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Abstract
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1. Introduction and motivation

We address the problem of updating a probability distribution represented
by a Bayesian net upon the presentation of soft evidence. We call this the
problem of soft evidential update.

The motivation for this work is our desire to let agents that use probabilistic
models (and especially Bayesian nets) communicate with each other by ex-
changing beliefs.

While this is not the focus of this paper, we need to describe briefly our agent
model, which is called the Agent-Encapsulated Bayesian Network (AEBN)
model, originally due to Bloemeke [4]. Each agent in an AEBN model uses as
its model of the world a single Bayesian network (which we also call an
AEBN). The agents communicate via message passing. Each message is a
distribution on variables shared between the individual networks.

The variables of each AEBN are divided into three groups: those about
which other agents have better knowledge (input set), those that are only used
within the agent (local set), and those of which the agent has the best knowl-
edge, and which other agents may want (output set). The variables in the input
set and the output set are shared, while those in the local set are not. An agent
consumes (or subscribes to) zero or more variables in the input set and pro-
duces (or publishes) zero or more variables in the output set.

The mechanism for integrating the view of the other agents on a shared
variable is to replace the agent’s current belief in this variable with that of the
communicating agent. When an agent receives a message from a publisher, it
modifies the probabilities in its internal model, so that its local distribution
either becomes consistent with the other agent’s view or is inconsistent with it.
In the rest of the paper, we assume the former case and provide neither a
method for identification of inconsistency nor a method to deal with incon-
sistency, but note that Vomlel [28] presents some methods for dealing with
inconsistent evidence (also cf. [1,13]).

Therefore, after updating using all evidence, we still require that all ap-
propriate marginals of the updated distribution be equal to the evidence en-
tered. The deservedly celebrated junction tree algorithm for probability update
[17,21,22,27] was not designed to satisfy this requirement, and in fact it does
not, as we will show in Section 4.1.

When a publisher makes a new observation, it sends a message to its sub-
scribers. In turn, the subscribers adjust their internal view of the world and
send their published values to their subscribers. Assuming that the graph of
agent communication (which we simply call agent graph as in [4]) is a DAG,
equilibrium is reached, and a kind of global consistency is assured, because the
belief in each shared variable is the same in every agent.

The restriction that one of the agents has oracular knowledge of a variable
may seem excessive. However, it is permissible to have multiple views of a
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common variable. For example, in a multiagent system for interpretation, two
agents may issue a report that corresponds to the same (unknown) physical
quantity. Nothing prevents another agent from integrating the reports of these
agents and effectively obtain a new (and possibly more accurate) view of the
same underlying quantity. As another example, it is possible for a subscriber
agent to model known reporting errors or biases of the publisher, as we will
show in Section 2.2.

When the agent graph is not a tree, great care must be taken to deal with
undirected cycles (loops). Such cycles lead to possible double counting of
information, which is often known as the rumor problem. We do not address
this important problem in this paper, but cf. [4,6]. It is also possible to
consider directed cycles (and in particular, the tight cycles resulting from bi-
directional communication in agent graphs), by appropriately sequencing
messages between agents. We do not address this extension further in this
paper, but the reader must be made aware of the very interesting and im-
portant work by Xiang on Multiply Sectioned Bayesian networks for related
results [29,30].

The rest of paper is organized as follows. In Section 2, we explain the notion
of soft evidence and give some simple examples (in Section 2.1) and a more
complex example that also illustrates the AEBN model (in Section 2.2). Section
3 is the major methodological part of our paper. We begin (in Section 3.1) by
reviewing Jeffrey’s rule and some of the problems that arise from its uncritical
use, as presented by Pearl [24,25]. We then proceed by describing (in Section
3.2) our approach to Bayesian network modeling for soft evidential update,
which is based on the notion of observation variable, is very general, and simple
to use. Section 4 is devoted to algorithmic issues. We begin by showing (in
Section 4.1) that the junction tree algorithm does not support soft evidential
update. We then present two modifications of the junction tree algorithm that
support soft evidential update. The first modification (Section 4.3) is iterative
and does not require any additional space with respect to the original algo-
rithm. The second modification is the big clique algorithm (Section 4.4), which
requires additional space but is more time efficient than the iterative algorithm.
In Section 5, we concentrate on some advanced issues, including the treatment
of conditional evidence and the detailed analysis of an example due to Pearl.
Section 6 contains a summary and evaluation of our work and suggestions for
future work.

2. Hard and soft evidence
We begin by defining what we mean by soft evidence. Evidence is a col-

lection of findings on variables. A finding may be hard or soft. A hard finding
specifies which value a variable is in. A soft finding specifies the probability
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distribution of a variable. Hard evidence is a collection of hard findings. Soft
evidence is a collection of soft findings.

The definition of soft evidence could be generalized in three ways. Firstly, we
may extend the definition of finding to allow conditional distributions. Sec-
ondly, we may allow joint (and possibly, conditional) distributions on a col-
lection of variables. Thirdly, we may allow distributions on arbitrary events
(equivalently, arbitrary logic formulae). These three extensions can be handled
by the introduction of special observation variables as will be shown in Section
3.2.

2.1. Two simple examples

Here are two simple examples that illustrate the notion of soft evidence.

Suppose that the initial position and direction of an object are known
precisely and that its acceleration is known to be zero. The position (P) of the
object (which we will call a target) is then determined by its actual speed (),
according to some probabilistic law. This simple situation may be modeled by
the Bayesian network in Fig. 1, together with appropriate conditional proba-
bility tables for P(S) and P(P|S).

Suppose that we cannot measure the speed precisely, but that we have un-
certain information about it. We may think of E as the speed returned by a
remote sensor. The sensor is embodied into a separate agent, whose task is to
provide an estimate of speed. Since we live in the world of Bayesian networks,
the estimate is a belief, i.e. a probability distribution over the possible values of
speed.

We call this kind of evidence soft evidence. The new situation may be
modeled by Fig. 2, where the dashed line indicates that the evidence (E) about
S is uncertain.

In our second example, position (P) depends on speed (S) again. We again
have a separate sensor agent that provides us with soft evidence about the

Fig. 1. Position and speed.

Fig. 2. Position and speed with soft evidence about speed.
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Fig. 3. Speed with a sensor whose accuracy depends on the weather.

UT Expert ST Expert

Farmer

Fig. 4. The agent graph of a three-agent system.

speed of the target. In contrast to the situation in the previous example,
however, we now know that the state of the sensor (SS) that gives us the speed
is affected by the weather (/). The situation is described in Fig. 3.

Note that a finding (even when uncertain) about speed sets up a dependence
between the weather and the target’s position. In particular, if we knew the po-
sition and had evidence for the speed, we could tell the weather. Qualitatively, the
argument goes like this: the position determines (although uncertainly) the speed
of the target; whatever variability remains in the measured speed is explained by
the weather (through the sensor model).
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ST Expert

Farmer

Fig. 5. Agent graph of Fig. 4 with simple models of the experts.

