ that can estimate the 3D features of the object: Mean depth and its orientations
in the 3D plane. Figure 7(a) shows our Quantifier network. Similar to D, Q leverages multiple 2D convolution
layers to convert the 2D shape to a 1D feature vector. Q starts with the 2D shape as the input and applies 7 2D
convolutional layers until it reaches the 1D fully-connected layer with 512 neurons. The network then passes
through 2 fully-connected dense layers to reach the output layer with 4 output neurons corresponding to the
4 3D features: Mean depth (d); Azimuth (ϕ); Elevation (θ ); and Rotation (α ). These output neurons have linear
activation functions to predict the actual value of these features. Table 3 summarizes the Q network parameters.
Table 3. Quantifier Network Parameters. 2DC: 2D Convolution (with batch norm.); FC: Fully Connected; Act. Fcn: Activation
Function; LRelu: LeakyRelu; Output layer uses linear activation.

2DC1 2DC2 2DC3 2DC4 2DC5 2DC6 2DC7 FC1 FC2 FC3 Output
Filters # 4 8 16 32 64 128 256
Filter Size 4x3 6x6 6x6 6x6 6x6 6x6 6x6
Dilation 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Act. Fcn LRelu LRelu LRelu LRelu LRelu LRelu LRelu Relu Relu Relu Linear

Classifier: So far, SquiggleMilli recovers the full 2D shape and 3D features of an object from its 3D mmWave
shape. We now elevate SquiggleMilli’s capability to detect and classify various real-life objects automatically. This
is useful in non-intrusive applications, e.g., automated packaged inventory counting, remote pat-down searching,
etc. To this end,we propose a Classifier C, customized for a hand-held security application, that leverages
the predicted 2D shape to label it to one of the object classes automatically. Similar to D andQ, C leverages
7 2D convolution layers and 2 fully-connected dense layers to predict the classes. In our design, we select 8 types
of items used by most security screening procedures (pistols, knives, scissors, hammers, boxcutters, cellphones,
explosives, and screwdrivers [3]) as the categorical outputs. In addition, to these categories, we add one extra
“Other” category to include various other items, e.g., books, key-ring, wallet, key-chain, etc. Hence, the categorical
output has 9 neurons in the output layer. Although C is currently not trained on a wider array of interesting
items, we note that our network is scalable to more objects without requiring substantial changes in the layers or
training with large samples. We leave more generalized object classifications as a future extension of SquiggleMilli.
In addition to the fine-grained classification, we also incorporate a binary classification of objects being suspicious
or not. Dangerous objects which should not be missed during classification are labeled as suspicious, e.g., knives,
pistols, explosives, etc. Such binary output could be very useful for hidden object annotations so that security
personnel could perform additional checks. Finally, C uses the softmax and sigmoid activation functions for the
categorical and binary output layers, respectively. Table 4 summarizes the C network parameters.

Network Loss Functions: All the network blocks rely on their loss functions to appropriately tune the convolu-
tion/deconvolution weights and train themselves. We use the L1-norm loss L1(G) [52] as well as traditional GAN
loss L(G) [44] to train the cGAN consisting of G and D. L1 loss helps the network in predicting a better 2D shape
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Table 4. Classifier Network Parameters. 2DC: 2D Convolution (with batch norm.); FC: Fully Connected; Categorical class
output layer uses softmax, and Binary output layer uses sigmoid activation functions.

2DC1 2DC2 2DC3 2DC4 2DC5 2DC6 2DC7 FC1 FC2 FC3 Category Output Binary Output
Filters # 4 8 16 32 64 128 256
Filter Size 4x3 6x6 6x6 6x6 6x6 6x6 6x6
Dilation 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Act. Fcn LRelu LRelu LRelu LRelu LRelu LRelu LRelu Relu Relu Relu Softmax Sigmoid

by estimating pixel-to-pixel mean absolute error, while traditional GAN loss maintains the adversarial game. Our
combined cGAN loss is determined by:

LcGAN = L(G) + λI · L1(G) where, L1(G) = E| |xI − G(zI )| |1 (8)
where λI is the shape hyper-parameter. Q network leverages the cGAN loss LcGAN and 3D features’ loss between
the ground-truth and the prediction to determine its loss function:

LQ = LcGAN + λF · LF (G) where, LF (G) = E| |xF − G(zF )| |1 (9)
where λF is the feature hyper-parameter. Finally, C network leverages LcGAN, categorical loss LC , and binary loss
LB . The categorical and binary losses are computed as the cross-entropy losses between actual probabilities and
predicted probabilities of different categories and binary classes [53], and are calculated as:

