
Pergamon 
Research in Developmental Disabilities, Vol. 18, No. 5, pp. 303-318, 1997 

Copyright © 1997 Elsevier Science Ltd 
Printed in the USA. All rights reserved 

0891-4222/97 $17.00 + .00 

PII S0891-4222(97)00012-7 

for 
MENTOR: 
Prediction 

in 

A Bayesian Model 
of Mental Retardation 
Newborns 

Subramani Mani, Suzanne McDermott, and Marco Valtorta 

University of South Carolina 

Mental retardation (MR) is a diagnosis that is made with extreme caution because of  
the many uncertainties in its etiology and prognosis, ln fact, most physicians will delay 
the diagnosis for months or years so that substantial evidence is available to rule the 
diagnosis in or out. MENTOR is a Bayesian Model for the prediction of MR in 
newborns that provides probabilities for the full range of cognitive outcomes, ranging 
from MR to superior intelligence. Using the model to confirm clinh~al judgment could 
help physicians decide when to proceed with diagnostic tests. The physician and family 
could discuss the probabilities for MR, borderline, normal, and superior intelligence, 
given the child's status in infancy and base their decision about additional testing, in 
part, on this information. © 1997 Elsevier Science Ltd 

I N T R O D U C T I O N  

Mental  Retardat ion (MR) is a comp lex  medica l  and social  p rob lem with an 

es t imated preva lence  be tween  1 and 3% in all human populat ions  (Batshaw, 

1993; Stein & Susser, 1992). It is a deve lopmenta l  disabil i ty with a complex  

etiology. Many  of  the causat ive  factors and mechan i sms  are not wel l  unders tood 

and the actual causes are usual ly unknown  for 3 0 - 5 0 %  of  individuals  with the 

condi t ion  (Batshaw, 1993). Menta l  retardation is character ized by significantly 

subaverage  intel lectual  funct ioning (Amer ican  Psychiatr ic  Associa t ion,  1994). 
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The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition 
(DSM-IV) states: 

Significant subaverage intellectual functioning is defined as an IQ of about 70 or below 
(approximately 2 standard deviations (SD) below the mean)...obtained by assessment 
with one or more standardized, individually administered intelligence tests. Four degrees 
of severity can be specified, reflecting the level of intellectual impairment: Mild Mental 
Retardation (IQ level 50-55 to approximately 70), Moderate Retardation (IQ level 35-40 
to 50-55), Severe Mental Retardation (IQ level 20-25 to 35-40) and Profound Mental 
Retardation (IQ level below 20-25). (APA,1994) 

Model building is helpful when we need to simplify a complex problem in 
order to make predictions or select from competing choices. The most widely 
applied use of model building in medicine has been related to differential 
diagnosis. Complex signs and symptoms are entered into the models, probabil- 
ities are assigned, interactions are defined and probable diagnoses are provided 
as outputs. In the case of mental retardation, we are confronted with a situation 
where there are many unknown causes and uncertain relationships. This paper 
describes a Bayesian model that assigns probabilities based on prenatal and birth 
conditions and a limited number of postpartum events to predict intelligence 
groupings (MR, borderline, normal intelligence, superior intelligence). 

The most recent models for MR, described in the literature, are either 
conceptual, designed to select interventions for individuals with MR, or predic- 
tive for population based rates of mental retardation. Claire (1989) and 
Greenspan and Gransfield (1992) discuss conceptual models that contribute to 
the definition of mental retardation but are not predictive. MR-Expert (Hile, 
Campbell, Ghobary, & Desrochers, 1993) is a rule-based expert system to 
support decisions related to violent behaviors displayed by some individuals 
with MR. McDermott and Altekruse (1994) developed a dynamic model that 
predicted population prevalence rates of MR based on demographic factors and 
child health policy decisions. The model demonstrates how socioeconomic 
variables, especially poverty and deprivation, increase the risk for MR in a 
population. In addition, McDermott has developed a linear regression model to 
explain variation in school district rates of MR (McDermott, 1994). 

BAYESIAN NETWORKS 

Bayesian statistics provide an alternative to hypothesis testing and confidence 
interval estimation. Bayesian statistical inference is used to draw conclusions 
from known data in a sample to populations for which there are no data. 
Bayesian statistical inference uses probabilities for both prior and future events 
to estimate the uncertainty that is inevitable with prediction. 