2.2. A more complex example

We extend the cow pregnancy network of [17] to a three-agent system. One
of the agents represents a farmer who needs to evaluate the probability that one
of his or her cows is pregnant. The other agents represent a Urine test (UT)
expert and a Scanning test (ST) expert, respectively.

The farmer subscribes to variable UT, which is published by the UT expert,
and to variable ST, which is published by the ST expert, as indicated in Fig. 4.
While we require that the distribution of a variable remains the same across
agents, nothing prevents the farmer from having a model of the experts and
therefore somehow discounting their advice, as indicated in Fig. 5, where a simple
model of the reliability and sensitivity of the two experts is encoded in the link
between the primed variables (UT and ST’), which represent the farmer’s view of
the results of the Urine and Scanning tests, respectively, and the unprimed
variables (UT and ST), which are the test results as communicated by the experts.
The farmer possesses a more complicated model of the two experts in the situa-
tion described in Fig. 6, where it is assumed that the farmer knows that the ex-
perts’ advice is affected by some environmental factor E.

3. Modeling issues
3.1. Jeffrey’s rule

Jeffrey’s rule, also known as the rule of probability kinematics, provides a
way to update a probability distribution from soft (uncertain, non-categorical,
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ST Expert

Farmer

Fig. 6. Agent graph of Fig. 4 with complex models of the experts.

non-propositional) evidence. In this Section, we introduce the rule and some
problems with its application, following the presentation by Pearl [24,25]. In
the following subsection, we introduce a general modeling framework for soft
evidence.

Jeffrey’s rule can be written as: Q(4) = >, P(4|B;) - O(B;), where Q(B) is
soft evidence, and P(4|B) is the conditional probability of A4 given B before
evidence.

Jeffrey’s rule applies in situations in which P(4|B) is invariant w.r.t. P(B).
This is not always the case, as shown in the following example, which is an
extension by Pearl of an example by Jeffrey himself [24].

The worth (W) of a piece of cloth depends on its color (C), as modeled by
the Bayesian network structure of Fig. 7, with P(C) and P(W |C). Before ob-
serving the cloth (whose color we know to be one of Green, Blue, and Violet),
our belief is summarized by P(Color) = (.3,.3,.4). We then observe the cloth
by candlelight. The light is not good enough to allow us to distinguish the color
precisely, but we revise our belief about the color of the cloth to
(0.7,0.25,0.05). How should we revise the worth of the cloth?

Fig. 7. The worth of a cloth.
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Jeffrey’s rule for this case is: Q(W) = > P(W|¢;) - O(c;). The rule applies
only if P(W |¢;) is not modified by the observation, which is clearly true in this
example. Diaconis and Zabell comment that “this condition is an internal or
psychological condition that must be checked or accepted at each stage.
Mathematics has nothing to offer here” [11, p. 825]. There is, however, a
principled way to check whether the condition holds, which is based on the
theory of Bayesian networks.

Augment the Bayesian net with a node that represents the evidence (E) and
the appropriate edges. In the example, the evidence depends on the (true) color
of the cloth, as shown in Fig. 8. Now, check whether W is independent of E
given C (using a d-separation algorithm). If this is the case, then
P(W|C)=P(W|C,E), and Jeffrey’s rule may be applied. In our example, this
is the case.

Let us now consider a situation in which Jeffrey’s rule is not applicable.
Suppose that we know the color of the cloth, and we want to update our belief
in the type of candle (CA) used. In the absence of observations, the type of
candle used does not affect the color of the cloth, and vice versa, so that:
P(CA|C) = P(CA), and the Bayesian network structure is given in Fig. 9.

The Bayesian network structure in the presence of soft evidence for Color
is given in Fig. 10. Since CA and C are not d-separated by E, P(CA|C) #
P(CA|C,E), and therefore Jeffrey’s rule is not applicable.

Pearl [24,25] observes that the virtual evidence method (also cf. [20,23]) can
be viewed as formally equivalent to the likelihood ratio version of Jeffrey’s rule.

Fig. 8. The worth of a cloth in the presence of soft evidence.

@ O

Fig. 9. Candle type and cloth color.

Fig. 10. Candle type and cloth color in the presence of soft evidence.
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Suppose that we obtain evidence on a variable B, with values b;. Letting QO(b;)
be the evidence and P(b;) be the prior probability of B, the ratio Q(B)/P(B)
may be used in the virtual evidence method, resulting in an updated distribu-
tion whose marginal over B is the soft evidence Q(B). We will exploit this result
in Section 4.3.

3.2. A unified approach for modeling soft evidence

Suppose that an AEBN needs to be updated in the light of information from
another agent. There are two types of observed variables in a multiagent sys-
tem:

1. One observed state of a random variable X is reported, but a publishing
agent is unsure of its observation. E.g. a particular flip of a coin came up
heads, but the agent is not sure since it has observed the coin from a long
distance.

2. The probabilities that a random variable X takes certain states P(X =
x;), i=1,...,n, are reported. E.g. an agent will report P(X = head) = 0.5
and P(X = tail) = 0.5 in the case it believes that it has observed a fair coin.
There is an approach to update from non-crisp information that is often

used for in Bayesian networks, e.g. in the Hugin program [2], and which cor-
responds to the first type of variable. Pearl calls it virtual evidence update in [24]
(also cf. [15,16,20,23,25]). Under certain conditions, which we discuss below,
virtual evidence update may be an appropriate way to perform interagent
communication. The second approach, for which we present a comprehensive
analysis in this paper, corresponds to the second type of variable. We call it soft
evidential update. Next, we will describe the basic differences between virtual
evidence update and soft evidential update.

Virtual evidence update is a model of updating suitable for situations when
agents obey the following property:

(V1) A publishing agent provides its belief in the true state of the ob-
served variable. Its observation can be improved by something that the
publishing agent cannot observe. Variables in the subscribing agent mod-
el may have an influence on the true state of the variable observed by the
publishing agent.

A model of virtual evidence update is displayed in Fig. 11. It consists of the

following three steps:

1. A dummy node O is created. It has the same states as node X, and X is its
only parent.

2. A publishing agent reports one observed state x; € {xi,...,x,} from n pos-
sible states of an observed variable X together with its reliability in the form
of conditional probability distribution P(O =x;|X =x;), i=1,...,n (note
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0=u; Agent 2

Fig. 11. Virtual evidence update.

that only values for the observed value j are required). This conditional
probability distribution reads as: ““the probability of observing variable X
being in state x; if its true state is x;”.

3. Updating of the Bayesian network is performed. This corresponds to enter-
ing evidence O =x; with consequent propagation using the values of
P(x;|X =x;), i=1,...,n. E.g. the junction tree algorithm [17,21,22,27]
can be employed.

The approach for modeling soft evidence we propose is fundamentally dif-
ferent. The soft evidential update approach is suitable when the following as-
sumption holds:

(S1) The publishing agent’s belief on states of a variable cannot be im-
proved by anything that is observed later, i.e. no variable in the model
of a subscribing agent may have any influence on this publishing agent’s
observation.