Lclass(G) = LcGAN + λC · LC (G) + λB · LB (G) (10)

where, LC (G) = −

9∑
i=1

ti log(c(si )), and, LB (G) = −(t0log(p0) + (1 − t0)log(1 − p0)) (11)

where c(si ) and ti are the predicted and actual probabilities of i th class (categorical output), and p0 and t0 are the
predicted and actual probabilities of suspicious object (binary output). The hyper-parameters (λI , λF , λC , λB )
represent the networks’ focus on shape reconstruction, features prediction, and classification. Our goal is to find
the set of values for these parameters, which would minimize the individual losses. However, determining the
exact values is tricky and difficult. But intuitively, the value for λI should be the largest, since it is responsible for
accurate reconstruction of human perceivable 2D shapes. We will discuss the hyper-parameters tuning in more
detail in Section 4. These networks with their optimized loss functions enable SquiggleMilli to fill up the missing
edges and parts in 2D shapes, predict the 3D features, and classify the objects accurately.

4 IMPLEMENTATION AND EXPERIMENTAL SETUP
Hardware Platform: We implement and evaluate SquiggleMilli using real data collected from a 77–81 GHz
mmWave device, TI IWR1443BOOST [26], and a Google Tango device, ASUS Zenfone AR [25] (Figure 8). The
mmWave device is equipped with 4 receive antennas that can collect reflected signals independently. To collect
the signals in real-time, we attach a Data Capture Module, TI DCA1000EVM [54] to IWR1443BOOST. The
DCA1000EVM module can temporarily store up to 2 GB of reflected signals and transfer them in real-time over
an Ethernet cable connected to a laptop. The mmWave device can operate on a 4 GHz of bandwidth; however,
due to frequency to space interpolation (Section 2.1), the effective bandwidth is around 3.32 GHz. We use the
following FMCW parameters: Start frequency, 77.33 GHz; baseband sampling rate, 5 Msps; frequency ramp slope,
70.3 MHz/µS; number of ADC samples, 256; sweep duration, 56.9 µS; pulse repetition rate, 1 kHz; and maximum
receive antenna gain, 10.5 dBi. At any aperture location, all reflected signals are collected within 51.2 µS, so even
a fast hand-held squiggle speed, such as 3 m/s [55], would appear quasi-stationary in the mmWave signal space.
We implement SquiggleMilli in Matlab and Python environments running on a host PC, which uses the reflected
signals and squiggle locations as inputs and generates 2D shapes, 3D features, and categories as outputs.
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Figure 8. Ground-truth data collection setup: (a) 77–81 GHz device placed on a 2D linear controller that moves in horizontal
and vertical axes; (b) mmWave device with 1 Tx and 4 Rx antennas; (c) ASUS Zenfone AR for squiggle pattern collection.

Real Data Collection: Since a real-time, tight synchronization between the mmWave and AR device is unavail-
able currently, we emulate a hand-held mmWave system in three steps: First, we collect the pose information of
several squiggle motion patterns from volunteers using RTAB-Map [28]. Then, we place the mmWave device over
a precise mechanical controller [56] that scans over a rectangular grid of area 20 × 20 cm2 with a resolution of
∼0.2 mm (∼ λ/18) (Figure 8[a]). Finally, for each squiggle pattern, we align its pose center to the grid center and
find the closest grid locations for the squiggle locations: The real pose information from squiggle motion is used
to filter out the dense measurement, so only those measurement points which trace out the approximate squiggle
path are used as input to our system. Since human hand-held motion is continuous and varies in speed, the input
data no longer is sampled uniformly and carries the effect of natural hand-held movement.
The object is placed in the aperture for Line-Of-Sight (LOS) data collection and is hidden inside the cloth for

Non-Line-Of-Sight (NLOS) data collection. To emulate a practical hand-held scanning at non-uniform speed, we
require very dense measurements: The fluidic arm motion by the user is continuous; thus, along the trajectory of
the hand-held scanning, there will be an almost continuity of points. Thus, the resolution of the measurements
from the mechanical controller setup is ∼ λ/18, even though we need measurements at λ/2 resolution to avoid
spatial aliasing. Besides, measurements at significantly higher resolution help in reducing discretization error in
motion patterns when we emulate the hand-held movements. For a uniformly and densely spaced, perfect 2D
grid based shape reconstruction, we resample the uniform grid at λ/2 resolution and apply traditional 3D SAR
imaging (Section 2.1): This process generates the ground-truth mmWave shape. With the 20 × 20 cm2 aperture
area and 3.32 GHz bandwidth, the ground-truth shape theoretically achieves ∼9.49 mm resolution at 50 cm depth
in the horizontal and vertical directions and 4.51 cm resolution in the depth direction [14].
To collect the ground-truth shape and 3D features, we co-locate the AR device with mmWave and combine

