
NORTH- HOUAND

Construction of Bayesian
Network Structures From
Data: A Brief Survey and
an Efficient Algorithm*

Moninder Singh t and Marco Valtorta
Department o f Computer Science, University o f South Carolina,

Columbia, South Carolina

ABSTRACT

Previous algorithms for the recovery of Bayesian belief network structures from data
have been either highly dependent on conditional independence (CI) tests, or have
required on ordering on the nodes to be supplied by the user. We present an algorithm
that integrates these two approaches: CI tests are used to generate an ordering on the
nodes from the database, which is then used to recover the underlying Bayesian network
structure using a non-Cl-test-based method. Results of the evaluation of the algorithm
on a number of databases (e.g., ALARM, LED, and SOYBEAN) are presented. We also
discuss some algorithm performance issues and open problems.

K E Y W O R D S : Bayesian networks, probabilistic networks, probabilistic model
construction, conditional independence

1. I N T R O D U C T I O N

In very general terms, different methods of learning probabilistic net-
work structures f rom data can be classified into three groups. Some of
these methods are based on linearity and normali ty assumptions [2, 3];
others are more general but require extensive testing o f independence
relations [4-8]; others yet take a Bayesian approach [9-12].

Address correspondence to Professor Marco Valtorta, Department of Computer Science, The
University of South Carolina, Columbia, SC 29208. E-mail." msingh@gradient .c i s .
upenn, edu or mgv@usceast, cs. scarolina.edu.

*A preliminary version of this paper was presented in [1].
*Current address is the Department of Computer and Information Science, University of
Pennsylvania, 200 S 33rd St., Philadelphia, PA 19104.

Received May 1994; accepted September 1994.

International Journal of Approximate Reasoning 1995; 12:111-131
© 1995 Elsevier Science Inc. 0888-613X/95/$9.50
655 Avenue of the Americas, New York, NY 10010 SSDI 0888-613X(94)00016-V

112 Moninder Singh and Marco Valtorta

In this paper, we do not consider methods of the first kind, namely,
those that make linearity and normality assumptions. Our work concen-
trates on CI-test-based methods and Bayesian methods. A number of
algorithms have been designed which are based on CI tests. However,
there are two major drawbacks of such algorithms. Firstly, the CI test
requires determining independence relations of order n - 2, in the worst
case. "Such tests may be unreliable, unless the volume of data is enor-
mous" [10, p. 332]. Also, as Verma and Pearl [5, p. 326-327] have noted,
"in general, the set of all independence statements which hold for a given
domain will grow exponentially as the number of variables grow." Thus,
CI-test-based approaches rapidly become computationally infeasible as the
number of vertices increases. Spirtes and Glymour [6, p. 62] have pre-
sented "an asymptotically correct algorithm whose complexity for fixed
graph connectivity increases polynomially in the number of vertices, and
may in practice recover sparse graphs with several hundred variables"; but
for dense graphs with limited data, the algorithm might be unreliable [10].

On the other hand, Cooper and Herskovits [10] have given a Bayesian
non-CI-test-based method, which they call the BLN (Bayesian learning of
belief networks) method. Given that a set of four assumptions hold [10, p.
338]--namely, (i) the database variables are discrete, (ii) cases occur
independently, given a belief network model, (iii) all variables are instanti-
ated to some value in every case, and finally (iv) before observing the
database, we are indifferent regarding the numerical probabilities to place
on the belief network structure--Cooper and Herskovits [10] have shown
the following result:

THEOREM 1 (Due to Cooper and Herskovits [10]) Consider a set Z o f n
discrete variables. Each variable x i E Z has r i possible value assignments:
(vii vir). Le t D be a database o f m complete cases, i.e., each case
contains a value assignment for each variable in Z. Let B s denote a
belief-network structure containing just the variables in Z. Each variable x i
in B s has a set o f parents 7r i. Le t wij denote the j th unique instantiation o f
zri relative to D, and suppose there are qi such unique instantiations o f zr~.
Le t Nij k be the number o f cases in D in which x i is instantiated to vit, while
77" i is instantiated to wq. Let N/j = E~'= a N/jt`. Then

n

P (B s, D) = P (B s) F i g (i , 7ri), (1)
i = 1

where g(i , ~r i) is given by

qi (r i -- 1)! ~
g (i , ~r i) = 1=11-I (N/~ +-ri : 1)! k_-I-ffl= N/it,!. (2)

This result can be used to find the most probable network structure
given a database. However, since the number of possible structures grow

Construction of Bayesian Networks 113

exponentially as a function of the number of variables, it is computation-
ally infeasible to find the most probable belief network structure, given the
data, by exhaustively enumerating all possible belief network structures.

Herskovits and Cooper [10, 9] proposed a greedy algorithm, called the
K2 algorithm, to maximize P (B s, D) by finding the parent set of each
variable that maximizes the function g(i, ~i). In addition to the four
assumptions stated above, K2 uses two more assumptions, namely, that
there is an ordering available on the variables and that, a priori, all
structures are equally likely. The K2 algorithm is described below:

for each node i, 1 < i < n, find 7/" i as follows:
,'B'i <--- ~/~

PotJ ~ g(i, 7ri);
NotDone ~ True
while NotDone do

Vl -< i (l ~ 7ri), gl ~ g(i , 7r i tO {/})
Pnew ~ maxl &(i, ~i tO {/});
Let z be the node which maximizes gt above
if P.ew > Pold then

Pold ~ P, ew;
1r i ~- 1r i O {z}

else NotDone ~- false;
end {while};

The algorithm takes as input the n nodes, an ordering on the nodes, and
the database D of m cases. In order to find the parent set of a node, it
first assumes that the node has no parents, and then adds incrementally
that node (from among the predecessors in the ordering) to the parent set
which increases the probability of the resultant structure by the largest
amount. It stops adding parents to the node when no additional single
parent can increase the probability of the resultant structure.