The model of this approach is displayed in Fig. 12. Note that, in contrast with
virtual evidence update, the report of the publishing agent does not include the

Agent 2

Fig. 12. Soft evidential update.
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conditional probability table P(X | O) but consists only of a distribution on the

observation variable.

This kind of situation exists in AEBNSs, in which there is precisely one agent
with specific authority for each variable that occurs in multiple agents. In this
case, it is correct for the subscriber agents to treat their initial belief in this
variable not as a prior probability to be updated upon receipt of additional
information (as in the virtual evidence method), but as a guess to be replaced by
the evidence provided by the authority. The soft evidential update approach
more closely models the notion of observation as a property of the publishing
agent and insures consistency across all agents that subscribe to the published
variable, in the sense that the belief (marginal posterior probability) in a
published variable is the same throughout the agent system.

The soft evidential update approach allows to combine the variable ob-
served by the publishing agent and the subscribing agent’s own opinion on the
same variable, by the introduction of additional variables with the same do-
main. Dependence is modeled within the structure owned by the subscribing
agent. By using this simple technique, it is reasonable to require that the
probability distribution provided by the subscribing agent should not be
changed (assumption S1) in a wider range of situations than it may superficially
appear. In contrast with the requirement that agents correspond by commu-
nicating either hard evidence or likelihood ratios, we can accommodate ab-
solute beliefs, provided that the agent that uses them models them as such.

Next, it will be shown that using the soft evidential update approach several
types of soft evidence can be handled in a unified manner. The update consists
of the following three steps, which result in an extension of the original
Bayesian network:

e First, we create a new node, which we call observation node, for each obser-
vation. Let O be a generic such node. Every state of node O corresponds to a
possible outcome of an observation. We can handle any of the following
types of soft evidence:

1. one-dimensional marginal probability distributions that are defined for
values of a single variable,

2. higher-dimensional marginal probability distributions that are defined
on the Cartesian product of the values of two or more variables,

3. conditional probability distributions,

4. probability assignments to an arbitrary logical function, and

5. probability assignments to a probabilistic function.

e Second, we add directed edges to node O from all nodes in the Bayesian net-
work structure that have a direct influence on the observation, so that the set
of parents of O in the extended network d-separates O from the rest of the
network.

e Third, we model the dependence of the parents of O (pa(O)) on O, by spec-
ifying the conditional probability table P(O|pa(O)).
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See Fig. 13 where all the types of soft evidence listed above are displayed.
Bold lines denote logical dependence while the others stand for a probabilistic
dependence. We now address each of the five types of soft evidence individu-
ally.

In the first case, the observation corresponds to a one-dimensional marginal
probability distribution that is defined for all values of a single variable. A
child of a single node is created, such as O; (the child of A4) in Fig. 13. Child O
is an exact copy of its parent X € pa(O). It has the same states as its parent X
and is logically dependent on X, i.e.

PO=olX=x)=1 < o=nx

In the second case, the observation corresponds to a higher-dimensional
marginal probability distribution that is defined on the Cartesian product

Xpa(O) = ><iepa(O)Xi

Q(01)

Q(B, D) O1 Q(05)

Q(G|H) QU=1i& J=yj)

Fig. 13. Example of an agent with five different types of soft evidence.
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of the set of values X; of variables JX;, where i > 2. We create a single node,
such as O, in Fig. 13, that has all possible combinations of the values of its
parents as its values, i.e. there exists a single state o of O for every
X = (X)) icpa(0) € Xpa(0)- Xpa(0) = {Xi}icpa(o) denotes the multidimensional ran-
dom variable taking values X € X,). Variable O is again logically dependent
on its parents, i.e.

P(O =o0|Xp0) =X) =1 <= o corresponds to X.

The third case is, with respect to modeling, equivalent to the second. The
only difference is in the way the update of the probability distribution on the
node (O; in Fig. 13) is done (which is discussed in Section 4.2).

Note that in the previous three cases the parent nodes could be updated
directly. The only reason for the introduction of node O, is that we want to
handle evidence of all types listed above within a unified framework. In the
second and third cases, in addition to the previous reason, the introduction of
observation nodes can be also understood as a modeling trick that allows us to
update a distribution on a single node rather than on a set of variables. It is not
necessary to add the observation nodes if we have a direct access to higher-
dimensional probability distributions in the computer representation of the
Bayesian network.

In the fourth case, the observation is a logical function of some variables
in the Bayesian network (i.e. some event), the probability table P(O|pa(0)),
such as P(O4|1,J) in Fig. 13, models a logical dependence between the parent
variables and therefore only contains zeroes and ones. Typically, the obser-
vation variable has as its values only two logical complements, i.e. values of
O correspond to a partition of Xp,). The possibility of updating on col-
lections of subsets of X,.) that are not partitions was discussed in [11,
Section 5.2]. For an example that involves a logical function of variables, see
Section 5.

The fifth case is a generalization of the fourth one. In this case in order to
update correctly using soft evidence, we need to specify fully the conditional
probability table P(O|pa(0)), e.g. P(Os|C,F) in Fig. 13. Typically, the pos-
sible values of the observation variable O are the same as the possible values of
one of its parents and the conditional probability distribution is used to model
the influence of the other parents’ values on the observation.

Figs. 2 and 8 show situations in which the observation (£ in both cases) is
a child of a single node (S and C, respectively). Figs. 3 and 10 show situa-
tions in which the observation (£ in both cases) is a child of two nodes. The
two parent nodes are S and SS in the case of Fig. 3 and C and CC in the case
of Fig. 10.

Consider now the case of the specification of the conditional probability
for the speed sensor. To update correctly using soft evidence, we need to
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specify P(E|S,SS). Note that such a specification only involves the possible
values of variables O, S, and SS, and does not require consideration of belief
states. In fact, the possible values of O are the same as the possible values of
S. In the case of the color of the cloth, we need to specify P(E|C,CC).
Again, only the possible values of the three variables E, C, and CC need to
be considered. Here, the possible values of E are the same as the possible
values of C.

4. Algorithmic and systems issues
4.1. Inadequacy of the junction tree algorithm

We show, by a simple example, that the junction tree algorithm does not
treat soft evidence properly. For convenience, we refer to the so-called Hugin
variant of the junction tree algorithm, as described, e.g. in [17], and use similar
terminology.

The skeleton of the argument is as follows. In the junction tree algorithm,
messages are passed across separators from clique to clique. Exactly two
messages are passed between two cliques (say, C; and C;), one in each direction,
as shown in Fig. 14. The first message is passed during the DistributeEvidence
phase of the method (say, from C; to C;), and the second during the Collect-
Evidence phase (say, from C; to C;). Suppose that clique C; contains a node
(say, ¥;) for which we have a soft finding (say, P(¥;)). When C; sends its
message to C;, P(C;) in modified (by calibration). After the probability of C;
has been fully updated (say, to Q(C;)), C; sends its message to C;, and the
probability of C; is modified by calibration. In general, letting Q(C;) be the
modified probability, we have that > .., O(C;) # P(V;), which implies that
the soft finding P(¥;) is not treated as evidence.