multiple snapshots from different aperture locations to find the mean depth and 3D orientation of the object.
Then, we apply a background mask to trace the 2D ground-truth shape, and resize it to a 128×256 image. Our
imaging framework (Section 3.2) generates a volume of size 40×1000×236 (∼9.4 million voxels); so, to expedite our
training/testing time, without loss in shape quality, we apply a 3D background mask, extract the object, and resize
the volume to 32×64×96. We select 8 different categories of objects, each with 10 sub-categories, following TSA
screening classes [3], and manually label each object with their ground-truth class. Besides, we use reflections
from random objects, e.g., books, key-ring, wallet, key-chain, etc., and label them as the “Other” category. The
measured 3D mmWave shape, and 2D ground-truth shape, 3D features, and class label are then concatenated to
form a real data sample for SquiggleMilli’s learning model. Our real dataset consists of 2918 samples.

Synthetic Data Generation: Although real samples enable accurate learning, the data collection process is
time-consuming. Besides, large-scale data samples for hand-held mmWave imaging are publicly unavailable. So,
to overcome the data scarcity and to expedite our learning, we implement a data synthesizer, similar to [47], that
uses the 2D shape and 3D features of an object and outputs mmWave 3D shape. We collect various 3D CAD
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models in different categories from the ShapeNet [57], and project their shapes from different viewing angles and
distances. The projected shapes are then converted into the grayscale and resized into 128×256 to match with the
real samples. We also record their mean depth and 3D orientation for ground-truth features. The 2D shapes are
then converted to 3D voxels by applying the rotation matrices along the 3 axes [58]. Finally, the data synthesizer
applies the standard ray tracing [59] to generate the 3D mmWave shape. Furthermore, the synthesizer considers
accurate hardware parameters of our mmWave device, practical squiggle paths, and various blockage effects of
mmWave signals [60] to faithfully generate 3D mmWave shapes, hidden or in LOS. Finally, the ray-traced 3D
mmWave shape, and 2D ground-truth shape, 3D features, and class label form the synthetic data samples for
training. Our synthetic dataset consists of 9800 samples.

Network Training: SquiggleMilli is mostly trained on synthetic samples and mainly tested on real samples. We
train SquiggleMilli in two phases: (1) With 8000 synthesized samples for 1000 epochs; and (2) With only 218
real samples for another 1000 epochs. The rest of the real samples (2700) with LOS and NLOS objects are used
for testing and benchmarking all our design components. We explore the effect of different combinations of
hyper-parameters by training the networks multiple times and found that the networks performed much better
when the ratio between λI and λF is close to 100×, e.g., (λI , λF )=(1000, 10). So, the networks work well when they
are more focused on shape reconstruction than feature prediction. Similarly, for the Classifier network, the best
combination of hyper-parameters are (λI , λC , λB ) = (1000, 20, 50). All network architectures are implemented in
Python with TensorFlow 2.1 [61] using PyCharm IDE [62] and Anaconda distribution [63] in a PC with Intel Xeon
CPU @ 3.5 GHz, 32 GB RAM, and Nvidia’s GeForce GTX 1070 [64]. Our networks take ∼36 hours to complete the
training, but in the future, training time could be improved with more powerful GPUs [64] or Cloud TPUs [65].

5 PERFORMANCE EVALUATION
We evaluate SquiggleMilli using 4 metrics commonly adopted to compare 2D shapes, 3D features, and classification
results and contrast them with 2D grid based traditional SAR with no motion errors or missing grid samples.
▶ Structural Similarity IndexMeasure (SSIM): An objective measure of distortion of structural information

in a 2D reconstructed shape with reference to a 2D ground-truth shape [66]. The scale goes from 0 to 1, where 1
means a perfect pixel-to-pixel match.
▶ Mean Depth Error: The estimation error of an object’s centroid in a volume measured from the squiggle

motion plane in comparison to the ground-truth.
▶ Orientation Error: The estimation error of an object’s 3D orientation, i.e., azimuth, elevation, and rotation,

in the volume reconstructed from the squiggle motion plane in comparison to the ground-truth.
▶ Classification Confusion Matrix: Probability of correctly classifying categorical and binary class labels,

with each row of thematrix representing predicted probabilities, and each column representing actual probabilities.