Bayesian Networks are also referred to as Causal Probabilistic Networks 
(Cooper, 1984; Lauritzen & Spiegelhalter, 1988; Neapolitan, 1990; Pearl, 1988) 
and Bayesian Expert Systems. The fundamental concept in these networks is 
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that probabilities can be assigned to parameter values, and through Bayes' 
theorem, these probabilities can be updated given new data. In Bayesian models 
the parameter is viewed as a domain variable, with a probability distribution, 
since the actual value of the parameter is unknown. The causal links between the 
variables are represented by arrows in the model. The model is strong if the 
arrows can be interpreted as causal mechanisms. The relationships can, alter- 
natively, be considered an association and this type of model would be viewed 
more cautiously (Glymour & Spirtes, 1993; Neapolitan, 1990; Pearl, 1988). 
Variables without parents are referred to as root variables. Prior probabilities are 
specified for the root variables and conditional probabilities for the variables 
with parents. A Bayesian Network allows us to reason in two directions. For 
example, we can ask the question: If the baby has low birthweight, what is the 
likelihood of a normal or mental retardation outcome? And, we can ask: If the 
infant has mental retardation what is the likelihood of low or normal birth- 
weight? Calculation of these values is straightforward from the initialized values 
using Bayes' theorem. For complicated Bayesian Networks exact inference 
algorithms are available to propagate evidence across the network (Neapolitan, 
1990; Pearl, 1988). Outcomes of mediating events can be predicted since they 
use the causal relations represented in the directed graph. These models are 
superior to statistical regression models as they take into account the causal 
sequence of events (Glymour & Spirtes, 1993). 

There are many Bayesian Expert Systems in the medical arena- Munin 
(Andreassen, Woldbye, Falck, & Andersen, 1987), ACORN (Wyatt & Spiegel- 
halter, 1989), Expert Systems for hematologic diagnosis (Nguyen, Diamond, 
Piolet, & Sultan, 1992), Diagnostica (Blinowska, Chattellier, Wojtasik, & 
Bernier, 1993) and PATHFINDER (Heckerman, Horvitz, & Nathwani, 1992). 
Expert System shells have been designed to facilitate easy construction of 
Bayesian Network applications. HUGIN (Anderson, Olesen, Jensen, & Jensen, 
1989), IDEAL (Srinivas & Breese, 1990) and BAIES (Cowell, 1992) are three 
such shells. 

There are two methods for building a Bayesian Expert System (BES). The 
first is asking a domain expert (in our case, a specialist in MR) to construct the 
network and assign the initial or prior probabilities. The second method involves 
building the network from data using Bayesian Network generating algorithms. 
such as - -  BIFROST (Lauritzen, Thiesson, & Spiegelhalter, 1993), K2 (Cooper 
& Herskovits, 1992) and CB (Singh & Valtorta, 1995). The data-built models 
can be validated by comparing the data generated model with the performance 
of an expert (Spiegelhalter, Dawid, Lauritzen, & Cowell, 1993). In this paper, 
we report on the use of our model built by a combination of the two strategies. 
We capture the skeleton network from data using the CB algorithm and prune 
the model with the help of a MR expert and published literature. In other words, 
the network structure as well as the prior and conditional probabilities are 
obtained from data and fine-tuned by an individual with knowledge of the 
literature who can provide expert opinion about the inclusion and logical 
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sequence of variables. The details of the model building are explained in another 
paper (Mani, Valtorta, & McDermott, 1996). 

METHODS 

The Child Health and Development Studies (CHDS) dataset was selected in order 
to build a Mental Retardation prediction model. The CHDS was a prospective study 
of pregnant mothers and their children. The children were followed through their 
teen years using numerous questionnaires, physical and psychological examina- 
tions, and special tests. The study, conducted by the University of California at 
Berkeley and the Kaiser Foundation, started in 1959 and continued into the 1980s. 
There are approximately 6000 children and 3000 mothers with IQ scores in the 
dataset. The children were either 5-year-olds or 9-year-olds when their IQs were 
tested (Child Health and Development Study, 1987). 

