
©2006 Kathryn Blackmond Laskey 2/27/06

First-Order Bayesian Logic

Kathryn Blackmond Laskey KLASKEY@GMU.EDU
Department of Systems Engineering and Operations Research
MS4A6
George Mason University
Fairfax, VA 22030, USA

Abstract

Uncertainty is a fundamental and irreducible aspect of our knowledge about the world. Until
recently, classical first-order logic has reigned as the de facto standard logical foundation for
artificial intelligence. The lack of a built-in, semantically grounded capability for reasoning under
uncertainty renders classical first-order logic inadequate for many important classes of problems.
General-purpose languages are beginning to emerge for which the fundamental logical basis is
probability. Increasingly expressive probabilistic languages demand a theoretical foundation that
fully integrates classical first-order logic and probability. In first-order Bayesian logic (FOBL),
probability distributions are defined over interpretations of classical first-order axiom systems.
Predicates and functions of a classical first-order theory correspond to a random variables in the
corresponding first-order Bayesian theory. This is a natural correspondence, given that random
variables are formalized in mathematical statistics as measurable functions on a probability space.
A formal system called Multi-Entity Bayesian Networks (MEBN) is presented for composing
distributions on interpretations by instantiating and combining parameterized fragments of
directed graphical models. A construction is given of a MEBN theory that assigns a non-zero
probability to any satisfiable sentence in classical first-order logic. By conditioning this
distribution on consistent sets of sentences, FOBL can represent a probability distribution over
interpretations of any finitely axiomatizable first-order theory, as well as over interpretations of
infinite axiom sets when a limiting distribution exists. FOBL is inherently open, having the ability
to incorporate new axioms into existing theories, and to modify probabilities in the light of
evidence. Bayesian inference provides both a proof theory for combining prior knowledge with
observations, and a learning theory for refining a representation as evidence accrues. The results of
this paper provide a logical foundation for the rapidly evolving literature on first-order Bayesian
knowledge representation, and point the way toward Bayesian languages suitable for general-
purpose knowledge representation and computing. Because FOBL contains classical first-order
logic as a deterministic subset, it is a natural candidate as a universal representation for integrating
domain ontologies expressed in languages based on classical first-order logic or subsets thereof.

Keywords: Bayesian network, Bayesian learning, graphical probability models, knowledge
representation, multi-entity Bayesian network, random variable, probabilistic ontology

1 Introduction
First-order logic is primary among logical systems from both a theoretical and a practical

standpoint. It has been proposed as a unifying logical foundation for defining extended logics
and interchanging knowledge among applications written in different languages. However, its
applicability has been limited by the lack of a coherent semantics for plausible reasoning. A
theory in first-order logic assigns definite truth-values only to sentences that have the same truth-
value (either true or false) in all interpretations of the theory. The most that can be said about any
other sentence is that its truth-value is indeterminate. A reasoner that requires logical proof before
it can draw conclusions is inadequate for many practical applications. This problem has been

FIRST-ORDER BAYESIAN LOGIC

DRAFT 2 2/27/06

addressed with a proliferation of plausible reasoning logics, but these have lacked firm theoretical
grounding. The need for plausible reasoning is especially acute for the problem of knowledge
interchange. Different applications have different ontologies, different semantics, and different
knowledge and data stores. Legacy applications are usually only partially documented, and may
rely on tacit usage conventions that even proficient users do not fully understand or appreciate.
Even if these problems could be circumvented and a full formal specification for each application
could be achieved in first-order logic, the alignment of different applications into a single unified
ontology, semantics, and data store is an ill-specified problem with no unique solution. This is a
consequence of the fundamental truth that axiom sets in first-order logic do not in general admit
unique interpretations. Because knowledge interchange is fraught with irreducible uncertainty, it
should be founded on a logic that supports plausible inference.

Among the many proposed logics for plausible inference, probability is the strongest
contender as a universal representation for translating among different plausible reasoning logics.
There are numerous arguments in favor of probability as a rationally justified calculus for
plausible inference under uncertainty (e.g., de Finetti, 1934/1975; Howson and Urbach, 1993,
Jaynes, 2003; Savage, 1954). Until recently, the development of a fully general probabilistic logic
was hindered by the lack of modularity of probabilistic reasoning, the intractability of worst-case
probabilistic inference, and the difficulty of ensuring that a set of probability assignments
specified a unique and well-defined probability distribution. Probability is not truth-functional.
That is, the probability of a compound expression cannot be expressed solely as a function of the
probabilities of its constituent expressions. The number of probabilities required to express a
fully general probability distribution over truth-values of a collection of assertions is exponential
in the number of assertions, making a brute-force approach to specification and inference
infeasible for all but the smallest problems. Typically, independence assumptions are used to
decompose complex problems into manageable sub-problems. Recently developed graphical
probability languages (e.g., Jensen, 2001; Neapolitan, 2003; Pearl, 1988) exploit independence
relationships to achieve parsimonious representation and efficient inference. The introduction of
graphs to represent conditional dependence relationships has sparked rapid evolution of
increasingly powerful languages for computational probabilistic reasoning (e.g., Buntine, 1994;
D’Ambrosio, et al, 2001; Getoor et al, 2001; Gilks et al, 1994; Glesner and Koller, 1995; Halpern,
1991; Jaeger, 2001; Koller and Pfeffer, 1997; Laskey and Costa, 2005; Laskey and Mahoney,
1997; Ngo and Haddawy, 1997; Pfeffer, 2001; Sato, 1998; et al., 1996). Different communities
appear to be converging around certain fundamental approaches to representing uncertain
information about the attributes, behavior, and interrelationships of structured entities (cf.,
Heckerman, et al., 2004).