We now present the promised example that establishes our claim that the
junction tree algorithm does not handle soft evidence properly. We use the
“wet grass” Bayesian network, originally in [24], as elaborated in [17]. The
network is given in Fig. 15, with all variables binary (with values y and #, in
that order), P(R) = (0.2,0.8), P(S) = (0.1,0.9), and the conditional probabil-
ities in Tables 1 and 2.

2

-—

Fig. 14. The soft finding P(¥}) is not treated as evidence.
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()

Fig. 15. The wet grass Bayesian network structure.

Table 1
Table for P(W |R) in the wet grass example
w R
v n
y 1 0.2
n 0 0.8
Table 2
Table for P(H |R,S) in the wet grass example
S R
v n
y (1,0) (0.9,0.1)
n (1,0) (0,1)

The first entry in each vector is for H = y.

The junction tree algorithm constructs the junction tree shown in Fig. 16.
Suppose that our hard evidence is that Holmes’s lawn is certainly dry (i.e.
H =n), while we have soft evidence that Watson’s lawn, in the form
P(W) = (.7,.3). If this soft evidence is absorbed in clique WR and the hard
evidence is absorbed in clique HRS, propagation will consist of two messages
through the separator R. After the messages are passed, P is updated to Q, and
O(W) = (.4439,.5561) # (.7,.3) = P(W).

We have shown that even if soft findings are absorbed correctly into cliques,
the propagation method itself would not respect the evidence characteristics of
the findings.

The reader may wonder why examples such as the one above do not also
apply in the case of hard evidence. The reason is that it is not possible to
enter new evidence that contradicts the evidence already entered, and
therefore zero entries are treated in a special way by the junction tree
algorithm: zeroes in probability tables remain zeroes after each message
(cf. [17, Lemma 4.1]).
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absorb soft evidence absorb hard evidence
calibrate
—_—
2. ‘ R ‘
calibrate

Fig. 16. The junction tree algorithm and the wet grass network.

4.2. Soft evidential update method

We propose a universal approach (the soft evidential update method) for the

updating of a joint probability distribution P(V'), where V" denotes the set of all
variables in the model, in the light of soft evidence, which may correspond to
any one of the five types discussed in Section 3.2.

1.

At first, one or more (say k) observation variables are defined as described in
Section 3.2. For each of the k observation variables, the values of probability
distribution Q(0; =o;), i =1,...,k, are provided by the corresponding
agent. The values correspond to the soft evidence, e.g. the beliefs that were
assigned to the observed events. In the case (3) when a conditional probabil-
ity distribution is provided by the agent, additional computation is neces-
sary. The formulae are provided below (formulae (2) and (3)); further
details can be found in Section 5.

. The conditional probability distribution P(¥ \ O|O) given the values of the

observation variable is computed.

. The updated joint probability distribution is achieved by multiplication of

conditional distribution P(¥ \ O|0O) with soft evidence stored in O(O),
o(V) =P(V\0|0)-0(0). (1)

. If there is only one observation variable, then the formula above corre-

sponds to Jeffrey’s rule. If there are more observation variables Oy, ..., Oy,
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we must update all of them and iterate until the difference between two sub-

sequent cycles of the procedure is sufficiently small.

As we mentioned above, when a conditional probability distribution
O(X4|Xp) is provided by the agent, additional computation is necessary.
X, ={X:},., and Xz = {X;},., are (possibly) multidimensional random vari-
ables, where 4, B denote two disjoint sets of variable indices. In the following
formulae o denotes a particular value of variable O corresponding to the vector
(a, 5} concatenated from vectors @ and b, while @ and b are particular values of
the random variables X, and X, respectively. There are two possibilities
(discussed further in Section 5) as to how distribution Q(O) can be computed.
For every state o of the observation variable O the probability distribution
0(0) is defined either by formula (2) or (3).

0(0 = 0) = O(X, = @| X = b) - P(Xz = b), 2)
0(0=0)=0QX, =d|Xs =b) - P(Xs = b)
~c-exp(—1(Q(Xy | Xp = B)| P(Xy|Xp = 5)))7 3)

where ¢ is a normalization constant given by
-1
¢ = | S P(Xs = B) - exp( — 100X | Xs = B)[[P(X4| X5 = B)))

b

and /(P||Q) denotes the well-known I-divergence (also called Kullback—Leibler
divergence or cross-entropy) defined as

P(x)

1P1Q) =3 Pl log -

The described soft evidential update method obeys several nice properties
that are discussed in detail in Section 5. In the next two subsections, we present
two approaches to an effective implementation of the soft evidential update
method. Both approaches are based on the junction tree algorithm, which is
modified to make it sound for soft evidential updates. The first approach re-
quires no changes to the junction tree itself, but iteration on all variables is
required. The second approach requires a different kind of triangulation, but
iteration is localized to a single clique. The reader will recognize that the first
approach is more space efficient, while the second approach is more time ef-
ficient.

)

4.3. Iterative modification of the junction tree algorithm

Three steps are involved:
1. Enter hard evidence and propagate normally. Call the resulting distribution
0. QO will be updated repeatedly by the following iterative process.
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2. Iterate the following cycle (consisting of k applications of the pair of steps

(3a) and (3b)) until convergence is achieved.

3. For each piece of soft evidence, P(0;), j=1,....,k:
(a) Absorb P(0O;) in a clique C;, that contains O; using the Iterative Pro-
portional Fitting Procedure (IPFP) formula:
P(Cy) - P(O))
0(0))
(b) Propagate normally.

The convergence of this procedure follows from general results about the
convergence of IPFP, as shown originally in [9] (also cf. [18,28]). We note that
the procedure could, in principle, be implemented as a wrapper around the
Hugin shell or other shells that support the virtual evidence method. Care must
be taken, because the virtual evidence method requires that likelihoods be

entered, rather than probabilities, and therefore soft evidence values must be
divided by the appropriate prior probabilities at each cycle.

Q(C/j) =

4.4. The big clique algorithm

The big cliqgue algorithm modifies the junction tree algorithm as follows:

1. Build a junction tree that includes all variables for which soft evidence is gi-
ven in one clique, the big cligue C,. (These variables may appear in other cli-
ques as well.)

2. Update P(V) to a distribution P*(V) by executing the junction tree algo-
rithm using only hard evidence. P*(V) is a distributed representation of
P(V |hard evidence), in the sense of the remark following Theorem 4.2 in
[17]: the product of all clique tables divided by the product of all separator
tables is equal to P(¥ |hard evidence).

3. Absorb all soft evidence in C; (with the algorithm described in Section
4.4.1).

4. Call the routine DistributeEvidence from C;. This routine and the correct-
ness of this step are presented in Section 4.4.2.