2. MOTIVATION

As stated at the end of the previous section, the K2 algorithm requires
an ordering on the nodes to be given to it as an input along with the
database of cases. The main thrust of this research is to combine CI- and
non-CI-test-based methods described above to come up with a computa-
tionally tractable algorithm which is not overdependent on the CI tests and
does not require a node orderingJ

1Herskovits [9] suggested the use of the metric (on which K2 is based) with a CI-test-based
method to do away with the requirement for an order of nodes.

114 Moninder Singh and Marco Valtorta

In order achieve this, we use CI tests to generate an ordering on the
nodes, and then use the K2 algorithm to generate the underlying belief
network from the database of cases, using this ordering of nodes. Also,
since we are interested in recovering the most probable Bayesian network
structure given the data, we would like to generate an ordering on the
nodes that is consistent with the partial order specified by the nodes of the
underlying network. In a domain where very little expertise is available, or
the number of vertices is fairly large, finding such an ordering may not be
feasible. As such, we would like to avoid such a requirement. The remain-
der of this section elaborates on this point.

It is possible to find a Bayesian network for any given ordering of the
nodes, since any joint probability distribution P (x l , x 2 , x n) can be
rewritten, by successive applications of the chain rule, as

P (X i l , xi2 Xin)

= P(Xi l lXi2 Xin) X P (x i z l x i 3 Xin) X "'" X P (X i n)

where (il, i2 i n) is an arbitrary permutation of (1, 2 n). However,
the sparseness of the Bayesian network structure representing the joint
probability distribution P (x 1, x 2 x n) will vary, sometimes dramatically,
with respect to the choice of the ordering of the nodes. 2 It is desirable to
use an ordering of the nodes that allows as many as possible of the
conditional independences true in the probability distribution describing
the domain of interest to be represented graphically. 3

It would be too expensive to search blindly among all orderings of
nodes, looking for one that leads to a network that both fits the data and is
sparse enough to be useful. In a small setting, grouping variables into
generic classes, such as symptoms and diseases, may be sufficient to limit
the number of orderings to be searched without having to use dramatically
greedy heuristics. This was shown to be adequate for a medical application
with 10 nodes in [11], where variables were divided into "blocks." In some
applications, however, it may be impossible to divide variables into classes,
or the classes may be too large to impose sufficient structure on the space
of candidate orderings. We have implemented an algorithm, called CB, 4

that uses a CI-test-based algorithm to propose a total order of the nodes

2In this paper, no distinction is made between the nodes of a Bayesian network and the
variables they represent.

3Whereas different types of graphical structures have different expressive powers, this paper
is only concerned with DAGs, as used in Bayesian nets. We ignore Markov nets [13, Chapter
3], chain graphs [14, 15], and other graphical representations (e.g., [16, 17]).

4The name reflects the initials of the two phases of the algorithm.

Construction of Bayesian Networks 115

that is then used by a Bayesian algorithm. We have tested the algorithm on
some distributions generated from known Bayesian networks. (The results
will be shown after the algorithm is presented.)

The Bayesian method used in the CB algorithm is a slightly modified
version of Cooper and Herskovits's K2, implemented in c on a DECstation
5000. Herskovits proved an important result concerning the correctness of
the metric that K2 uses to guide its search. He showed that the metric on
which K2 is based is minimized, as the number of cases increases without
limit, on "those [Bayesian] network structures that, for a given node order,
most parsimoniously capture all the independencies manifested in the
data" [9, Chapter 6]. More precisely, he showed that the K2 metric will
always favor, as the number of cases in the database increase without limit,
a minimal I-map consistent with the given ordering (see [13, Chapter 3] for
the definition of minimal I-map). Despite the convergence result, it is still
important to provide K2 with a good node order, since there are too many
orderings (n! for n nodes) to search blindly among them, unless drastically
greedy (myopic) search regimens are used. Moreover, for different order-
ings, we will get different I-maps of differing density. Note that an I-map
only means that all independencies implied by it (through d-separation)
are also in the underlying model. So sparse networks will give us more
information than dense networks. In this sense, the ordering given to K2
becomes very important. Given a random ordering, we might end up with a
very dense DAG which is an 1-map (possibly minimal) but conveys very
little information. So we would like to use as informed an ordering as
possible. For example, assuming that the data were generated using a
Bayesian network whose structure is an I-map for the underlying distribu-
tion, it would be very desirable to provide K2 with an ordering of the
nodes that allows the network to be recovered exactly, even though K2
may recover a different I-map when given a different ordering, because the
generating structure is normally the sparsest one among all I-maps for a
given distribution, or at least one of the sparsest ones. Our algorithm finds
good node orderings by using a CI-based test. Since CB still uses K2 to
compute the Bayesian network structure from an ordering, it is correct in
the same sense that K2 is.