Evaluation Summary: (1) SquiggleMilli improves the median SSIM by 0.41 from the traditional SAR with ± 5
mm standard deviation of motion error. Compensation gain under practical squiggle motion is limited, but the CS
technique can improve the SSIM gain by a factor of 3.9× under moderate scan density. Besides, CS technique
reduces the scan time by almost 30× in the median. (2) SquiggleMilli’s machine learning model further pushes
the average SSIM from 0.44 to 0.9 and consistently outputs high-quality 2D shapes. It can accurately predict
the mean depth with less than 1% error in 90th percentile and 3D orientation angles with less than 7.6◦ error in
azimuth and elevation and less than 1.22◦ error in rotation. Besides, it outputs categorical and binary class labels
with an average 90% and 96% accuracy, respectively. (3) Finally, under field trials with samples collected in the
wild, SquiggleMilli has similar SSIM and depth, angles, and class prediction accuracies, indicating that the system
is generalizable under real conditions with different background noises and environmental movements.
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5.1 Squiggle Correction and Objects Extraction
Motion Error Compensation: To evaluate the effectiveness of motion error compensation, we use the densely
measured 2D grid at ∼ λ/18 resolution for the test samples with a single object. The depth of the object varies from
20 cm to 1 m from the aperture plane. To emulate the motion error, we apply a conservative ±5 mm of standard
deviation on the ∼ λ/2 grid resolution and extract the reflected signals from the ∼ λ/18 resolution grid. We then
emulate the motion error 20 times on each test sample, and apply motion compensation. To study the effect of
motion error only, we used a very high scan density of average ∼100 points/cm2. For the ground-truth, we use
the ∼ λ/2 resolution grid and apply traditional SAR reconstruction (Section 2.1). Our experiments are conducted
with the object mounted in parallel to the aperture plane to ensure the highest ground-truth quality. Then, we
extract the 2D slice corresponding to the highest energy from each volume reconstructed by the ground-truth,
with motion error, and with error compensation. Finally, we measure the SSIM between ground-truth and motion
error induced shape and between ground-truth and SquiggleMilli.

(a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
D

F

SSIM

w/o Motion Comp.
w/ Motion Comp.

(b)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

w/o Motion Comp. w/ Motion Comp.

S
S

IM

3.2 Points/cm
2

12.8 Points/cm
2

25.6 Points/cm
2

51.2 Points/cm
2

102.4 Points/cm
2

Figure 9. (a) SSIM distribution with and without motion error compensation.
(b) Effect of varying scan density. Bars and errorbars represent the median and
standard deviation across 64 test cases, each with 20 motion error paths.

Figure 9(a) shows the error com-
pensation performance with CDF.
The median and 90th percentile SSIM
without error compensation are only
0.14 and 0.22, respectively. In con-
trast, SquiggleMilli significantly im-
proves the structural quality, and the
median and 90th percentile SSIM are
0.55 and 0.67, respectively. Figure 4(c)
(Section 3.2) shows a visual result of
the motion error compensation. In
practice, however, the scan density
varies with the devices’ sampling rate,
user hand movement speed, etc. To
systematically test the effect of scan density, we resampled the motion error paths and reduced the samples by a
factor of 1/2, from an average 102.4 points/cm2 to an average 3.2 points/cm2. Figure 9(b) shows the resultant SSIM
and compares the cases with and without motion compensation. We have two observations: First, higher scan
density does not improve the structural quality without motion compensation; the median SSIM increases from
0.11 under 3.2 points/cm2 to 0.15 under 100.24 points/cm2. This indicates the motion compensation is needed
even if the user squiggles multiple times. Second, higher scan density does improve the quality with motion
compensation: Median SSIM improves from 0.47 under 3.2 points/cm2 to 0.55 under 100.24 points/cm2. However,
the overall improvement is 17% only. This indicates that motion compensation helps, but improvement is limited.
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Figure 10. (a) Ground-truth shape with a perfect 2D grid. (b) Shapes with squiggle motion with and without CS technique.
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MissingGrid LocationsRecovery: Improvement frommotion compensation is further limitedwhen practical
squiggle motion is applied. Figure 11(a) shows that under squiggle motion, the SSIM from motion compensation
is hardly 0.29, even with 102.4 points/cm2 scan density (“w/o CS” line). This is because the error deviation under
practical squiggle motion is higher than the conservative ±5 mm standard deviation we have used before. We
now evaluate the effectiveness of the CS technique (Section 3.2) on top of the motion compensation to improve
the structural quality. We follow the process in Section 4 to measure reflected signals from 50 true hand-held
squiggle motions, and apply motion compensation and CS technique. To evaluate the improvement from CS, we
compare it against motion compensation only reconstruction. For each case, we vary the scan density as before,
and reconstruct the volume with and without CS technique and find the SSIM.
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Figure 11. (a) Quality improvement with increasing the scan density on without
and with the CS technique. (b) Minimum number of scan density needed in
reconstruction without CS to achieve the minimum quality in the CS technique.