4.4.1. Absorption of soft evidence

We define absorption in the special big clique C as the process by which the
joint probability P(C)) is updated to conform to soft evidence on variables
A C Cy, where 4 = {4,,4,,...,4;}. Let Q(C)) be the joint probability after
absorption. Then Vi 3 .., O(Ci) = P(4;), where P(4;) is the soft evidence on
A;, i =1,... k. Absorption of soft evidence in clique C| is carried out by using
the IPFP and consists of cycles of k steps, one per finding. Each step corre-
sponds to one soft finding. The appropriate formulae are

0)(C1) = P(Ch),
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0i-1(C1) - P(4))
0(C1) o)
where j = (i — 1) mod & + 1.

For a simple example, suppose we have the clique {4, B} with joint prob-
ability as given in Table 3 (all variables are binary). Suppose that soft evidence
on variable B is available in the form of P(B) = (.7,.3). We compute the up-
dated joint probability Q(B) in two steps. The result of the multiplication by
P(B) is given in Table 4. The result of the division by Q) = (0.59,0.41) is given
in Table 5. Note tha.t Z{A,B}\{B} 0(4,B) = P(B) =(.7,.3), as clgimed.

One step of IPFP is sufficient when there is only one soft finding. In general,
however, several cycles may be necessary for IPFP to converge. See [9,14,28]
for the proof of convergence in the general discrete case and for bounds on the
number of cycles in special cases.

4.4.2. Propagation of soft evidence
First, recall that Step 2 in the modified junction tree algorithm leads to a
distributed representation of the posterior probability of all variables given all

Table 3
Table for P(4,B)
B A
y n
y .56 03
n .14 27
Table 4
Table for P(4, B, e)
B A
v n
y 392 .021
n .042 .081
Table 5
Table for P(4, B, e) after normalization
B A
v n
v .664 .036

n .102 .198
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hard findings. Second, observe that the product of the table for the special

clique that has absorbed all soft evidence (as done in Step 3) multiplied by the

tables for the other cliques and divided by the tables of the separators is a

representation of the posterior probability of all variables given the soft evi-

dence and the hard evidence. (Hard evidence had already been absorbed in

Step 2.)

We now need to restore consistency between the special clique and the other
clique. To do so, we propagate from the clique that has absorbed soft evidence
using the Hugin Distribute Evidence algorithm, which is described in [17, Sect.
4.4.1]. This algorithm has three important properties:

1. it updates the probability tables of the other cliques while it maintains the
invariant that the product of the clique tables divided by the separator tables
is equal to the joint probability table for all variables in the Bayesian net-
work;

2. it insures local consistency and (Theorem 4.5 in [17]) global consistency;

3.1t does not disturb hard findings, because it does not introduce new
zeroes.

Finally, observe that the table for the clique that contains all variables for
which we have soft findings is unchanged by a DistributeEvidence call that
starts at this clique. Therefore, the result of propagation is to obtain a globally
consistent distributed representation of the posterior in which all findings, hard
and soft, hold.

We remark that the big clique algorithm could be simplified by removing the
DistributeEvidence part from the second step. In other words, it is sufficient to
carry out one CollectEvidence operation to the special clique (using only hard
evidence) and one DistributeEvidence from the special clique (after absorbing
soft evidence in the special clique). From this point on, we redefine the big
clique algorithm to be this simplified version. Figs. 17 and 18 illustrate the
CollectEvidence and DistributeEvidence operations. Fig. 19 illustrates the

Big Clique

Fig. 17. The big clique calls CollectEvidence.
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Big Clique

Fig. 18. The big clique calls DistributeEvidence.

absorb hard evidence

calibrate
@ - @
absorb soft evidence

calibrate

19. Operation of the big clique algorithm on the lawn example.
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operation of the whole big clique algorithm on the lawn example. In this special
case, the junction tree is the same as that constructed by the junction tree al-
gorithm (cf. Fig. 16), but the order of operations is different. In particular, note
how the absorption of soft evidence is delayed. The properties of the big clique
algorithm are studied further in Section 5.

5. Properties of soft evidential update method
5.1. I-projections

Soft evidential updating can be formalized as a constrained optimization
task. The goal is to find a probability distribution such that

(a) it satisfies all the constraints introduced by different types of soft evi-

dence,

(b) it optimizes a chosen criterion among all distributions satisfying these

constraints.

Cheeseman [7] proposed a method (based on Lagrange multipliers) that finds a
joint probability distribution maximizing Shannon entropy over all distribu-
tions satisfying given constraints. However, the maximum entropy principle is
not suitable for soft evidential update, since it does not take into account any
information stored in the joint probability distribution that is going to be
updated. We prefer a joint probability distribution that satisfies the constraints
introduced by soft evidence and that is “close’ to the joint probability distri-
bution before updating.

I-divergence (defined by formula (4) in Section 4.2) may be used as a
suitable distance criterion (also cf. [26]). Several arguments against applica-
tion of this criterion to evidence updating were given in [12,25]. These ar-
guments are not against /-divergence per se, and we agree with their general
tone: misuse of the /-divergence criterion leads to the dreaded “‘something for
nothing” phenomenon, where inappropriate application of general formulae
is substituted for the careful modeling of the domain of interest and, in
particular, of its dependence structure. Moreover, in Section 5.4 we will show
that some of Pearl’s conclusions published in [25] are erroneous and that his
argument against the usage of I-divergence for conditional evidence updating
vanishes if the optimization is performed with respect to the second argument
of I-divergence. In this context, the notion of I-projections turns out to be
useful.

The I;-projection of a probability distribution P on a set of probability
distributions £ is a unique probability distribution that minimizes the /-di-
vergence /(R||P) among all probability distributions R € 2. The I,-projection of
P is a unique probability distribution minimizing /(P||R) among all probability
distributions R € #.
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5.2. Correspondence of soft evidential update to IPFP

In the case of updating by a single marginal distribution, it does not matter
whether the optimization is performed with respect to the first argument (/;-
projection) or the second argument (/,-projection). There exists a single explicit
formula for both I-projections in the case of updating based on the single
marginal probability distribution [19]: formula (1) in Section 4.2.

In the case of several marginal probability distributions, the proposed soft
evidential update method corresponds to the IPFP of Deming and Stephan
[10]. Note that in Section 3 we have shown how updating based on either a
probability assignment to an arbitrary logical function or a probability as-
signment to a probabilistic function can be transformed to updating based on a
marginal probability distribution. Therefore the correspondence of soft evi-
dential update to IPFP holds in these cases as well. Next, we will exploit some
properties of IPFP to show that the computation of the resulting probability
distribution can be decomposed.