3. DISCUSSION OF THE ALGORITHM

3.1 Overview

The algorithm basically consists of two phases: Phase I uses CI tests to
generate an undirected graph, and then orients the edges to get an
ordering on the nodes. Phase II takes as input a total ordering consistent

116 Moninder Singh and Marco Valtorta

with the DAG generated by phase I, and applies the K2 algorithm to
construct the network structure using the database of cases. The two
phases are executed iteratively--first for 0th-order CI relations, then for
1st-order CI relations, and so on until the termination criteria is met.

Steps 1 to 4 of the algorithm are based on the algorithms given by
Verma and Pearl [5] and Spirtes and Glymour [6]. We have allowed edges
to be oriented to both directions, because at any given stage, since CI tests
of all orders have not been performed, all CI relations have not been
discovered and there will be a number of extra edges. In such a case, it is
quite possible for edges to be oriented in both directions by step 3.
Although the bound used in step 2 is not necessary, it may be useful in
decreasing the run time of the algorithm by not trying to generate the
belief network structure if the undirected graph recovered from very
low-order CI relations (in step 2) in dense.

Once the edges have been oriented by steps 3 and 4, the algorithm finds
the set of potential parents of each node by considering only the directed
edges (step 5), and then uses a heuristic to choose an orientation for the
edges which are still undirected, or are bidirected. Although, theoretically,
Equation (1) can be used to find the probability P(i -~ j I D) [and P(i ~- j]
D)] from the data [10, p. 318], and then an edge i - j can be oriented on
the basis of which orientation is more probable, it is computationally
infeasible do so because of the sheer number of network structures which
have that edge. Hence the use of a heuristic. From Equation (1), it should
be clear that the orientation of an edge between vertices i and j affects
only g(i, ~r i) and g(j, zrj), and so, to maximize P(Bs, D), we would like to
maximize the product g(i, ~r i) x g(j, 1rj), where ~r i and ~-j are the sets of
parents of nodes i and j respectively. Accordingly, we compute the
products iva j = g(i, Ir i) x g(j, 7rj U {i}) and Jval = g(J, zrj) X g(i, 1r i U {j}),
where zr i and ~j are the sets of potential parents recovered by step 5 of
the algorithm. These products give us a way of selecting an orientation for
the edge. If ival is larger, we prefer the edge i ~ j (unless it causes a
directed cycle, in which case we choose the other orientation). Similarly,
we choose j -~ i if Jval is larger (or the reverse in case of a directed cycle).

At this stage, the algorithm has constructed a DAG. It then finds a total
ordering on the nodes consistent with DAG and applies the K2 algorithm
to find the set of parents o f each node such that the K2 metric [i.e.
g(i, ~'i)] is maximized for each node i, allowing edges to be directed from a
node only to nodes that are its successors in the ordering.

3.2. The Algorithm

Let AGab be the set of vertices adjacent to a or b in the graph G, not
including a and b. Also, let u be a bound on the degree of the undirected

Construction of Bayesian Networks 117

graph generated by step 2. Let ord be the order of the CI relations being
tested. Let 7/ i be the set of parents of node i, 1 < i < n.

1. Start with the complete graph 61 on the set of vertices Z.
ord ,-- O,
o ld_ 7r i ~- { } Vi , 1 < i < n, and old_Prob ~ O.

2. (Based on [6].) Modify G 1 as follows:
For each pair of vertices a, b that are adjacent in G 1, if A s ab has a
cardinality greater than or equal to ord, and s I(a, Sab, b) where
Sab C_ A~ lab of cardinality ord, then remove the edge a - b, and
store S,b.
If for all pairs of adjacent vertices a, b in G 1, A c a b has cardinality
< ord, go to step 10.
If degree of G 1 > u, then

ord (--- ord + 1
Go to beginning of step 2

3. Let G be a copy of G1.
For each pair of nonadjacent variables a, b in G, if there is a node c
that is not in Sab and is adjacent to both a and b, then orient the
edges as a ~ c and b --) c (see [5, 6]) unless such an orientation
leads to the introduction of a directed cycle in the graph.
If an edge has already been oriented in the reverse direction, make
that edge bidirected.

4. Try to assign directions to the yet undirected edges in G by applying
the following four rules [5, 18] if this can be done without introducing
directed cycles in the graph:
Rule 1: If a ~ b and b - c and a and c are not adjacent, then

direct b ~ c.
Rule 2: If a ---) b, b ---) c and a - c, then direct a ---) c.
Rule 3: If a - b , b - c , b - d , a - - -)d , and c ~ d , t h e n direct

b --* d.
Rule 4: I f a - b , b - c , a - c , c - d , a n d d ~ a , then direct a --* b

and c ---) b.
Moreover, if a ~ b, b ~ c, and a (--) c, then direct a ~ c.

5. L e t T r i (- - - { } V i , l < i < n .
For each node i, add to 7r i the set of vertices j such that for each
such j, there is an edge j---, i in the P D A G (Partially Directed
Acyclic Graph) G.

6. For each undirected or bidirected edge in the pdag G choose an
orientation as described below

5We use the notation I($1,$2,S 3) to represent the fact that S t and S 3 are independent
conditional on S 2.

118 Moninder Singh and Marco Valtorta

If i - j in an undirected edge, and rr i and 7r i are the corresponding
parent sets in G, then calculate the following products:

ival = g(i , rr i) × g (j , ~-j tO {i}),

Jval = g(J , rrj) × g (i , rr i tO {j}).

