An Illustrated Proof of Front-Door Adjustment Theorem

Mohammad Ali Javidian¹ Marco Valtorta¹

¹Department of Computer Science University of South Carolina

June, 2018

Outline

- 1 The Back-Door Criterion
 - Definition 1. (Back-Door)
 - Theorem 1. (Back-Door Adjustment)
- 2 The Front-Door Criterion
 - Definition 2. (Front-Door)
 - Theorem 2. (Front-Door Adjustment)
- 3 do Calculus
- 4 Proof of Theorem 2.

Back-Door Criterion

Definition

Back-Door Criterion

Definition

A set of variables Z satisfies the *back-door criterion* relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

(i) no node in Z is a descendant of X_i ; and

Back-Door Criterion

Definition

- (i) no node in Z is a descendant of X_i ; and
- (ii) Z blocks every path between X_i and X_j that contains an arrow into X_i .

Back-Door Criterion

Definition

- (i) no node in Z is a descendant of X_i ; and
- (ii) Z blocks every path between X_i and X_j that contains an arrow into X_i .

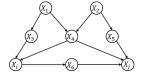


Figure: $S_1 = \{X_3, X_4\}$ and $S_2 = \{X_4, X_5\}$ would qualify under the back-door criterion, but $S_3 = \{X_4\}$ would not because X_4 does not d-separate X_i from X_j along the path $(X_i, X_3, X_1, X_4, X_2, X_5, X_j)$.

Theorem 1. (Back-Door Adjustment)

Outline

- 1 The Back-Door Criterion
 - Definition 1. (Back-Door)
 - Theorem 1. (Back-Door Adjustment)
- 2 The Front-Door Criterion
 - Definition 2. (Front-Door)
 - Theorem 2. (Front-Door Adjustment)
- 3 do Calculus
- 4 Proof of Theorem 2.

Theorem 1. (Back-Door Adjustment)

Back-Door Criterion

Back-Door Adjustment Theorem

If a set of variables Z satisfies the back-door criterion relative to (X,Y), then the causal effect of X on Y is identifiable and is given by the formula

Back-Door Criterion

Back-Door Adjustment Theorem

If a set of variables Z satisfies the back-door criterion relative to (X,Y), then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|\hat{x}) = \sum_{z} P(y|x,z)P(z). \tag{1}$$

Outline

- 1 The Back-Door Criterion
 - Definition 1. (Back-Door)
 - Theorem 1. (Back-Door Adjustment)
- 2 The Front-Door Criterion
 - Definition 2. (Front-Door)
 - Theorem 2. (Front-Door Adjustment)
- 3 do Calculus
- 4 Proof of Theorem 2.

Definition 2. (Front-Door)

Front-Door Criterion

Definition

Definition 2. (Front-Door)

Front-Door Criterion

Definition

A set of variables Z satisfies the *front-door criterion* relative to an ordered pair of variables (X, Y) in a DAG G if:

(i) Z intercepts all directed paths from X to Y;

Front-Door Criterion

Definition

- (i) Z intercepts all directed paths from X to Y;
- (ii) there is no unblocked back-door path from X to Z; and

Definition 2. (Front-Door)

Front-Door Criterion

Definition

- (i) Z intercepts all directed paths from X to Y;
- (ii) there is no unblocked back-door path from X to Z; and
- (iii) all back-door paths from Z to Y are blocked by X.

Front-Door Criterion

Definition

- (i) Z intercepts all directed paths from X to Y;
- (ii) there is no unblocked back-door path from X to Z; and
- (iii) all back-door paths from Z to Y are blocked by X.

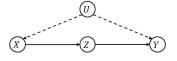


Figure: A diagram representing the front-door criterion.

Theorem 2. (Front-Door Adjustment)

Outline

- 1 The Back-Door Criterion
 - Definition 1. (Back-Door)
 - Theorem 1. (Back-Door Adjustment)
- 2 The Front-Door Criterion
 - Definition 2. (Front-Door)
 - Theorem 2. (Front-Door Adjustment)
- 3 do Calculus
- 4 Proof of Theorem 2.