Data used in this analysis were derived from the CHDS interviews of the 
mother during pregnancy and from the mother's and child's Kaiser medical 
charts. Information on cognitive functioning were available from the special 
developmental examinations. Tests of cognitive functioning were given to two 
subgroups of the CHDS participates. At their 5th birthday, 3,413 children were 
given developmental examinations and follow-up interviews. Likewise, 3,737 
children were examined at their 9th, 10th, or 1 lth birthday. This examination 
also included cognitive ability tests for the child and the mother. 

Two tests of cognitive function were available for this analysis since both 
tests have been used to identify and classify MR. These tests are the Raven 
Progressive Matrices Test (for children) and the Peabody Picture Vocabulary 
Test (for children and adults). Although these tests are often used in conjunction 
with the Stanford-Binet or the Wechsler scales, they were the only tests of 
cognitive function administered in the Child Health and Development Studies. 
Thus, we used the Raven Test for children as the predicted outcome measure for 
this paper. Raven's Progressive Matrices, originally introduced in 1938, is a 
nonverbal test of reasoning ability that measures the ability to form compari- 
sons, to reason by analogy, and to organize spatial perceptions into systemati- 
cally related wholes (Sattler, 1990). The Raven Progressive Matrices are con- 
sidered a test applicable for children from 5-11 years of age and it has reported 
test-retest reliability scores ranging from .71 to .93 (Raven, 1965). Raven scores 
were grouped into four categories: MR (<29), borderline (30-39), normal 
(40-60), and superior (>60). The standardized scores were coded into the 
dataset. They had a mean of 50 with a standard deviation of 10. 

The Peabody Picture Vocabulary Test (PPVT) was originally developed in 
1959. This nonverbal, multiple choice test was designed to evaluate the hearing 
vocabulary or receptive knowledge of children and adults. Since maternal scores 
were coded as raw scores in the dataset, we standardized them using the 3000 
mothers in the study. The mean was 125 with a standard deviation of 19. We 
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categorized the maternal scores on the Peabody test as mild MR (62-86), 
borderline (67-105), normal (106-144), and superior (145-200). 

We initially identified about 50 variables that are thought to play a role in the 
causal mechanisms of MR. Variables with weak associations to the Raven scores 
were eliminated and the variables used in the model are defined in Table 1. 

MODEL BUILDING 

Three datasets were created for final model building. In all the three datasets 
only the first child of the mother is included, if this case had no missing IQ score 
variables. If the IQ scores were missing the second child was selected. The first 
dataset (RAVEN 1) contains 2212 cases and 24 variables and it was used to 
validate the model. The IQ scores of mothers and children are present. The 
proportions of controls and cases with three cutpoints for inclusion of cases 
(Risk Threshold levels) are presented in Table 2A. It is important to note that 
using a lower threshold than the Resting Values (more cases being identified as 
MR) would improve the sensitivity (predictive accuracy of cases) while lower- 
ing the specificity (prediction on controls). There are no missing values for the 
IQ scores, however, for the other variables, 4% had missing values. The second 
dataset (RAVEN 2) contains 5985 cases and 23 variables. As only about 3000 
mothers were given IQ tests, this dataset was created without the maternal IQ 
score. The percentage of missing values, for other variables, was 10%. The third 
dataset (RAVEN 3) contains 5985 cases and 24 variables, however, the majority 
of the IQ scores of mothers are missing. The percentage of missing values, for 
other variables, was 12%. In all of the datasets the missing values were the result 
of incomplete or missing data during data collection, and the pattern of missing 
data can be assumed to be random. 

The CB algorithm was run on the datasets for generating the networks. The 
datasets were randomly partitioned into two - -  a major part and a minor part. 
The bigger partition was used to construct the network and the smaller set for 
validation. For RAVEN 1, we used the first 2000 cases to generate the network 
and for the other two, the first 5000. We defined three rules to characterize the 
inadequacies of the generated networks. 

1. Rule of Chronology: Events occurring later in time cannot be the parents of 
earlier incidents. For example, a child health problem cannot be the parent of 
maternal disease. 

2. Rule of Commonsense: The causal links of the network should not go against 
commonsense. For example, Father's education cannot be a cause of Moth- 
er' s race. 

3. Domain Rule: The causal links should not violate established domain rules. 
For example, Prenatal care cannot cause Maternal smoking. 
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TABLE 1 
Variable Names and Definitions from the Child Health and Development Study Dataset 

Variable name Variable Definition 

Maternal race Gravida race has been classified as White (European, or White and Ameri- 
can Indian or others considered to be of white stock) and non-White 
(Mexican, Black, Oriental, interracial mixture, South-East Asians). 