If iva I > Jval, then rrj ~ ~rj U {i} unless the addition of this edge, i.e.,
i --+ j, leads to a cycle in the pdag. In that case, choose the reverse
orientation, and change ~r i (instead of ~rj). Do a similar thing in case

Jval > ival
7. The sets 7ri, 1 _< i _< n, obtained by step 6 define a DAG, since for

each node i, ~r i consists of those nodes that have a directed edge to
node i.
Generate a total order on the nodes from this DAG by performing a
topological sort on it.

8. Apply the K2 algorithm to find the set of parents of each node using
the order in step 7. Let ~r z be the set of parents, found by K2, of node
i, Vi , l < i < n .
Let new_Prob = YIi~= lg(i , 7ri).

9. If new_Prob > old_Prob, then
old_Prob <-- new_Prob
ord ~ ord + 1
o l d , ' t l " i *~- "IT i Vi, 1 < i < n
Discard G
Go to step 2

Else go to step 10
10. Output old_Tr i Vi, 1 < i < n

Output old_Prob

3.3. Variations of the Algorithm

3.3.1. PRIORS The CB algorithm, like the K2 algorithm, assumes that, a
priori, all network structures are equally likely. In the absence of any
information, this would seem to be the most logical strategy. However,
there are situations in which some networks are clearly preferred to others
- - f o r example, in some diagnostic applications, networks that have the
disease node as the root will be preferred over networks that do not have it
as the root. 6

6See [11] for a discussion of other similar situations.

Construction of Bayesian Networks 119

Therefore we have tried out another strategy: forcing the class variable
to be the root of the network structure learned by the CB algorithm. This
restriction simply means that all networks that do not have the class
variable as the root have a prior probability of zero, and all networks which
have the class node as its root are, a priori, equally likely.

3.3.2. SEARCH STRATEGY The CB algorithm uses a greedy search mech-
anism (K2) to search for the set of parents of each node. Although this has
the advantage of being computationally efficient, it does not ensure opti-
mality even though the metric used by K2 is exact. Hence, we also
explored the use of another search strategy, namely simulated annealing
[19], though this has the disadvantage of being very expensive computa-
tionally.

Simulated annealing [19] is a stochastic optimization technique used to
find the maximum-probability (minimum-cost) configuration of some cost
function corresponding to combinatorial problems with cost functions
having many local minima. The. basic advantage of this method over a
strict descent algorithm like greedy search is that it provides a way of
escaping local minima. The evolution of the state of the search process is
controlled by varying a parameter called the temperature. At the beginning
of the process, the temperature is set to some large value, which then
allows large shifts in the state, thereby allowing the process to get out of
local minima. This temperature parameter is successively decreased until
the search stabilizes and converges to a global minimum.

In the present situation, we are given a total ordering on the nodes with
the constraint that the parents of any given node must belong to the set of
nodes that precede that node in the total ordering. A suitable method for
constructing the Bayesian network would be to find the parents of each
node by simulated annealing.

Suppose that we want to find the set of parents of node i. Since any
node can have parents only from the set of nodes occurring before it in the
ordering, the solution space for this problem is the set of all possible
subsets (including the empty set) of the set of nodes preceding the node i
in the ordering. Each configuration, say 7rik, is a subset of such nodes.
Since we are interested in maximizing the value of the metric g(i, 7ri), we
can define the cost function to be the negative of this, i.e. C(Trik)=
-g(i , Trek). Minimizing the cost function for the parent set of each node
will give us the minimum cost of the entire network [Equation (1)].

The initial configuration (k = 0) at which the annealing algorithm starts
consists of the parent sets 7rik, 1 < i < n, obtained at the end of step 6 of
the CB algorithm. The algorithm randomly selects two nodes, and deter-
mines which of the two occurs earlier in the total ordering. Let this node
by v, and the other be i. Then ~'i, is the current parent-set configuration

1 2 0 Moninder Singh and Marco Valtorta

of node i. Since v is a possible parent of i, the algorithm computes the
cost C(~rip) of the potential new configuration 7r i that is obtained as
follows: if v ~ 7ri., then 7r i = 7ri, - {v}; otherwise ~ "n- i = 7"/'i, I_.J (U}. The
new configuration~-ip is accepted if the following condletion holds:

C(Tri) <_ C(Trik) - tk log u,

where u is a uniformly distributed random number on the interval [0, 1],
and t~ is the temperature, a control parameter at time k. This means that
an uphill step (one that allows the cost to increase) of At k will be allowed
with probability e -~. This means that the new configuration 7rik+l is set to
7ri, with probability

p = rain{l, e - a l t o } ,

and to q'/'ik (i . e . unchanged) with probability 1 - p, where

A : C(3-gip) -,C(,tT"ik).

The initial temperature is set to a large value, this process is repeated a
large number of times, the temperature is then reduced and the process
repeated, and so on. To ensure that the process does converge to an
almost optimal solution, a control schedule has to be defined which
determines the initial temperature, the rate at which the temperature is
decreased, the number of iterations at each temperature, and the stopping
criteria. For our experiments, we used a polynomial-time cooling schedule
(which however does not give any guarantee for the deviation in cost
between the final solution obtained by the algorithm and the optimal cost)
described in [20].