Figures 10(a–b) show the ground-
truth reconstruction with perfect (∼
λ/2) 2D grid resolution, and con-
trast the results with and without
CS technique under different scan
densities. Even though the CS recon-
struction could not completely match
the ground-truth shape, it’s struc-
tural quality improves with increas-
ing scan density. However, the vi-
sual quality of the CS shapes in Fig-
ure 10(b) do not improve significantly
even if the scan density increases ex-
ponentially, there is hardly 0.04 SSIM
improvements between 12.8 points/cm2 and 102.4 points/cm2. Still, the CS technique, together with the motion
compensation, shows significant improvement over motion compensation only: SSIM improves between 0.30 to
0.45, a significant structural quality improvement.
Figure 11(a) further shows the SSIM under varying scan density: Each line plots the median SSIM with and

without the CS, and error bands and blue stars represent the standard deviations and 90th percentile, respectively.
Similar to Figure 10, CS technique improves with increasing scan density, but the improvement plateaus off
beyond 25.6 points/cm2. Figure 11(b) further shows that without CS, it would require the user to squiggle multiple
times needing a median scan density of 51.2 points/cm2 to achieve the same shape quality as in CS technique
with just 1.6 points/cm2. This represents an almost 30× reduction in the total scan time with the CS technique.

(a) (b)
Figure 12. Segmentation example with (a) two and (b) three objects.

Table 5. Segmentation confusion matrix.

Actual/Predicted 1 2 3
1 97.06 2.94 0
2 0 100 0
3 0 0 100

Voxel Segmentation: SquiggleMilli’s learning model is trained on one object at a time; however, a practical
scene may consist of multiple objects at various depths from the squiggle plane. We now evaluate SquiggleMilli’s
ability to extract single objects from multi-object scenes. We vary the number of objects, from 1 to 3, in front
of our data collection setup by placing them at different depths and spatial locations. SquiggleMilli then uses
motion compensation, compressed sensing, and multi-focusing and voxel segmentation (Section 3.2). For each
case, we count the number of objects predicted by SquiggleMilli and compare it with the ground-truth. Figure
12 shows two examples of 2D projected scenes for 2 and 3 objects, and their corresponding voxel segmented
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2D projections. Table 5 shows the voxel segmentation results across the test samples in the form of a confusion
matrix. Each row is the predicted probability of the number of objects in the scenes. For example, we see that for
all one object cases, SquiggleMilli can accurately predict the correct number more than 97% of times. Furthermore,
SquiggleMilli predicts the correct numbers accurately across all test samples with more than 1 objects.

5.2 Full Shape Recovery and Automatic Classification
Shape Improvement from cGAN: Motion compensation and CS technique improve the SSIM and output
shapes with a structural quality close to the ground-truth. However, due to the specularity and weak reflectivity,
the ground-truth mmWave shape itself could be missing many parts and edges. The resultant shape may not
only fail in automatic classification but also be human imperceptible. Figure 13 shows some of the example
ground-truth shapes generated by the perfect 2D grid based reconstruction. Even if SquiggleMilli’s imaging
framework could match such shapes, they are clearly not perceivable by humans.

Figure 13. Examples where the ground-truth shapes are imperceptible by humans.

We now evaluate SquiggleMilli’s cGAN architecture in enhancing the shapes. Figures 14(a–b) show both the
qualitative and quantitative results. First, Figure 14(a) shows three test objects’ shape reconstruction in cGAN
and contrast the result with traditional SAR with perfect 2D grid based measurements. Even if SquiggleMilli is
never trained on these samples, it can accurately reconstruct the shapes with all the parts and edges and key
discriminating features, such as barrel, butt, and trigger. Second, to evaluate the generalizability of SquiggleMilli,
we run cGAN over 150 test samples, and calculate the SSIM by considering the 2D ground-truth shapes as the
reference. Figure 14(b) shows the SSIM results with a scatter plot. Each point on the plot represents a test sample:
X-value is the traditional SAR’s SSIM (e.g., column 3 in Figure 14[a]), and Y-value is the SquiggleMilli’s SSIM.
While traditional SAR could only achieve an average SSIM of 0.44, SquiggleMilli’s has an average SSIM of more
than 0.9 across the 150 test samples. We further test the shape reconstruction of NLOS objects which are of a
similar category but have never been used in training (referred to as unseen samples) and find that the SSIM
score is still as high as it is in the LOS cases and is able to reconstruct shapes of unseen objects with a median
similarity score of 0.67 (Figure 14[b]). Figure 17 in the Appendix shows more shape reconstruction results.
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Figure 14. (a) Shapes reconstructed by SquiggleMilli from 3 test samples. (b) SSIM comparison between traditional SAR and
SquiggleMilli across 150 test samples for LOS, NLOS, and Unseen samples.
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Figure 15. (a) Percentage error in mean depth prediction in real samples. (b) Absolute error in orientation prediction in
synthetic samples. (c) Absolute error in rotation angle prediction in real samples.