5.2.1. Decomposability of computation

The computation of a distribution that satisfies requirements (a) and (b)
listed above can be decomposed as it is proposed for the big clique algorithm in
Section 4.4. Recall that all variables O;, i = 1,2, ..., n, for which soft evidence
is given are included in one clique C; (first step of the big clique algorithm). The
absorption of all soft evidence is performed locally in C; and then the absorbed
evidence is distributed. The key that enables us to decompose the computation
is the following lemma:

Lemma 1. Let P(V) be a given probability distribution and let C and B be two sets
such that CUB =1V and that for the set of all observational variables
O;, i=1,2,...,n,it holds that {Oy,0,,...,0,} C C. Then Q*, the I,-projection
of probability distribution P on the set of all distributions having
0(0)), i=1,2,...,n, as their marginals can be computed as

0* (V) = QE(C) - P(B\ C|C),

where OF denotes the I)-projection of marginal P(C) of the original distribution P
on the set of all distributions defined on C and having Q(0;), i =1,2,... n, as
their marginals.

For the proof see Appendix A.

If the set C corresponds to the big clique C; used in the method shown in
Section 4.4.1, then P(B\ Ci|C;) =P((B\ Ci|C;NB) and the assertion of
Lemma 1 can be written as O*(V) = QF (C1) - P(B\ C,|C, N B), from which
the following decomposition obtains:
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P((B\C CiNnB P(B
o) = gt (c)- LB O _grcy) A9
By marginalizing O* (V) to O*(B), one obtains the calibration formula
*(CiNB
0 ®) =) ST,

Therefore, we have obtained exactly the computation that is performed when
the routine Distribute Evidence from C; is called (Section 4.4.2), thereby proving
that the scheme of the big clique algorithm proposed in Section 4.4 computes a
distribution that both satisfies all the constraints introduced by soft evidence
on Q(0;), i=1,2,...,n, (a) and minimizes I-divergence with respect to the
original probability distribution P, among all probability distributions satis-
fying the given constraints (b).

5.2.2. Independence causes convergence within one cycle

Next we will show that if all pairs of distinct observation variables are in-
dependent in the original distribution, then they are independent in the up-
dated distribution as well, and the soft evidential update method requires only
one cycle to converge, i.e. only n steps are sufficient.

If all n observation variables are pairwise independent we write for
i,j=1,...,n, i #j:0;1L0;. This independence in the original distribution
can be equivalently written as: P(Oy,...,0,) =[], P(0;). Recall that using
the big clique algorithm the evidence Q(O;), i = 1,...n, is absorbed so that we
get a probability Qé’l, and it is sufficient to iterate on C; only (formula (5)). We

can use Lemma 1 with C = {0y, ..., 0,}, perform the computations on C, and
then extend the result to C; as given by formula (6):
Q* (Cl):P(Cl\C\C)Q*(C):ﬂth@(OI 0,,) (6)
“ ¢ [[L P(O;) = T

During the absorption of soft evidence (third step of the big clique algorithm)
for every i =1,...,n distribution Q;_)(O;,...,0,) is updated by the corre-
sponding soft evidence Q(O;). The starting distribution is

00)(01,...,0,) =P(0y,...,0,) = HP(Of).
i=1

For i = 1 we can write

Om(0y,...,0,) = : = ==
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For i=2,...,n we can similarly write

Oi-1)(O1,...,0,) - 0(0;)

2(01,....0,) =
i) (O ) 00)(0)

After performing n steps, we obtain the distribution
Q(H)(Ol7"'70n) = HQ(O/)7 (7)
J=1

which has the property that Q,(0;) = O(0;), j=1,...,n, and therefore the
procedure stops after n steps. It is obvious that i,j=1,...,n, i # j: O;ALO;
holds for Q) (O, ...,0,) and thus consequently for QF (C;) and O*(V) as
well. If we know it in advance or have verified that all n observation variables
are pairwise independent in the original probability distribution P, then we
need not iterate at all since O* can be computed directly using formulae (5)—(7).
The reader may now wonder whether it would be appropriate to insure that
the observed variables become independent after update, even when they are
not independent in the original distribution. An immediate advantage of this
position is that we could always update the big clique C; upon receipt of soft
evidence on {O,...,0,} in a single step by performing the following cali-
bration operation, which is the operation done in the case of hard evidence:

0(01) - 9(0s) - - O(0,)
P(O,0,...,0,)

Q(Cl) = P(Cl) .

In the hard evidence case, independence of the observed variables is necessary,
because when Q(0;), 0(0,),...,0(0,) are hard findings, the joint distribution
0(0y,...,0,) necessarily is

0(01) - 0(0,) -+ - O(0),

since no other joint distribution has the required marginals. When the evidence
consists of soft findings, however, the joint marginal distribution Q(O, ..., 0,)
is not uniquely specified by the observations. The following example shows that
forcing independence of the observation variables in the subscribing agent may
lead to incorrect results.

Imagine that we would like to have an agent that models the age and ed-
ucation levels of US residents. We are only interested in two variables: age (X,
with r possible age groups) and education (X, with s possible levels). Each
person belongs to one of the r x s groups. Our agent carried out a small survey
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and therefore constructed a joint probability distribution P(X;,X;) that models
the domain. Our agent now communicates with two other agents that provide
it with accurate US Census Bureau information concerning the age groups
(O(X1)) and the education levels (Q(X3)). By treating the two marginals as
independent in  the  receiving agent, we would compute
01(X1,X) = 0(X1) - O(X,) and replace P(X;,X3) by O1(X1,X>). This is silly, of
course, because the agent would lose all information from the small survey it
performed. The agent should instead try to find another joint probability
distribution Q,(Xj,X>) such that
e The marginals from the US Census Bureau agent are respected.
¢ 0,(X,X,) is the distribution that is closest to the distribution P(X;,X;). As a
measure of the distance among distribution, Kullback-Leibler divergence
could be used.
As early as 1940, Deming and Stephen [10] proposed IPFP for solving such a
problem. We propose that our agent does the same. One may argue that the
task of this example is rather a model learning or model revision task than an
evidential update task. In the context of AEBNSs, it is more appropriate to
consider this an evidential update task rather than a model revision task, be-
cause it may be necessary to carry it out as a routine activity in interagent
communication. For example, consider a multiagent system in which there is
an agent that is responsible for determining the nature of a coin. Another agent
uses information about the coin for decision making. In the receiving agent, the
initial marginal belief may be that the coin is (P(Coin = head) = 1/2), but
evidence, which in this case is the published value of the coin, may come as
P(Coin = head) = 1/3. The next time the receiving agent takes a decision, the
evidence may have changed to P(Coin = head) = 2/3, and so on.

In AEBN systems, soft observations are messages from publishing agents
and may be dependent when the AEBN graph is not a tree. The correct
modeling of dependence in the receiving agent requires knowledge of the
AEBN agent graph. A full treatment of this aspect is beyond the scope of this
paper, but we mention Bloemeke’s work on this topic [4].

5.3. Soft evidential update and CIPFP

In the case of updating by a single conditional probability distribution, it
does matter whether the optimization is performed with respect to the first or
the second argument, since we get two different distributions. This fact was
shown by Cramer in [8]. We have already presented the explicit formulae for /;-
projection and I,-projection in Section 4.2 (formulae (2) and (3)).