Theorem 2. (Front-Door Adjustment)

Front-Door Criterion

Front-Door Adjustment Theorem

If a set of variables Z satisfies the front-door criterion relative to (X,Y) and if P(x,z)>0, then the causal effect of X on Y is identifiable and is given by the formula

Front-Door Criterion

Front-Door Adjustment Theorem

If a set of variables Z satisfies the front-door criterion relative to (X,Y) and if P(x,z)>0, then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x',z) P(x').$$

Rules of do Calculus

Preliminary Notation

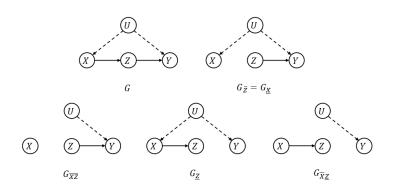


Figure: Subgraphs of G used in the derivation of causal effects.

Inference Rules

Rules of do Calculus

Rule 1 (Insertion/deletion of observations):

$$P(y|\hat{x},z,w) = P(y|\hat{x},w)$$
 if $(Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}}}$.

do Calculus

Inference Rules

Rules of do Calculus

Rule 1 (Insertion/deletion of observations):

$$P(y|\hat{x}, z, w) = P(y|\hat{x}, w)$$
 if $(Y \perp \!\!\! \perp Z|X, W)_{G_{\overline{X}}}$.

do Calculus

Rule 2 (Action/observation exchange):

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}\underline{Z}}}.$$

do Calculus

Inference Rules

Rules of do Calculus

Rule 1 (Insertion/deletion of observations):

$$P(y|\hat{x}, z, w) = P(y|\hat{x}, w)$$
 if $(Y \perp \!\!\! \perp Z|X, W)_{G_{\overline{X}}}$.

Rule 2 (Action/observation exchange):

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}\underline{Z}}}.$$

Rule 3 (Insertion/deletion of actions):

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in $G_{\overline{X}}$.

Step 1: Compute $P(z|\hat{x})$

• $X \perp \!\!\! \perp Z$ in $G_{\underline{X}}$ because there is no outgoing edge from X in $G_{\underline{X}}$, and also by condition (ii) of the definition of the front-door criterion, all back-door paths from X to Z are blocked.

Step 1: Compute $P(z|\hat{x})$

• $X \perp \!\!\! \perp Z$ in $G_{\underline{X}}$ because there is no outgoing edge from X in $G_{\underline{X}}$, and also by condition (ii) of the definition of the front-door criterion, all back-door paths from X to Z are blocked.

Step 1: Compute $P(z|\hat{x})$

• $X \perp \!\!\! \perp Z$ in $G_{\underline{X}}$ because there is no outgoing edge from X in $G_{\underline{X}}$, and also by condition (ii) of the definition of the front-door criterion, all back-door paths from X to Z are blocked.

• *G* satisfies the applicability condition for Rule 2:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}_{\underline{Z}}}}.$$

Step 1: Compute $P(z|\hat{x})$

• $X \perp \!\!\! \perp Z$ in $G_{\underline{X}}$ because there is no outgoing edge from X in $G_{\underline{X}}$, and also by condition (ii) of the definition of the front-door criterion, all back-door paths from X to Z are blocked.

• *G* satisfies the applicability condition for Rule 2:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}_{\underline{Z}}}}.$$

• In Rule 2, set $y = z, x = \emptyset, z = x, w = \emptyset$:

Step 1: Compute $P(z|\hat{x})$

• $X \perp \!\!\! \perp Z$ in $G_{\underline{X}}$ because there is no outgoing edge from X in $G_{\underline{X}}$, and also by condition (ii) of the definition of the front-door criterion, all back-door paths from X to Z are blocked.

• *G* satisfies the applicability condition for Rule 2:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}\underline{Z}}}.$$

• In Rule 2, set $y = z, x = \emptyset, z = x, w = \emptyset$:

$$P(z|\hat{x}) = P(z|x)$$
 because $(Z \perp \!\!\! \perp X)_{G_{\underline{X}}}$.

Step 2: Compute $P(y|\hat{z})$

$$P(y|\hat{z}) = \sum_{x} P(y|x,\hat{z})P(x|\hat{z}).$$

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x,\hat{z})P(x|\hat{z}).$
- $X \perp \!\!\! \perp Z$ in $G_{\overline{z}}$ because there is no incoming edge to Z in $G_{\overline{z}}$, and also all paths from X to Z either by condition (ii) of the definition of the front-door criterion (blue-type paths), or because of existence of a collider node on the path (green-type paths) are blocked.

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x,\hat{z})P(x|\hat{z}).$
- $X \perp \!\!\! \perp Z$ in $G_{\overline{z}}$ because there is no incoming edge to Z in $G_{\overline{z}}$, and also all paths from X to Z either by condition (ii) of the definition of the front-door criterion (blue-type paths), or because of existence of a collider node on the path (green-type paths) are blocked.