3D Features Prediction: Recall that Quantifier Q leverages the generated 2D shape to predict the object’s
3D features: Mean depth and 3D orientation. We use the previous 150 test samples, and estimate the error in
predicting the features. We also compare the results with a baseline network that uses the shapes reconstructed
by the traditional SAR only. To create the baseline, we use Q’s architecture but train the layers with traditional
SAR generated shapes. This baseline network is also trained with identical sets of synthesized and real samples
for the same number of epochs that were used in SquiggleMilli training.

Figure 15(a) shows the CDF of depth error for SquiggleMilli and baseline. We observe that under the baseline,
the median depth error is about 8% and 90th percentile could reach up to 29.35%. In contrast, under SquiggleMilli,
the median depth error is about 0.43% and 90th percentile is less than 1%. Such high depth estimation accuracy is
attributed to the cGAN reconstructed accurate 2D shapes, where pixel values already embed the depth information
and aid Q to learn it better. Figures 15(b–c) further evaluate Q in terms of 3D orientation prediction. Due to a
constraint in mounting objects with different azimuth and elevation angles, we first evaluate the 3D orientation
prediction with synthetic samples. Then, evaluate the rotation angle prediction with real samples. Figure 15(b)
shows that in 90% of samples, both the predicted azimuth and elevation angles have less than 7.6◦ error. The
rotation angle prediction shows the least error, less than 3.4◦ in 90th percentile. We also verified the rotation
angle prediction with real samples: Figure 15(c) shows that 90th percentile error is less than 1.22◦ only. Both the
shape improvement and 3D features prediction results indicate that SquiggleMilli generalizes its model well
in real scenes with various object shapes and sizes, even if the model is trained mainly on synthesized
data and only on limited real samples.
Classifier: Recall that Classifier C can predict 9 object categories along with their binary classes. We randomly

select 540 test samples (60 from each of the categories) and use the cGAN to produce the accurate 2D shapes. Then,
we input these 2D shapes to C to predict their class labels. Since C is customized towards security application, we
use 0.98 as the class probability threshold; so any object with less than 98% confidence is placed under the “Other”
class. We also use the same set of samples for binary classification of labeling the objects as suspicious or not.

Table 6. Confusion matrix of categorical classifier in SquiggleMilli for LOS samples.

Actual/Predicted Boxcutter Cellphone Explosive Hammer Knife Pistol Scissor Screw Other
Boxcutter 90 0 0 0 0 0 0 0 10
Cellphone 0 100 0 0 0 0 0 0 0
Explosive 0 0 100 0 0 0 0 0 0
Hammer 0 0 0 100 0 0 0 0 0
Knife 0 0 0 0 92 0 0 0 8
Pistol 0 0 0 0 0 100 0 0 0
Scissor 0 0 0 0 0 0 100 0 0
Screw 0 0 0 0 0 0 0 70 30
Other 0 13 25 0 0 5 0 0 57
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Table 7. Confusion matrix of categorical classifier in SquiggleMilli for NLOS samples.

Actual/Predicted Boxcutter Cellphone Explosive Hammer Knife Pistol Scissor Screw Other
Boxcutter 94 0 0 0 0 0 1 0 5
Cellphone 0 69 0 4 0 2 0 0 25
Explosive 0 0 85 8 0 0 0 0 7
Hammer 0 0 0 93 0 0 3 0 4
Knife 5 0 0 0 67 0 8 0 20
Pistol 2 0 0 0 0 87 2 1 8
Scissor 0 0 0 0 0 0 100 0 0
Screw 0 0 0 3 0 0 19 45 33
Other 0 0 19 6 0 21 2 0 52

Table 8. Binary class confusion matrix in SquiggleMilli for LOS samples.