4. RESULTS

The CB algorithm was implemented in c on a DEC Station 5000, and
was used to reconstruct the underlying Bayesian network structure from
four databases.

For two of the databases, namely the ALARM [21, 9, 10] and the LED [4],
the Bayesian network structure which had been used to generate the
database was known. So it was possible to compare the network structure
recovered by the CB algorithm against the actual structure to test the
performance of the algorithm.

The CB algorithm was further tested on datasets for which the true
underlying network structure is 'unknown. For this purpose, we selected
two databases from the University of California (Irvine) Repository of

Construction of Bayesian Networks 121

Machine Learning Databases [22], namely the LETTER RECOGNITION
database [23] and the SOYBEAN database [24]. In these cases, since the true
underlying Bayesian network is unknown, we used the shell HUGIN [25] to
test the predictive accuracy of the constructed networks. Once the network
structure had been constructed, the required conditional probabilities were
calculated from the database using the following relation [9]:

N~j~ + 1
P (x i = UiklTTi = Wi j) - - N i j -[- ri '

where the various symbols have the same meanings as in Theorem 1.
For all tests, we used the X 2 test with a fixed a-level (set to 0.1) for

testing conditional independence.
The results of the tests are described in the following subsections.

4.1 The ALARM Database

The ALARM network [21] was constructed as a prototype to model
potential anesthesia problems that could arise in the operating room. The
network contains a total of 37 nodes and 46 arcs representing 8 diagnostic
problems, 16 findings, and 13 intermediate variables that relate diagnostic
problems to findings. We used the CB algorithm to reconstruct the ALARM
network [Figure l(a)] by using 10,000 cases of a (20,000-case) database
generated by Herskovits [9, 10] from the original network by using a Monte
Carlo technique called probabilistic logic sampling [26]. We used a bound
of 15 on the maximum degree of the undirected graph generated in step 2.
The algorithm recovered in the network shown in Figure l(b) using CI
tests only up to order 2. Due to the bound, it did not generate a network
for CI relations of order 0. Out of 46 edges, it recovered 45 [Figure l(b)].

The only missing edge was the edge 12 ~ 32 (an edge which is not
strongly supported by the data [10]). Two of the edges recovered were
incorrectly oriented. However, the algorithm also recovered 14 extra edges.
This is probably due to the incorrectly oriented edges and, to some extent,
to the greedy nature of K2. One of the incorrectly oriented edge was
between the variables 34 and 33. As can be observed from Figure l(b), 7 of
the extra edges were between 33 and some other node. Moreover, an
analysis of the order in which K2 selected the parents of node 37 showed
that the 3 other extra edges incident on node 37 were recovered due to the
greedy nature of K2, which, after picking node 16 as a parent of 37, picked
up 33 because of the incorrect orientation, and then recovered the 3 edges
of node 37 with 24, 23, and 22, once again due to its greedy search
regimen. Similarly, the three extra edges involving nodes 2, 17, and 18 were
recovered because the edge between 2 and 25 was incorrectly oriented.

122 Moninder Singh and Marco Valtorta

(a) (b)

(a) Actual ALARM Network , L ,~4 ~
(b) Totalord~ orderly,. 2 C~edy, No Pri~, ~i2":"

(c) Pa~tl Ord~, Ca'eedy, No Priors, I / ~
Or~-2

M retina8 eds. @~ ~ -o-~ bJam~.t mieaU~e
---- . m . ~ . (c)

Figure 1. Results of testing the CB algorithm on the ALARM database.

The remaining extra edge was between nodes 15 and 34; it is recovered,
once again, due to the greedy nature of K2. The total time taken was
under 13 minutes.

Cooper and Herskovits [10] reported that K2, when given a total
ordering consistent with the partial order of the nodes as specified by
ALARM, recovered the complete network with the exception of one missing
edge (between nodes 12 and 32) and one extra arc (from node 15 to 34).
Spirtes [27] reported similar results with the PC algorithm. Spirtes and
Glymour applied the PC algorithm [6] to the ~Ar~M database split into two
parts of 10,000 cases each. The algorithm did not make any linearity
assumption. In one case, the recovered network had no extra edge but had
two missing edges, while in the other case, the network had one extra edge
and two missing edges.

To reduce the computational time, and to try to prevent the recovery of
extra edges, we modified the algorithm by deleting step 7. Instead of using
a total order, K2 used a partial order defined on the nodes by the DAG
constructed by step 6. The sets 7r i, 1 < i < n, constructed by step 6 were
given as input to K2 with the constraint that each node i could have
parents only from the set ~r i. The network recovered by the algorithm after
having used CI relations of only up to order 2 is shown in Figure l(c). It

Construction of Bayesian Networks 123

recovered 44 edges (the extra missing edge being 21 ---> 31); there were 2
extra edges (between 2 and 17, and between 34 and 15), and 2 edges were
incorrectly oriented. However, the metric used by K2 ranked the earlier
network structure [Figure l(b)] as more probable. The time taken was
reduced to under 7 minutes.

4.2. T h e LED D a t a b a s e

The LED database was used by Fung and Crawford [4] for the evaluation
of their Markov network generating program called Constructor. The
network [Figure 2(a)] represents a faulty LED display because the LED
segment 1 is conditionally independent of the digit key given the state of
LED segments 2 and 3, whereas in a normal display knowledge about the
depressed key is sufficient to indicate which LED segments are on. There
are eight variables, one representing the digit key and the remaining seven
corresponding to the seven segments of the display.