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x,\hat{z})P(x|\hat{z}).$
- $X \perp \!\!\! \perp Z$ in $G_{\overline{z}}$ because there is no incoming edge to Z in $G_{\overline{z}}$, and also all paths from X to Z either by condition (ii) of the definition of the front-door criterion (blue-type paths), or because of existence of a collider node on the path (green-type paths) are blocked.

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x,\hat{z})P(x|\hat{z}).$
- $X \perp \!\!\! \perp Z$ in $G_{\overline{z}}$ because there is no incoming edge to Z in $G_{\overline{z}}$, and also all paths from X to Z either by condition (ii) of the definition of the front-door criterion (blue-type paths), or because of existence of a collider node on the path (green-type paths) are blocked.

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

• In Rule 3, set $y = x, x = \emptyset, z = z, w = \emptyset$:

Step 2: Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x,\hat{z})P(x|\hat{z}).$
- $X \perp \!\!\! \perp Z$ in $G_{\overline{z}}$ because there is no incoming edge to Z in $G_{\overline{z}}$, and also all paths from X to Z either by condition (ii) of the definition of the front-door criterion (blue-type paths), or because of existence of a collider node on the path (green-type paths) are blocked.

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp\!\!\!\perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

• In Rule 3, set $y = x, x = \emptyset, z = z, w = \emptyset$:

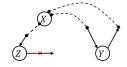
$$P(x|\hat{z}) = P(x)$$
 because $(Z \perp \!\!\!\perp X)_{G_{\overline{z}}}$.

Step 2 (continued): Compute $P(y|\hat{z})$

 (Z ⊥ Y | X)_{GZ} because there is no outgoing edge from Z in GZ, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.

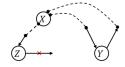
Step 2 (continued): Compute $P(y|\hat{z})$

 (Z ⊥ Y|X)_{GZ} because there is no outgoing edge from Z in GZ, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.



Step 2 (continued): Compute $P(y|\hat{z})$

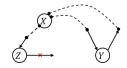
• $(Z \perp \!\!\! \perp Y | X)_{G_Z}$ because there is no outgoing edge from Z in G_Z , and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.



• G satisfies the applicability condition for Rule 2: $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w)$ if $(Y \perp \!\!\! \perp Z|X,W)_{G_{\nabla_{\tau}}}$.

Step 2 (continued): Compute $P(y|\hat{z})$

• $(Z \perp\!\!\!\perp Y | X)_{G_{\underline{Z}}}$ because there is no outgoing edge from Z in $G_{\underline{Z}}$, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.



- G satisfies the applicability condition for Rule 2: $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}Z}}.$
- In Rule 2, set $y = y, x = \emptyset, z = z, w = x$:

Step 2 (continued): Compute $P(y|\hat{z})$

 (Z ⊥ Y|X)_{GZ} because there is no outgoing edge from Z in GZ, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.



- G satisfies the applicability condition for Rule 2: $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}Z}}.$
- In Rule 2, set $y = y, x = \emptyset, z = z, w = x$:

$$P(y|x,\hat{z}) = P(y|x,z) \quad \text{because} \quad (Z \perp\!\!\!\perp Y|X)_{G_{\underline{Z}}}.$$

Step 2 (continued): Compute $P(y|\hat{z})$

•
$$P(y|\hat{z}) = \sum_{x} P(y|x,\hat{z})P(x|\hat{z}) = \sum_{x} P(y|x,z)P(x)$$
.

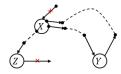
Step 2 (continued): Compute $P(y|\hat{z})$

- $P(y|\hat{z}) = \sum_{x} P(y|x,\hat{z})P(x|\hat{z}) = \sum_{x} P(y|x,z)P(x)$.
- This formula is a special case of the back-door formula in Theorem 1.

•
$$P(y|\hat{x}) = \sum_{z} P(y|z,\hat{x})P(z|\hat{x}).$$

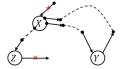
- $P(y|\hat{x}) = \sum_{z} P(y|z,\hat{x})P(z|\hat{x}).$
- $(Y \perp \!\!\! \perp Z | X)_{G_{\overline{X}Z}}$ because there is no outgoing edge from Z in $G_{\overline{X}Z}$, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.

- $P(y|\hat{x}) = \sum_{z} P(y|z,\hat{x})P(z|\hat{x}).$
- $(Y \perp \!\!\! \perp Z | X)_{G_{\overline{X}Z}}$ because there is no outgoing edge from Z in $G_{\overline{X}Z}$, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.