Actual/Predicted Suspicious Non-suspicious
Suspicious 98.25 1.75

Non-suspicious 6 94

Table 9. Binary class confusion matrix in SquiggleMilli for NLOS samples.

Actual/Predicted Suspicious Non-suspicious
Suspicious 90.75 9.25

Non-suspicious 13.2 86.8

Table 6 shows the confusion matrix of categorical labeling with rows as the predicted probability for LOS
samples. Cellphones, explosives, hammers, pistols, and scissors all show 100% accuracy; this is because, these
objects reflect mmWave signals strongly, and cGAN can accurately reconstruct their shapes, aiding C to do a
perfect classification. We also observe that 13% and 25% of “Other” categories are classified as cellphone and
explosives because of their shape similarity (e.g., wallet and key chains, etc.). To observe the performance of C for
NLOS objects, we test the trained model with NLOS objects. Table 7 shows the confusion matrix of categorical
labeling with rows as the predicted probability for NLOS samples. We find that the NLOS scissor shows 100%
accuracy because of its shape peculiarity. Also, the other NLOS objects, such as boxcutters, explosives, hammers,
pistols, still show a similar classification accuracy as in LOS cases. For the remaining NLOS cases, e.g., cellphones,
knives, screws, even if the classification accuracy is lower than the LOS cases, the objects are mostly labeled as
the “Other” categories, which may require human intervention and further inspection. Overall, C has an average
prediction accuracy of ∼87.9%. Instead of 98% confidence, we could use the highest output probability to predict
the labels. We still find that the average prediction accuracy is ∼83.4% with LOS and NLOS objects, indicating that
our model does not fit data to any one of the particular categories excessively. Tables 8 and 9 show the binary
classification for LOS and NLOS objects, respectively, which is more accurate than categorical classification. This
is expected since there are only two class labels. Still, on average, between LOS and NLOS objects, we get 9.6%
false positives (non-suspicious items classified as suspicious); this is mostly due to the wrong classifications of
“Other” categories. The average false negatives in our test samples are low, 5.5% only, which makes SquiggleMilli
promising for security applications. To further study the performance of samples that have never been used in
training, we use 32 different unseen samples of knives and guns with various orientation angles and depths. After
shape reconstruction and classification, we find that majority of knives and guns are classified to the right class
with low probability to different classes. The result shows that SquiggleMilli is able to achieve an accuracy of
∼75% in the multi-class classification for unseen object categories. Similarly, for binary classification, the system
is able to achieve ∼85% accuracy.

5.3 Field Trial Results
We now evaluate SquiggleMilli with a larger number of test samples collected in the wild with various background
scenes and people walking around the data collection setup. We collect reflection data from 60 objects, hidden
and in LOS, and apply 20 different squiggle motions to it; this generates 2400 test samples (1200 in LOS and
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Figure 16. Field trial results: (a) SSIM score for LOS objects; (b) Percentage error in depth and orientation prediction for LOS
objects. (c) SSIM score for NLOS objects; (d) Percentage error in depth and orientation prediction for NLOS objects. Shape
reconstruction examples for different cases; (e) Partially occluded gun; (f) Fully occluded gun; (g) Fully occluded scissor.

1200 in NLOS). For each sample, we record the 2D ground-truth shapes and 3D features, and we resample the
squiggle motion paths to emulate different hand-held speeds. Figure 16(a) shows the SSIM of 2D shapes of LOS
objects: Even with a very low average scan density of 1.6 points/cm2, the similarity index in the median is close
to 0.65 and increases quickly to 0.8 with 8 points/cm2. Also, for NLOS objects, SquiggleMilli achieves a median
similarity score of 0.72 with 8 points/cm2 (Figure 16[c]). Figure 16(b) also shows that the percentage errors of
both the depth and orientation angle estimation are very low, less than 1% and 0.2% in the median, respectively.
This holds true for NLOS objects, where we have a similar median error and slightly higher standard deviation
(Figure 16[d]). Finally, Figures 16(e–g) show three example visual results when the items are mounted on a human
dummy. While the traditional SAR fails to generate any interpretable results, either in partially or fully occluded
scenes, SquiggleMilli can clearly show sharp images with discriminating features, even if it has never learned the
scene before. These results demonstrate that SquiggleMilli is well generalizable under real conditions
with different background noise and movements in the environment.