Maternal age Age at the time of birth categorized into: 14-19 years; 20-34 years; ->35 
years. 

Marital Marital status has been grouped as ever (married/legally separated/di- 
vorced/widowed) and never married. 

Maternal Education/ Mother's and father's educational status have been defined as less than 
Paternal Education high school (if they had education -< 12th grade and did not graduate), 

high school (if high school graduate), >high school (attended college or 
college graduate) and special school (trade school). 

Maternal disease if gravida had any one or more of the listed conditions - -  lung trouble, 
heart trouble, high blood pressure, kidney trouble, convulsions, diabetes, 
thyroid trouble, anemia, tumors, bacterial disease, measles, chicken pox, 
herpes simplex, eclampsia, placenta previa, any type of epilepsy or mal- 
nutrition; coded as having a condition otherwise, coded as not having a 
condition. This variable coded by using an OR gate over 11 variables. 

Income Family income has been categorized into <$10,000 and ->$10,000. 
Smoking Maternal smoking was coded as yes if mother was smoking during that 

pregnancy and no otherwise. 
Alcohol A mother is defined as a mild drinker if she takes 0-6 drinks per week; 

moderate drinker if 7-20 per week and severe if >20 drinks per week. 
Stillbirth A history of one or more of previous stillbirths form the risk group and no 

history of previous stillbirths form the referent group. 
Prenatal Women who had prenatal care form the referent group and those who did 

not have prenatal care form the risk group. 
X-ray If a woman had been x-rayed for any reason in the year prior to or during 

the current pregnancy they were grouped as the risk level. Others were 
categorized as the referent level. This variable has been coded by using 
an OR gate over 2 variables. 

Gestation Period of gestation categorized into premature (---258 days), postmature 
(>294 days) and normal term (259-294 days). 

Distress Fetal distress was coded if there had been prolapse of cord or the mother 
had a history of uterine surgery or uterine rupture or fever at or just 
before delivery or an abnormal fetal heart rate. Those children who had 
none of the above were grouped as referent level. This variable has 
been coded by using an OR gate over 5 variables. 

Induce If the woman had any type of induction of labor (stripping of membranes, 
artificial rupture of membranes, Oxytocin IV/IM, induced but method 
not stated or if injected fluid in uterus) she is categorized under risk 
level and the referent level is no induction. 

Caesarean If the type of delivery was caesarean section, it was grouped as risk level 
and if the type of delivery was vaginal, it was categorized as referent 
level. 

Gender Male gender of infant during the current pregnancy forms the risk level 
and the female gender forms the referent level. 

Birthweight Low birth weight babies are those weighing <2500 g and the normal 
weight babies are those weighing ->2500 g. 

Resuscitation If the child had any type of resuscitation, he or she formed the risk level 
and children who had no resuscitation were categorized as the referent 
level. 
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Variable n a m e  Variable Definition 

Head circumference 

Anomaly 

Health Problem 

Raven 

Peabody 

A child with head circumference measurement of either 20 or 21 in was 
categorized as referent and the rest were grouped under risk level. 

A child with any of the following conditions forms the risk level (cerebral 
palsy, hypothyroidism, spina bifida, Down's syndrome, chromosomal 
abnormality, anencephaly, hydrocephalus, epilepsy, Turner's syndrome, 
cerebellar ataxia, speech defect, Klinefelter's syndrome, or any type of 
convulsions). Children with no conditions form the referent level. This 
variable has been coded by using an OR gate over 13 variables. 

Has been grouped into four - -  A child having physical problems, behav- 
ioral problems, both physical and behavioral problems and no problems. 

Raven scores are grouped into four categories - -  mild, borderline, normal, 
and superior. These scores have been standardized to a mean of 50 with 
a standard deviation of 10. 

Mother's scores on the Peabody test categorized as mild (<86), borderline 
(87-105), normal (106-144) and superior (> 145-). Mothers' scores 
yielded a mean of 125 with a standard deviation of 19. 