We used the algorithm to reconstruct the faulty LED network [Figure
2(a)] using a database of 199 cases. The CB algorithm reconstructed the
network [Figure 2(b)] with three edges incorrectly oriented and one extra
edge in less than 1 second using CI tests up to order 1. A subsequent
analysis of the independence statements computed by CB found that the
three incorrectly oriented edges were due to perceived independence of
the pairs (3, 5), (3, 6), and (4, 5). While the underlying model did not
support these independence statement, the data did. Or perhaps, the data
were too few for the X 2 test to be accurate, even for low-order CI tests.
Thus, step 3 oriented the edges according to the perceived independence.
When we ran the modified version of CB using the partial order, the same
network was recovered, except that there was no extra edge [Figure 2(c)].

I A°°N'k o. - - - - y - - _ _

0 ~ - l.

0 ~ - I.
(a) Co) (¢)

Figure 2. Results of testing the CB algorithm on the LED database.

124 Moninder Singh and Marco Valtorta

We also used the CB algorithm to reconstruct the LED network by
requiring the class variable (corresponding to the digit) to be the root of
the resultant network structure. The algorithm recovered the original LED
network [Figure 2(a)] in this case, using, once again, CI tests up to order 1.

4.3. The LETFER RECOGNITION Database

The LETI'ER RECOGNITION database [23] was used to investigate the
ability of several variations of Holland-style adaptive classifier systems to
learn to correctly identify each of a large number of black-and-white
rectangular pixel displays (presented as 16-attribute vectors) as one of the
26 capital letters in the English alphabet. The character images were based
on 20 different fonts, and each letter within these 20 fonts was randomly
distorted to produce a file of 20,000 unique stimuli. Each stimulus was
converted into 16 primitive numerical attributes (representing the primi-
tive statistical features of the pixel distribution).

We use the first 10,000 cases for learning and the remaining 10,000 cases
for testing the constructed network for predictive accuracy. The algorithm
was tested using both search strategies--greedy search as well as simu-
lated annealing. Moreover, with each search strategy, we either used no
prior at all, or forced the class variable to be the root node in the resultant
network structure. The results obtained are shown in Figure 3. When no
prior information was used, the network structure constructed using an-
nealing [Figure 3(c)] was ranked as more probable than the one con-
structed using the greedy search method [Figure 3(b)]. However, while the
network formed using greedy search was too large for inference, the
network formed using annealing had a predictive accuracy of about 82.5%.
The best predictive accuracy achieved by [23] (using 16,000 cases for
learning and 4000 cases for testing) was similar.

On forcing the class variable to be the root of the resultant Bayesian
network, both the probability and the predictive accuracy dropped (though
they were the same for the two search strategies) [Figure 3(a)]. The
predictive accuracy obtained was around 80.5%.

4.4. The SOYBEAN Database

The SOYBEAN database is one the most widely used databases in the
domain of machine learning. Created by Michalski and Chilausky [24], the
36-variable database consists of a 307-case training set and a 376-case
evaluation set in the domain of soybean-plant-disease diagnosis.

There are 19 classes, only the first 15 of which have been used in prior
work. The accompanying documentation states that the last four classes
are unjustified by the data, since they have so few examples. As a

Construction of Bayesian Networks 125

Ca) (b)

(a) IAnneallng, Greedy], Class Variable,
O r d e r - 0

(b) Greedy, No Priors, Order - 0

(c) Annealing, No Priors, Order - 0

(c)

Figure 3. Results of testing the CB algorithm on the LETTER RECOGNITION database.

consequence, the number of instances used for constructing the network is
290, while 340 samples are used from the test data for checking the
accuracy of the network recovered. Missing values were just treated like
another possible value of the variable concerned. 7

Once again, we constructed networks using both search strategies. As in
the case of the LETTER RECOGNITION database, for each search strategy we
constructed the network without any priors as well as by forcing the class
node to be the root of the network. The results are shown in Figure 4.

When no prior information was used, the networks generated (with
greedy search as well as with simulated annealing) were ranked as much
more probable than the networks generated with the corresponding search
strategy by forcing the class variable to be the root of the resultant
network structure. However, these networks (generated without any priors)
had low predictive accuracies (about 68%)

On the other hand, the networks generated by forcing the class variable
to be the root of the recovered Bayesian network structure were ranked as

7Other methods of treating missing values are described in [28, 29].

126 Moninder Singh and Marco Valtorta

®

(~ (*)

(~ , ~ m a a l . t - u - v..~,~e, o n ~ . 0

(c) Osm~, Clam Vatdde, Onia - 2

c)

Figure 4. Results of resting the CB algorithm on the SOYBE~ database.

less probable by the K2 metric, but had much better predictive accuracies.
The network generated using annealing and CI tests of order 0 [Figure
4(a)] had a predictive accuracy of about 83%. The networks generated
using the greedy search method produced even more interesting results.
While the algorithm constructed the network shown in Figure 4(c) as the
most probable network using CI tests of up to order 2, this network had a
79% accuracy, whereas the network generated using just CI tests of order
0 [Figure 4(b)] was ranked as less probable but had a predictive accuracy of
more than 86%.