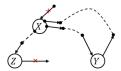
Step 3: Compute $P(y|\hat{x})$

- $P(y|\hat{x}) = \sum_{z} P(y|z,\hat{x}) P(z|\hat{x}).$
- $(Y \perp \!\!\! \perp Z | X)_{G_{\overline{X}Z}}$ because there is no outgoing edge from Z in $G_{\overline{X}Z}$, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.



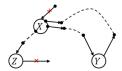
• G satisfies the applicability condition for Rule 2: $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w)$ if $(Y \perp \!\!\!\perp Z|X,W)_{G_{\nabla_z}}$.

- $P(y|\hat{x}) = \sum_{z} P(y|z,\hat{x}) P(z|\hat{x}).$
- $(Y \perp \!\!\! \perp Z | X)_{G_{\overline{X}Z}}$ because there is no outgoing edge from Z in $G_{\overline{X}Z}$, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.



- G satisfies the applicability condition for Rule 2: $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w)$ if $(Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{Y},z}}$.
- In Rule 2, set $y = y, x = x, z = z, w = \emptyset$:

- $P(y|\hat{x}) = \sum_{z} P(y|z,\hat{x})P(z|\hat{x}).$
- $(Y \perp \!\!\! \perp Z | X)_{G_{\overline{X}\underline{Z}}}$ because there is no outgoing edge from Z in $G_{\overline{X}\underline{Z}}$, and also by condition (iii) of the definition of the front-door criterion, all back-door paths from Z to Y are blocked by X.



- G satisfies the applicability condition for Rule 2: $P(y|\hat{x},\hat{z},w) = P(y|\hat{x},z,w)$ if $(Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{Y}Z}}$.
- In Rule 2, set $y = y, x = x, z = z, w = \emptyset$:

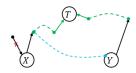
$$P(y|z,\hat{x}) = P(y|\hat{z},\hat{x})$$
 because $(Y \perp \!\!\! \perp Z|X)_{G_{\overline{X}\underline{Z}}}$.

Step 3 (continued): Compute $P(y|\hat{x})$

• $(Y \perp \!\!\! \perp X | Z)_{G_{\overline{XZ}}}$ because there is no incoming edge to X in $G_{\overline{XZ}}$, and also all paths from X to Y are blocked either because of condition (i) of the definition of the front-door criterion (blue-type paths)[directed paths from X to Y], or because of the existence of a collider on the path (green-type paths) (note that the case $T \in Z$ cannot happen because there is no incoming edge to Z in $G_{\overline{XZ}}$).

Step 3 (continued): Compute $P(y|\hat{x})$

• $(Y \perp \!\!\! \perp X | Z)_{G_{\overline{XZ}}}$ because there is no incoming edge to X in $G_{\overline{XZ}}$, and also all paths from X to Y are blocked either because of condition (i) of the definition of the front-door criterion (blue-type paths)[directed paths from X to Y], or because of the existence of a collider on the path (green-type paths) (note that the case $T \in Z$ cannot happen because there is no incoming edge to Z in $G_{\overline{XZ}}$).



Step 3 (continued): Compute $P(y|\hat{x})$

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

Step 3 (continued): Compute $P(y|\hat{x})$

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

• In Rule 3, set $y = y, x = z, z = x, w = \emptyset$:

Step 3 (continued): Compute $P(y|\hat{x})$

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

• In Rule 3, set $y = y, x = z, z = x, w = \emptyset$:

$$P(y|\hat{z},\hat{x}) = P(y|\hat{z})$$
 because $(Y \perp \!\!\! \perp Z|X)_{G_{\overline{XZ}}}$.

Step 3 (continued): Compute $P(y|\hat{x})$

• G satisfies the applicability condition for Rule 3:

$$P(y|\hat{x},\hat{z},w) = P(y|\hat{x},w) \quad \text{if} \quad (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X},\overline{Z(W)}}}.$$

• In Rule 3, set $y = y, x = z, z = x, w = \emptyset$:

$$P(y|\hat{z},\hat{x}) = P(y|\hat{z})$$
 because $(Y \perp \!\!\! \perp Z|X)_{G_{\overline{XZ}}}$.

• $P(y|\hat{x}) = \sum_{z} P(y|z,\hat{x})P(z|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x',z)P(x')$.

Reference For Further Reading

Causality. Models, reasoning, and inference. Cambridge University Press, 2009.