The skeleton structure of the net was modified using the Rules. Then the network 

was refined by comparing an expert's opinion about the likelihood of risk for each 
of the events and characteristics presented in the models. The expert was a clinician 

who has 20 years of experience with children with MR and other developmental 

disabilities. The expert was asked to use her experience with individual cases, and 
knowledge of the literature in the field, to assign a probability for each variable in 

the model. The expert had extensive experience in research and was familiar with 

the concepts of risk and probability. When the expert stated there was no relation- 
ship betweenvariables, the causal links were removed and new ones were incor- 

porated to capture the knowledge of the domain causal mechanisms. We used the 

data to generate the prior and conditional probabilities for all of the variables and 
modified only those the expert felt were inadequate. Prior and conditional proba- 

bilities were calculated from the dataset, RAVEN 3. The first 5000 cases were used 

for generating the network and computing the probabilities. Table 2 lists the 

variables, their levels, and the prior probabilities from the dataset. 

The expert refined network with 23 variables was input in Hugin using the 
Hugin graphic interface. Directed causal links were drawn from the parent 

variable to its children. The various levels (states) of the variables were also 
entered. For variables without parents, prior probabilities of the various states 
calculated from the RAVEN 3 dataset were assigned. For the variables with one 
or more parents, the conditional probabilities calculated using the same dataset 
were assigned. The network was ready at this point and the prior probabilities 
of the different states of all the variables were read from the network monitor. 

RESULTS 

MENTOR is a model for risk prediction of mental retardation. We used a prior 
probability of 5.6% for MR and 12.4% for borderline MR since these were 
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TABLE 2 
Variable States and Prior  Probabilities, CHDS 

Variable Prior 
No. Variable Name Variable State Probability Variable State 

Prior 
Probability 

1 Maternal race 1. Non-white 0.33 2. White 0.67 
2 Maternal age 1. 14-19 0.07 2. 20-34 0.77 

3. -----35 0.16 
3 Marital 1. Never marrried 0.01 2. Married 0.99 
4 Maternal education 1. -<12 years 0.15 2. HS Grad 0.33 

3. College 0.51 4. Special school 0.01 
5 Paternal education 1. -<12 years 0.16 2. HS Grad 0.27 

3. College 0.56 4. Special school 0.01 
6 Maternal disease 1. No disease 0.33 2. One or more 0.67 

disease 
7 Income 1. -10 ,000  0.14 2. <10,000 0.86 
8 Smoking 1. No 0.68 2. Yes 0.32 
9 Alcohol 1. Mild 0.93 2. Moderate 0.06 

3. Severe 0.01 

10 Stillbirth 1. None 0.97 2. Yes 0.03 
11 Prenatal 1. Yes 0.99 2. None 0.01 
12 X-ray 1. No 0.74 2. Yes 0.26 
13 Gestation 1. Full-term 0.80 2. Premature 0.08 

3. Postmature 0.12 
14 Distress 1. No 0.91 2. Yes 0.09 
15 Induce 1. No 0.96 2. Yes 0.04 
16 Caesarean 1. No 0.96 2. Yes 0.04 
17 Gender 1. Female 0.50 2. Male 0.50 
18 Birthweight 1. Normal 0.92 2. Low birthweight 0.08 
19 Resuscitation 1. No 0.93 2. Yes 0.07 
20 Head circumference 1. Normal 0.94 2. Abnormal 0.06 
21 Anomaly 1. No 0.99 2. Yes 0.01 
22 Health problem 1. None 0.75 2. Physical 0.09 

3. Emotional 0.09 4. Both 0.07 
23 Raven 1. Mild 0.02 2. Borderline 0.15 

3. Normal 0.70 4. Superior 0.13 
24 Peabody 1. Mild 0.01 2. Borderline 0.12 

3. Normal 0.78 4. Superior 0.09 

Table 2A 
Percent of Actual Controls and Cases Identified as Having Mental Retardation 

by MENTOR Using the CHDS 

Risk Threshold for MR CHDS Controls CHDS Cases 
and Borderline MR (n = 1863) (n = 349) 