Herskovits [9] had achieved a maximum predictive accuracy of about
84% with the K2 algorithm, and a predictive accuracy of 86% with
K2-multiscore (an extension of the K2 algorithm in which the n most
probable networks corresponding to a particular ordering are generated
and are collectively used for prediction, with the network probabilities
being used as weighting factors). Herskovits [9] also discusses in detail the
possible reasons why the network generated by the K2 algorithm had a
predictive accuracy much lower than the 98% accuracy achieved by [24].
Similar arguments would explain why the CB algorithm generated net-

Construction of Bayesian Networks 127

works with much lower predictive accuracy, since both algorithms are
based on the same metric.

5. SUMMARY AND OPEN PROBLEMS

In this paper, we have presented a method of recovering the structure of
Bayesian belief networks from a database of cases by integrating CI-test-
based methods and Bayesian methods.

These results are quite encouraging because they show that the CB
algorithm can recover a reasonably complex Bayesian network structure
from data using substantially low-order CI relations. Moreover, since it
generates an ordering on the nodes from the database of cases only,
without any outside information, it eliminates the requirement for the user to
provide an ordering on the variables.

In the worst case, the CB algorithm is exponential in the number of
variables, as explained below. Steps 1 (initialization) and 10 (output) of the
algorithm are executed only once. The number of times that steps 2
through 9 of the CB algorithm are executed is bounded by the sum of the
largest two degrees in the undirected graph constructed at the end of step
2, by an argument almost identical to that of [6, p. 68]. Each of steps 3
through 9 has only polynomial complexity in the number of variables, by
arguments that are either simple or described in [5, 10]. In step 2, the
number of independence tests carried out is exponential in the order of
the independence relations to be tested, which is bounded by the maxi-
mum of IAcab I. Note that the CB algorithm is polynomial for graphs for
which IAaabl is constant as the number of vertices increases, i.e. sparse
graphs. Our results indicate that the CB algorithm recovers Bayesian
network structures in polynomial time in the number of domain variables,
because the highest order of independence relations to be tested is very
low.

Although CB works well on the tested databases and appears to be quite
promising, a number of issues that could improve the performance of the
algorithm need to be considered further.

Firstly, note that the method outlined in the paper constructs the single
"best" model from the database of cases. This model is then used for
future applications, like inference, as if this particular model were the true
model. This is reasonable only if the most probable network given the
database of cases has a much higher probability than the next most
probable network given the data. However, this assumption may not be
valid in many practical situations. Many authors (e.g., [30, 31]) have
stressed the importance of (and have offered possible solutions) allowing
for model uncertainty. As Madigan and Raftery [31] state, "a panacea is

128 Moninder Singh and Marco Valtorta

provided by the standard Bayesian formalism which averages the posterior
distribution of the quantity of interest under each of the models, weighted
by their posterior model probabilities." However, this problem is highly
complicated by the extremely large number of possible network structures
for any given set of variables. The CB algorithm can be easily extended on
the lines of Herskovits's K2-multiscore algorithm [9] to construct the n
most probable models corresponding to a particular ordering of the nodes.
However, since we cannot possibly find the set of all possible models and
average over them, additional work is needed to develop methods of
finding a tractable number of models which will give a reasonable approxi-
mation to the actual solution. Solutions proposed by Madigan and Raftery
[31] and Draper [30], though feasible for small networks, might be compu-
tationally very expensive for networks having a large number of variables.

Secondly, we have used a fixed a-level for the X 2 test. This will almost
certainly introduce dependencies that are purely the result of chance. It is
possible to use the technique of cross, validation for tuning this parameter.
Fung and Crawford [4] discuss the tuning of the a-level in performing
belief-network learning.

Also, since the quality of the recovered network structure is very
sensitive to the ordering determined by phase I of the CB algorithm,
efforts need to be made to find better and more efficient heuristics than
the one presented in this paper that enable the selection of one orienta-
tion of an undirected edge over the other, since in general there will be a
number of such undirected edges after steps 3 and 4 of the algorithm.

Moreover, most of the steps of the CB algorithm are inherently parallel.
Hence, a huge reduction in the time required to recover the network
structure can be possibly obtained by parallelizing the CB algorithm.

Finally, the CB algorithm uses a greedy strategy as a stopping criteria. It
uses the probability of the entire network, as measured by the K2 metric,
to decide when to stop; the algorithm stops when the value of the metric
for the entire network is less than the value which had been computed for
the network structure recovered in the previous iteration (i.e., for a lower
order of the CI tests). There is a need to design and evaluate alternative
methods of terminating the algorithm.

ACKNOWLEDGMENTS

We are thankful to Professor (3. Cooper for providing the ALARM
network database and to Dr. R. Fung for providing the LED network
database. We are also grateful to the anonymous referees for their helpful
comments and suggestions for improving the paper.

Construction of Bayesian Networks 129

References

1. Singh, M., and Valtorta, M., An algorithm for the construction of Bayesian
network structures from data, Proceedings of the 9th Conference on Uncertainty
in Artificial Intelligence, Washington D. C., Morgan Kaufmann, 259-265, 1993.

2. Glymour, C., Scheines, R., Spirtes, P., and Kelly, K., Discovering Causal
Structure, Academic, San Diego, Calif., 1987.

3. Pearl, J., and Wermuth, N., When can association graphs admit a causal
interpretation? (first report), Preliminary Papers of the 4th International Work-
shop on Artificial Intelligence and Statistics, Ft. Lauderdale, Fla., 141-150,
January 3-6, 1993.