In the case of several conditional or unconditional probability distributions
the soft evidential update method corresponds to the Conditional IPFP
(CIPFP) of Bock [5]. There are two versions of CIPFP depending on whether
each step is an [;-projection (CIPFP-1) or an -projection (CIPFP-2). See [§]
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for details. The properties of distributions QF and QF, the limit distributions of
CIPFP-1 and CIPFP-2, respectively, are summarized in Table 6. These prop-
erties were proved by Cramer in [8]. Note that there is an asymmetry, since OF
generally minimizes neither the /;-projection nor the -projection, despite the
fact that in every step the I,-projection is computed. However, the important
fact is that if there exists a distribution satisfying all required constraints then
both versions of CIPFP converge to such a distribution.

5.4. Tom and Mary go to a party

This is the example that was analyzed by Pearl in [25]. We will use it to show
how soft evidential updating can be performed using the approach we propose.
We will also show that Pearl’s conclusions concerning /-divergence were er-
roneous.

Suppose that we have an initial belief that Tom goes to the party
P(T =yes) =p and another initial belief that Mary goes to the party
P(M = yes) = q. Initially, we suppose that these two events are independent.
Therefore the probabilities corresponding to the beliefs given above uniquely
define an initial joint probability distribution P(T,M) = P(T)-P(M) (see
Table 7).

We are going to present the example in a slightly generalized way with re-
spect to the example analyzed by Pearl in [25]. We allow the evidence to be soft,
i.e. we assign a belief v € (0,1) to the information that we get. We do not
assume that the initial probabilities of Tom and Mary going to the party are
equal. However, if v = 0 and p = ¢, then the example corresponds to the one
presented in [25].

Imagine the following two situations:

1. We have got to know that Tom and Mary will not be present at the party to-
gether. In this case it seems reasonable to understand the given information

Table 6
Properties of CIPFP
or Minimizes Minimizes Satisfies constraints gi-
I -projection L-projection ven by soft evidence
i=1 yes no yes
i=2 no no yes
Table 7
Initial probability distribution P(T, M)
M =yes M =no
T = yes Py p-(1—9q)

T =no (1-p)-q (1-p)-(1-¢q)
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as a probability assignment to the logical function 7 = yes & M = yes. Since
we may not be absolutely sure whether the information is right, we assign a
probability value v € (0, 1) to the event that Tom and Mary will be present at
the party together, i.e. Q(T = yes, M = yes) = v. If we were sure that this
event cannot happen, this probability would be zero.

2. We obtain a new piece of information: Tom will not go to the party if Mary
does. This time the information should be rather understood as a conditional
probability distribution. A probability value v € (0, 1) is assigned to the con-
ditional event 7 = yes given M = yes, i.e. Q(T = yes|M = yes) = v.

(add 1) In the first case we want to update the initial probability distribution
P(T,M) so that we get a new probability distribution Q(7,M) for which it
holds that Q(T = yes, M = yes) = v. As we have already mentioned above, in
the case of updating by a marginal distribution, /;-projection and I,-projection
are equivalent. The distribution that minimizes both criteria is given in Table 8.

Since the observation is a logical function of the states of the Tom and Mary
variables, using the soft evidential update approach, we first define the ob-
servation variable O taking two values o and —o, where

0(0 =0) =Q(T =yes & M = yes) = v.
0(0 = —o)
=0(T=yes& M =noVT=no& M=yesVT =no & M =no)
=1-v
Then we perform steps (2) and (3) of the soft evidential update method (Section
4.2). They correspond to one step of IPFP, i.e.
P(T, M)
-0(0). 8
P50 (8)
From Table 7 we may compute
P(O=0)=p-q,
PO=-0)=p-(1-q)+(1—=p)-q+(1-p)-(1-q)=1-p-q.

Q(T,M) =

Table 8
Updated probability distribution Q(7, M) — case (1)
M = yes M =no
T = yes v p-(1-g)-(1-v)
l—p-q

T =no g-(1-p)-(1-v) (1-p)-(0-9q - -(0-v)
l-p-q l-p-q
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Thus using formula (8) we obtain the distribution that is equivalent to the /-
projections already given in Table 8.

We repeat that the special case in which v = 0 and p = ¢ gives what Pearl
[25] calls the “Bayes conditionalization” solution. Conditioning in this case is
doneontheevent “M = yes & T = yesisimpossible” or =(M = yes & T = yes).
Following the approach of Section 3, we chose to represent this event by in-
troducing the observation variable O.

(add 2) In the second case we want to update the initial probability distribution
P(T,M) so that we get a new probability distribution Q(7, M). In this case we
require Q(T = yes| M = yes) = v. Since we have no new information about the
probability of Tom going to the party if Mary does not, the conditional
probability O(T|M = no) should not change, i.e. O(T|M =no) = P(T|M =
no). Therefore the conditional probability distribution Q(7' | M) is required to
satisfy:
O(T = yes|M = yes) = v,

O(T =no|M =yes) =1—v,

O(T = yes|M = no) :I’%’
O(T = no|M = no) _W'

Recall that in the case of updating by conditional probability distribution
the I;-projection and /,-projection may differ. See Tables 9 and 10, where the /;-
projection and L-projection of P for the soft evidence Q(T | M) are displayed.

Table 9
Updated probability distribution Q(7, M) — I;-projection
M = yes M =no
S(2) . (L) 1—
N H O (=) P
p\U 1—py1-0 — L2 =L
(1—g)+q- (1) (:2) (=g +q-(8) - (+%)
(). (l=p 1-v 1-—
T =no (1-0)- g (5) () 1 (I1-p)- ( pq) i
(U—q)+q-(2) - (=2)" (T=a)+q-(8) - (+£)
Table 10
Updated probability distribution Q(T, M) — L-projection
M = yes M =no
T = yes v-gq p-(1—9q)

T =no (1-v)-q (1-p)-(1-9q)
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Using the soft evidential update approach, we first define the observation
variable O that takes four values

01 = (T =yes & M = yes),
0, = (T =no & M = yes),
03 = (T =yes & M = no),
04 = (T =no & M =no).
The probability distribution Q(O) is computed using either the formula (2) or

(3) of Section 4.2. In the case of I,-projections, formula (2) gives for every o
corresponding to (¢,m), t € {yes,no}, and m € {yes,no}

00=0)=PM=m)-Q(T =t|M =m).

Then we perform steps (2) and (3) of the soft evidential update method (Section
4.2), which for this example mean that P(7,M) is simply replaced by
O(T = t,M = m) defined by Q(O = o), where o corresponds to (z,m). Observe
that in this case the procedure corresponds to one step of CIPFP-2. Using the
described approach we get the result equivalent to the /,-projection of P given
in Table 10.

Let us compute the marginal probability of Mary going to the party, Q(M),
for the case of I;-projection.