Resting value (0.18) 434(23%) 122(35%) 
1.5 x resting value (0.27) 370(20%) 111(32%) 
2.0 x resting value (0.36) 342(18%) 101(29%) 
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indicative of the cognitive functioning scores for children in the CHDS. We used 
the RAVEN 1 dataset with 24 variables to validate the model. Table 2A gives the 
proportions of cases and controls identified with three threshold values. Using 
a lower threshold than the Resting Value would improve the sensitivity (pre- 
dictive accuracy for cases) while lowering the specificity (predictive accuracy 
for controls). If the risk of both MR and borderline MR doubles, we get a 
combined probability of 35%. That leaves a probability of 65% for normal and 
superior functioning. In fact, most of the actual cases with MR in the dataset 
have more than a 50% probability for normal outcome when we run them 
through the model. This situation is because there are more children with normal 
outcomes with similar instantiations of variables than there are children with 
MR. In actual clinical cases, the diagnosis of MR is rarely made after a review 
of history and physical examination. The clinical observation leads to a suspi- 
cion that is followed by a psychological examination. Thus, we cannot expect 
MENTOR to do more than estimate the likelihood of outcomes. MENTOR 
would confirm a clinician's intuition by assigning probabilities to the cognitive 
functioning levels. Since expert estimation of risk is subjective and based on 
prior experience, we decided on a strategy of validation by comparing with the 
expert as the initial step. 

We generated nine cases with instantiation for a subset of variables to be sure 
the model was working effectively. The information from the known variables 
for each of these cases is shown in Tables 3-5. We ran these cases on the model 
and came up with the probabilities for each of the Raven score groups. 

In the first case, the maternal race was non-White, the mother's age at birth 
was in the range of 14-19 years, both the mother and the father had less than 12 
years of education, the family income was less than $10,000, the gestation was 
full-term although the baby was low birthweight and the mother's Peabody 
intelligence test was normal. For this infant the probability of having MR 
increased from the prior probability of 5.6% to 10.1%, a notable increase. In 
addition, the probability of having borderline MR increased from 12.4% to 
30.0%. To compensate for the increased probability of an unfavorable outcome, 
the probability for normal and superior intelligence decreased from 73.1% to 
55.9% and from 8.9% to 4.0%. 

The expert was then asked to score the results, as agree or disagree with the 
probabilities for each of the nine cases in Tables 3-5. The expert was in 
agreement with the model's assessment in seven of the nine cases. The two 
cases where the expert was not in complete agreement with the probabilities 
were Case #4 and Case #9. However, in both these cases there were health 
problems in the child; in Case #4 the child had a congenital anomaly and in Case 
#9 the child had a health problem. In both of these cases a review of the medical 
chart would indicate the exact nature of the problem and this information would 
be used to estimate the probabilities. It is possible that the designated proba- 
bilities correctly estimate the risk. However, the domain expert could not assign 
probabilities without this additional information. 
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TABLE 3 
Risk Assessment of MR in Cases #1, #2 AND #3 

Variable Case #1 Case #2 Case #3 
No. Variable Name Variable State Variable State Variable State 

1 Maternal Race Non-white White White 
2 Maternal Age 14-19 ->35 
4 Maternal education -< 12 years College -< 12 years 
5 Paternal education -< 12 years College HS Grad 
6 Maternal disease No disease 
7 Income < $10,000 < $10,000 
8 Smoking Yes 
9 Alcohol Moderate 
10 Stillbirth 
11 Prenatal Yes 
12 X-ray Yes 
13 Gestation Full-term Full-term Premature 
14 Distress No Yes 
15 Induce 
16 Caesarean 
17 Gender 
18 Birthweight Low Normal Low 
19 Resuscitation 
20 Head circumference Abnormal 
21 Anomaly No 
22 Health problem Both 
23 
24 Peabody Normal Superior Borderline 

TABLE 3A 

Case 1 Case 2 Case 3 
Variable Variable States and Prior Posterior Posterior Posterior 
No. Name Probabilities Probabilities Probabilities Probabilities 

23 Raven MR 5.6% 10.1% 1.0% 20.0% 
23 Raven Borderline 12.4% 30.0% 4.0% 40.0% 
23 Raven Normal 73.1% 55.9% 69.0% 38.0% 
23 Raven Superior 8.9% 4.0% 26.0% 2.0% 

F o l l o w i n g  these  ini t ia l  resul ts ,  we  gene ra t ed  va l ida t ion  resul t s  us ing  the  

C H D S  and  the  N C C P  datasets .  