6 RELATED WORK
Radio Imaging: Conventional mmWave radio imaging systems achieve high resolution using mechanical motion
controllers, bulky arrays, or rigid bodies [14–19, 67, 68]. They work at short-range and scan the target with
a pre-determined trajectory from multiple viewpoints to reduce the effect of specular reflectivity. Similarly,
MobiTagbot [69] utilizes the motion-enabled robot carrying microwave radios around and helping to locate
the RFID tagged objects. The system can help to automatically reorder or relocate different objects in libraries,
automation facilities, offices, etc. By carefully analyzing the relation between the channel and phase, it can achieve
the ordering accuracy of up to 100% for the objects with 3-6 cm spacings. Similar to SquiggleMilli, MobiTagbot also
relies on a mobile device to emulate the SAR principle. However, in contrast to SquiggleMilli, MobiTagbot relies
on microwave band RFID tags attached to the object. Besides, it can only localize the objects but cannot determine
their shape. All these systems rely on the principle of traditional SAR imaging techniques [16, 70–72]. Past
works attempted to create portable radar-based imaging systems [73–75], but they still rely on bulky mechanical
support that needs to be carried around for precise mechanical movement. Hence, these systems would be too
cumbersome for a hand-held setting. Recent works in [76–78] also propose to use mmWave radars to detect
object curvatures, boundaries, and 3D point clouds. However, the devices typically have to travel 10s of meters to
reconstruct an object’s or environment’s shape. Hence, they are infeasible for short-range imaging applications.
[27] proposes a hand-held mmWave imaging system, but it does not address the challenges with specularity
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and weak reflectivity artifacts in practical, hand-held settings. [68] aims to incorporate 3D imaging to mmWave
networking devices without interfering with the networking functionality, but the reconstruction results lack
shape and structural information, and all objects appear as blobs. Besides, their system is designed for 5G picocells
and thus would not be applicable under hand-held settings. Tomographic imaging [79] technique also relies on
reflected signals from objects; but instead of mechanically movable device, they require many radios around the
target scene. Apart from mmWave, other imaging systems based on infrared and thermal cameras can be used in
hand-held settings, but they are typically unsuitable for through-obstruction imaging [80–83]. Lidars can produce
an accurate point cloud of an environment, but they do not work under obstructions, such as clothing [84, 85].

Resolution Improvement by Learning: Prior works have used neural networks to improve optical images’
resolution [86–93]; in particular, deep learning framework has achieved the most significant improvements for
camera images [23]. The networks learn the association between low resolution and high resolution images
using RGB color and structural information. However, mmWave shapes have a very poor resolution compared to
optical images and significantly lack high spatial frequency information. Besides, due to the specularity and weak
reflectivity, many parts of an object do not appear in the mmWave reconstructed shapes. Thus, the traditional
super-resolution techniques could not be applied to the mmWave domain. [47] recently proposed to use cGAN to
generate high resolution depth images from low-resolution mmWave shapes. But the dataset and training domain
is limited to vehicles; besides, the system is trained on reflected signals collected from a perfect 2D grid based
SAR imaging system. In contrast, SquiggleMilli is designed and trained to recognize general-purpose shapes in
security applications, using mmWave reflected signals from fluidic hand motion.
Recently, a few approaches incorporated deep-learning into radio signal based imaging directly [94–98]. But

they focus on low-frequency, long-range, airborne SAR images reconstructed using 100s of meters length aperture,
created by rigid bodies, e.g., drones and airplanes. Besides, they use the measured reflected signals as both the
input and ground-truth in training; so, their learning systems would be fundamentally limited by the specularity
and weak reflectivity issues. [99] uses a static mmWave device and deep learning techniques to enhance the 3D
representation of a scene. But their output is still limited to blob shapes; so they are imperceptible by humans. In
contrast, SquiggleMilli is designed for hand-held settings, solves the challenges of fundamental specularity and
weak reflectivity in mmWave signals, and is able to reconstruct shapes that are human perceivable.

7 CONCLUSION
In this work, we demonstrate that SquiggleMilli can be a promising solution to bring high resolution, through-
obstruction imaging to cheap, ubiquitous mobile mmWave devices. The system approximates traditional SAR with
a hand-held squiggle motion and improves the human perceptibility of the shape through a combination of signal
processing and machine learning. We have customized SquiggleMilli for hand-held security applications, but the
network is adaptable to different domains by training with limited samples. We believe, bringing SquiggleMilli to
next-generation mobile devices may also inspire new perception algorithms and applications in the future.
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A MULTIPLE SHAPE RECONSTRUCTION RESULTS

Ground-truth Traditional SAR SquiggleMilli Ground-truth Traditional SAR SquiggleMilli Ground-truth Traditional SAR SquiggleMilli

Figure 17. Multiple shape reconstructions from SquiggleMilli.
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