M = — q(l _p)l_v~p” |
o( yes) g-0=p)" " pr+(l=q)-(1—=0v)"
IR (o (s

g-(1-p) " p+(1—gq) - (1—v) "

Next we will show that using the minimum I-divergence approach for any
0<p,q,v< 1 the probability of Mary going to the party is not increasing.
This is just the opposite to what Pearl claims in his paper [25]. It is well
known that the I-divergence of two probability distributions is always non-
negative.

0<1(Q(T|M = yes)||P(T)),

1—v

l-p

0<v-10g3+(1 —v) - log
p
By exponentiation we obtain
v 1—v
<) (=)
p I—p
Since 0 < ¢ < 1, we can multiply the previous inequality by (1 — ¢) and obtain

(1-q)-(1-p) " p'<(l—q)-(1-0)"" ",
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(1-p) " p<(l—q)-1=0)" v"+q-(1-p)"p,

U

§ (1-p)' |
(I1—gq)-(1=0)" v 4q-(1=p) " pr

By multiplication by g we obtain the following inequality:

U

I—v

q-(I—=p) p

q> (l—v v) 1-v )

(1-¢q)-(I-v) " -v"+q-(1=p) "-p
P(M = yes) > Q(M = yes),

which proves that if the updated distribution Q is an /;-projection then the
value of Q(M = yes) is less than or equal to the corresponding value before
updating P(M = yes).

For the distribution that is the result of the approach we propose (corre-
sponding to I,-projection) we get

OM =yes)=v-qg+(1-0v)-qg=gq,
OM=no)=p-(1-¢)+(1-p)-(1-q)=1-gq.

Observe that the marginal probability of Mary going to the party does not
change, which corresponds to what seems intuitively correct in this example.

6. Conclusions and future work

Bayesian networks and related graphical probabilistic models (e.g. chain
graphs, influence diagrams and decision networks) have established themselves
as a useful tool for constructing intelligent systems. The application of
graphical probabilistic models in multiagent systems clearly uncovers the
limitations of simple conditioning as an update mechanism. In particular, it
becomes necessary to allow update of the beliefs of an agent upon receipt of the
beliefs of another agent (what we termed soft evidence in this paper), rather
than on traditional, hard evidence.

We demonstrated that soft evidential update is possible in Bayesian net-
works without abandoning the basic commitments of graphical probabilistic
modeling. In particular, we presented a principled way to extend Bayesian
network structures with special observation variables in such a way that, upon
update from hard and soft evidence, the extended network structure correctly
encodes the qualitative independence structure of the domain. Moreover, ob-
servation variables allow the correct processing of more general types of soft
evidence than a collection of soft findings (single variable marginals).

We demonstrated that it is possible to extend the justly celebrated junction
tree algorithm to handle soft evidence. The two extensions presented in this
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paper are based on a principled application of Jeffrey’s rule and the IPFP.
IPFP was presented at one time as the “mechanical solution™ [11] to soft ev-
idential updating. It was noted however that arbitrary and uncritical use of
Jeffrey’s rule and IPFP may lead to errors [12,24,25], and some authors have
therefore expressed doubts about the possibility of a general method for soft
evidential update. In this case, we believe that in medio veritas (the truth is in
the middle) and hope that our paper will convince skeptics that soft evidential
update in Bayesian networks is possible. Soft evidence should not be feared as
a source of paradoxes and unextricable quandaries.

In order to make an impact on applications, the two extensions of the
junction tree algorithm for soft evidential update described in Sections 4.3 and
4.4 should be implemented and their performance should be empirically
compared. We expect further work on AEBN that will clarify the mechanism
itself, exploiting Bloemeke’s groundbreaking work [4], will implement the
necessary infrastructure for communication, and will extend the basic mech-
anism to decision-making and (limited) bi-directional communication.

We also expect work on the implementation and refinement of Conditional
IPFP (CIPFP). The intriguing properties of CIPFP, some of which are briefly
described in Section 5, warrant more theoretical work. Another line of theo-
retical investigation is the issue of sequential soft evidence update. While up-
dating with hard findings (or virtual findings) may be done sequentially
without changing the outcome, soft evidential update must be done concur-
rently (cf. [11,3]). This is not a major stumbling block for applications, but it
may have interesting theoretical ramifications.

The work presented in this paper has a methodological and practical bent.
Accordingly, we used a rather plain style, with many illustrations of the con-
cepts introduced, to try to reach a wide audience. The unified treatment of
modeling for soft evidential update using observation variables should be es-
pecially useful for researchers and practitioners in Bayesian networks and open
new avenues of application for graphical probabilistic models.
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Appendix A. Proof of Lemma 1

Lemma 1. Let P(V') be a given probability distribution and let C and B be two sets
such that CUB =1V and that for the set of all observational variables
O;, i=1,2,...,n,it holds that {Oy,0,,...,0,} C C. Then Q*, the I;-projection
of probability distribution P on the set of all distributions having
0(0)), i=1,2,...,n, as their marginals can be computed as

0*(V) = 07 (C) - P(B\ CC),
where QF denotes the I;-projection of marginal P(C) of the original distribution P

on the set of all distributions defined on C and having Q(0;), i =1,2,... n, as
their marginals.

Proof. Let 2 denote the set of all probability distributions defined on variables
from V. The I,-projection of a probability distribution P(V) on a set of
probability distributions 2, having Q(0;), i = 1,2,...,n, as their marginals,
was defined to be the unique probability distribution

. . R(x)
* _ —
Q" =arg r}glggl(RHP) = arg min EX R(x) lOgP(x)'

For a particular combination of values x = x", we will write x” = (x¢, x5\C),
where for any set S C V the symbol x5 denotes particular values of the random
variables (X;),.s. Using the definition of conditional probability we can write

xC . XB\C XC
0* = arg %1612 ZR(x) logﬁgxci .iExB\C|xC§
()

og P(x*\C|xC)

\C xC
+Z<R(Xc) ZR(xB\C|xC) lOgII—iiEi\cbcC;)) (Al)

¥B\C
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Observe that > »cR((x¢,x5\)) = R(xC) (i.e. R(C) is the marginal of R(V) on
(), and therefore

Z( (<) BT B\c>

+C YB\C
= Z(log% . R(xc)> =I(R(O)|IP(C)). (A.2)
Furthermore , for every x©,
S RGN 1) log P < (R CLPE\ CY). (A

¥B\C

Using formulae (A.2) and (A.3) we can rewrite formula (A.1) as
* . c
0 —argrlglel_;;<( C)lip(C +ZR R(B\ C|x)|[P(B\ C|x )))-

Since the I-divergence of two probability distributions is always non-negative
then all addends can be minimized independently. The first addend is mini-
mized by the limit distribution O} of IPFP performed on the set C, i.e.

R(C) = 07 (C). (A-4)

The other addends are minimized (equal zero) if for every value of x© it holds
that

R(B\ C|x“) = P(B\ C|x°). (A.5)

Formulae (A.4) and (A.5) imply that the I;-projection O* is equal to R € 2
such that

R(V) = 07(C) - P(B\ C|C),

which proves the statement of the lemma. [
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