Validation of the Model Using a Different Dataset 

A second  da tase t  was  used  to va l ida te  the  results .  The  Na t iona l  Co l l abo ra t i ve  

Per ina ta l  P ro jec t  (NCPP) ,  o f  the  Na t iona l  Ins t i tu te  o f  Neuro log i ca l  and  C o m -  

m u n i c a t i v e  Di so rde r s  and  Stroke,  is a large long i tud ina l  s tudy o f  p r e g n a n c y  

ou tcomes .  The  data  cons i s t  o f  55 ,043 p regnanc ie s ,  b e t w e e n  1959 and  1974, and  

8 years  o f  f o l l ow-up  for  l i ve -bo rn  ch i ld ren .  Al l  the  cases  in the  da tase t  were  run  
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TABLE 4 
Risk Assessment of MR in Cases #5, #6 and #7 

Variable Case #4 Case #5 Case #6 
No. Variable Name Variable State Variable State Variable State 

1 Maternal race Non-white White 
2 Maternal age 20--34 
4 Maternal education College Special school 
5 Paternal education HS grad College 
6 Maternal disease 
7 Income < $10,000 
8 Smoking 
9 Alcohol Moderate 
10 Stillbirth Yes 
11 Prenatal 
12 X-ray Yes 
13 Gestation Full-term Premature 
14 Distress Yes 
15 lnduce 
16 Caesarean Yes 
17 Gender Male Female 
18 Birthweight Normal 
19 Resuscitation 
20 Head circumference 
21 Anomaly Yes 
22 Health problem 
23 
24 Peabody Superior Borderline 

White 
20-34 
HS Grad 
College 

Mild 

Yes 

Full-term 

Normal 

Both 

TABLE 4A. 

Case 4 Case 5 Case 6 
Variable Variable States and Prior Posterior Posterior Posterior 
No. Name Probabilities Probabilities Probabilities Probabilities 

23 Raven MR 5.6% 15.0% 16.7% 3.2% 
23 Raven Borderline 12.4% 15.0% 25.1% 9.3% 
23 Raven Normal 73.1% 66.0% 54.8% 77.5% 
23 Raven Superior 8.9% 4.0% 3.4% 10.0% 

through the model and the results are shown in Table 6A. In the initialized state 
(when only prior probabilities are applied), the network assigned a risk of 0.18 
for the combination of  mild and borderline mental retardation. If we take twice 
the initialized risk as our threshold for significant risk, our threshold can be set 
at a value of  0.36. Using this threshold, we find that 31% of  the cases are 
correctly predicted. Fourteen percent of  the controls were classified as being at 
significant risk for MR or borderline MR. Table 6B gives a sensitivity of 41% 
and a specificity of  80% using the threshold at the initialized state. A lower 
threshold will trade specificity for higher sensitivity. 
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TABLE 5 
Risk Assessment of MR in Cases #7, #8 and #9 

Variable Case 7 Case 8 Case 9 
No. Variable Name Variable State Variable State Variable State 

1 Maternal race Non-white White 
2 Maternal age ->35 
4 Maternal education HS Grad HS Grad HS Grad 
5 Paternal education -< 12 years College HS Grad 
6 Maternal disease Yes 
7 Income < $10,000 < $10,000 
8 Smoking Yes 
9 Alcohol Moderate 
10 Stillbirth 
11 Prenatal Yes 
12 X-ray Yes Yes 
13 Gestation Full-term Premature Postmature 
14 Distress 
15 Induce Yes 
16 Caesarean 
17 Gender Male 
18 Birthweight Low Normal 
19 Resuscitation 
20 Head circumference Abnormal 
21 Anomaly 
22 Health problem Physical Both 
23 
24 Peabody Normal 

TABLE 5A 

Case 7 Case 8 Case 9 
Variable Variable States and Prior Posterior Posterior Posterior 
No. Name Probabilities Probabilities Probabilities Probabilities 

23 Raven MR 5.6% 16.4% 7.1% 12.7% 
23 Raven Borderline 12.4% 33.9% 13.2% 25.0% 
23 Raven Normal 73,1% 46.9% 72.8% 58.0% 
23 Raven Superior 8,9% 2.8% 7.0% 4.3% 

D I S C U S S I O N  

The  M E N T O R  mode l  can  be  used to il lustrate the complex  nature of  M R  predict ion.  