4. Fung, R. M., and Crawford, S. L., Constructor: A system for the induction of
probabilistic models, Proceedings of AAAI, Boston, MIT Press, 762-769, 1990.

5. Verma, T., and Pearl, J., An algorithm for deciding if a set of observed
independencies has a causal explanation, Proceedings of the 8th Conference on
Uncertainty in Artificial Intelligence, Morgan Kaufmann, 323-330, 1992.

6. Spirtes, P., and Glymour, C., An algorithm for fast recovery of sparse causal
graphs, Soc. Sci. Comput. Rev. 9(1), 62-72, 1991.

7. Pearl, J., and Verma, T., A theory of inferred causation, Proceedings of the 2nd
International Conference on Principles of Knowledge Representation and Reason-
ing, Morgan Kaufmann, 441-452, 1991.

8. Spirtes, P., Glymour, C., and Scheines, R., Causality from Probability, Pitman,
London, 1990, 181-199.

9. Herskovits, E. H., Computer-based probabilistic-network construction, PhD
thesis, Medical Information Sciences, Stanford Univ., Stanford, Calif., 1991.

10. Cooper, G. F., and Herskovits, E. H., A Bayesian method for the induction of
probabilistic networks from data, Machine Learning 9, 309-347, 1992.

11. Lauritzen, S. L. Thiesson, B., Spiegelhalter, D., Diagnostic systems created by
model selection methods--a case study, Preliminary Papers of the 4th Interna-
tional Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, Fla.,
93-105, January 3-6, 1993.

12. Lain, W., and Bacchus, F., Using causal information and local measures to
learn Bayesian networks, Proceedings of the 9th Conference on Uncertainty in
Artificial Intelligence, Washington, D.C., Morgan Kaufmann, 243-250, 1993.

13. Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, San Mateo, Calif., 1988.

14. Lauritzen, S. L., and Wermuth, N., Graphical models for associations between
variables, some of which are qualitative and some quantitative, Ann. Statist. 17,
31-57, 1989.

130 Moninder Singh and Marco Valtorta

15. Lauritzen, S. L., And Wermuth, N., Graphical models for associations between
variables, some of which are qualitative and some quantitative: Correction
note, Ann. Statist. 17, 1916, 1989.

16. Shachter, R. D., A graph-based inference method for conditional indepen-
dence, Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence,
Los Angeles, Morgan Kaufmann, 353-360, 1991.

17. Geiger, D., and Heckerman, D., Advances in probabilistic reasoning, Proceed-
ings of the 7th Conference on Uncertainty in Artificial Intelligence, Los Angeles,
Morgan Kaufmann, 118-126, 1991.

18. Dor, D., and Tarsi, M., A simple algorithm to construct a consistent expression
of a partially oriented graph, Tech. Report R-185, Cognitive Systems Lab.,
Dept. of Computer Science, Univ. of California at Los Angeles, 1992.

19. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., Optimization by simulated
annealing, Science 220, 671-680, 1983.

20. Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing, Wi-
ley, 1989.

21. Beinlich, I. A., Suermondt, H. J., Chavez, R. M., and Cooper, G. F., The ALARM
monitoring system: A case study with two probabilistic inference techniques for
belief networks, Proceedings of the 2nd European Conference on Artificial
Intelligence in Medicine, London, 247-256, 1989.

22. Murphy, P. M., and Aha, D. W., UCI Repository of Machine Learning
Databases, machine-readable data repository, Dept. of Information and Com-
puter Science, Univ. of California, Irvine.

23. Frey, P. W., and Slate, D. J., Letter recognition using holland-style adaptive
classifiers, Machine Learning 6(2), 1991.

24. Michalski, R. S., and Chilausky, R. L., Learning by being told and learning
from examples: An experimental comparison of the two methods of knowledge
acquisition in the context of developing an expert system for soybean disease
diagnosis, Internat. J. Policy Anal. and Inform. Systems 4(2), 1980.

25. Anderson, S. K., Olesen, K. G., Jensen, F. V., and Jensen, F., HUGIN--a shell
for building Bayesian belief universes for expert systems, Proceedings of the
11th International Joint Conference on Artificial Intelligence, 1080-1085, 1989.

26. Henrion, M., Propagation uncertainty in Bayesian networks by probabilistic
logic sampling, in Uncertainty in Artificial Intelligence 2 (J. F. Lemmer and L. N.
Kanal, Eds.), Elsevier Science, North-Holland, 149-163, 1988.

27. Spirtes, P., Personal communication.

28. Buntine, W., Theory refinement on Bayesian networks, Proceedings of the 7th
Conference on Uncertainty in Artificial Intelligence, Los Angeles, Morgan Kauf-
mann, 52-60, 1991.

Construction of Bayesian Networks 131

29. Dempster, A., Laird, N., and Rubin, D., Maximum likelihood from incomplete
data via the EM algorithm, J. Roy. Statist. Soc. Ser. B 39, 1-38, 1977.

30. Draper, D., Assessment and propagation of model uncertainty, Preliminary
Papers of the 4th International Workshop on Artificial Intelligence and Statistics,
Ft. Lauderdale, Fla. 497-509, January 3-6, 1993.

31. Madigan, D., and Raftery, A. E., Model selection and accounting for model
uncertainty in graphical models using Occam's window, Tech. Report 213
(rev.), Dept. of Statistics, Univ. of Washington, 1993.