Avai lable  ev idence  can  be  used to generate  the probabil i t ies  and  by  instant ia t ing the 

var iables  to different levels,  we can  assess the impac t  on  the outcome.  The  mode l  

can  be  used to conf i rm clinical  intuit ion or to formulate  a prevent ion  strategy for  a 

defined populat ion.  We  can also use the model  for  reverse inference.  By  instanti-  

at ing the ou tcome  to MR,  we can see h o w  other  variables are affected and identify 

the var iables  that  are mos t  amenab le  to prevent ion.  

T h e  resu l t s  f r o m  the  n ine  cases  a s s igned  p robab i l i t i e s  tha t  were  in genera l  

a g r e e m e n t  wi th  the  expert .  A mod i f i ca t ion  o f  c o d i n g  for  congen i t a l  a n o m a l i e s  
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TABLE 6A 
Mean Risk for Mental Retardation Predicted for Children with 

Normal Cognitive Functioning at Age 8 Years (Controls) and 
Children with Borderline or Mild Mental Retardation Functioning 

at Age 8 Years (Cases) by MENTOR using the National 
Collaborative Perinatal Project 

Cognitive Functioning Controls Cases 
Level (n = 13019) (n = 3598) 

Mild MR 0.06 0.09 
Borderline MR 0.12 0.16 
Mild and borderline 0.18 0.25 

TABLE 6B 
Percent of Actual Controls and Cases Identified as having 

Mental Retardation, by MENTOR Using the National 
Collaborative Perinatal Project 

Risk Threshold for MR Controls. Cases 
and Borderline MR (n = 13019) (n = 3598) 

Resting value 2260(20%) 1487(41%) 
1.5 X 2410(19%) 1378(38%) 
2.0 X 1836(14%) 1107(31%) 

and child health problems could result in even better prediction. A weakness in 
the design of  MENTOR was the use of  old datasets to build the model. The 
results obtained from children born between 1959-74 may not be generalizable 
to infants born today. Significant changes in the care of  infants have occurred 
since that time and it is likely that these changes effect the outcome of mental 
retardation. Further limiting generalizability is that fact that the Kaiser popula- 
tion excludes the unemployed and uninsured, and this subpopulation is at greater 
risk of  mental retardation. Likewise, the NCPP oversampled African American 
women and other disadvantaged groups. Nonetheless, the Child Health and 
Development Studies and the National Collaborative Perinatal Project are the 
best U.S. data to analyze the relationship between pregnancy events and mental 
retardation in childhood because of  the richness of  detail in the prenatal, 
perinatal, infant, and childhood periods. However, both datasets were recording 
births during the 1960s and 1970s. Given the issue of  generalizability, replica- 
tion of  these analyses in a more recent cohort of  children is indicated. 

Another weakness of  the MENTOR model was that the networks generated 
from the different datasets had some variable links that violated the rule of  
chronology. A facility for inputting the chronological order can be incorporated. 
Likewise, if some rules could be incorporated in the network generation stage 
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to take care of domain-specific constraints, we can avoid connections violating 
each of the Domain Rules. 

Our model can be improved by using more recent datasets and by addition of 
new variables or editing the directed causal links. The available data made it 
impossible to improve the accuracy further. In fact, the use of the Raven test for 
measurement of the outcome was a serious limitation of the dataset. A more 
standard measure of cognitive function, such as the Stanford-Binet or the WISC, 
in a dataset would greatly improve the model. In fact, a well-designed prospec- 
tive study could identify new variables that might play a role in the causal 
pathway of MR. 

The concept of a Causal Probabilistic Network and the mechanisms available 
for gathering evidence and propagating it through a network is a powerful 
scheme to make sense of real-world data. However, because of the many 
unknown relationships in the field of MR, an exact causal network may remain 
elusive (Heckerman et al., 1992). 

Our experience with this work tells us that the raw network generated using 
a Bayesian algorithm (CB algorithm) had limitations. However, we feel that our 
strategy of generating the network from data using an algorithm and then 
improving it under the guidance of a domain expert yields a better model. Since 
mental retardation is a diagnosis that is difficult, MENTOR could be used by 
physicians to quantify their clinical judgment. The probability estimates gener- 
ated by MENTOR could assist a physician in making the decision about which 
children to refer for more extensive work-ups. The probabilities could also be 
used in counseling families since it is often important to emphasize the possi- 
bility for mental retardation, borderline, normal, and superior intelligence out- 
comes for any child. Families might find it reassuring to hear that, although the 
risk of MR is increased, there is still a large probability for normal or superior 
intelligence. 
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