This paper presents a logical foundation for the emerging consensus. First-order Bayesian
logic (FOBL) combines the expressive power of first-order logic with a sound and logically
consistent treatment of uncertainty. FOBL semantics unifies the standard model-theoretic
semantics for first-order logic with the theory of random variables as formalized in mathematical
statistics. A theory in FOBL assigns probabilities to sets of interpretations of an associated
classical first-order logic (FOL) theory. Functions and predicates in the FOL theory correspond to
random variables, or measurable functions on the probability space defined by the FOBL theory.
The probability of a sentence is defined as the probability of the set of interpretations in which it
is true. The probability calculus provides an inference and learning theory for FOBL theories.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 3 2/27/06

The language of multi-entity Bayesian networks (MEBN)1 is presented as a vehicle for
expressing first-order Bayesian theories and for analyzing theoretical properties of first-order
Bayesian logic. Although MEBN syntax is designed to highlight the relationship between a
MEBN theory and its first-order logic counterpart, the primary focus of this paper is the
underlying logic and not the language. That is, MEBN syntax should be viewed not as a
competitor to other syntactic conventions for expressing first-order probabilistic knowledge, but
as a vehicle for expressing and analyzing logical notions that cut across surface syntactic
differences.

A MEBN theory builds a probability distribution from MEBN fragments (MFrags). An
MFrag is a parameterized fragment of a directed graphical model, and expresses probabilistic
relationships among a collection of related hypotheses. A MEBN theory is a collection of MFrags
that satisfies global consistency constraints ensuring that it implicitly specifies a joint probability
distribution over a possibly infinite collection of hypotheses. MEBN theories can be used to
reason consistently about complex expressions involving nested function application, arbitrary
logical formulas, and quantification. A set of built-in MFrags provides the full expressive power
of first-order logic with functions and equality, the most commonly used variant of first-order
logic. Section 5.2 below constructs a MEBN theory that assigns non-zero probability to any
satisfiable sentence in classical first-order logic. This distribution can be updated via Bayesian
conditioning to express a probability distribution on interpretations of any consistent, finitely
axiomatizable theory in classical first-order logic. Section 5.2 presents an inference algorithm
called situation-specific Bayesian network (SSBN) construction. SSBN construction produces a
sequence of Bayesian networks that approximates the probability distribution implicitly
represented by the MEBN theory. If the associated FOL theory is inconsistent, SSBN
construction discovers the inconsistency in finitely many steps. For queries about consistent,
finitely axiomatizable FOL theories, SSBN construction may terminate with an exact answer or
may converge to the correct answer in the infinite limit. Theories with infinitely many axioms can
be represented as nested sequences of MEBN theories. Such an infinite sequence may or may not
converge to a globally consistent joint distribution over interpretations, depending on whether the
axioms define a generative process capable of representing the statistical behavior of the
sequence. A construction due to Oakes (1986) demonstrates that no probabilistic logic can do
better than this. Oakes’ construction demonstrates that for any generative probabilistic theory, no
matter how expressive and flexible, there exist infinite sequences of findings that falsify the
probabilistic predictions of the theory.

The remainder of the paper is organized as follows. Section 2 provides an overview of first-
order logic and introduces notational conventions that will be used throughout the paper. Section
3 provides an overview of ordinary Bayesian networks, the propositional knowledge
representation formalism for which MEBN is a first-order extension. Section 4 defines the
MEBN language. Section 5 defines semantics, presents results on expressive power, and
discusses inference. Section 6 reviews current research on expressive first-order languages. The
final section is a summary and discussion. Proofs and algorithms are given in the appendix.

2 First-Order Logic
Davis (1990) defines a logic as a schema for defining languages to describe and reason about
entities in different domains of application. Certain key issues in representation and inference

1 MEBN is pronounced “MEE-ben.”

FIRST-ORDER BAYESIAN LOGIC

DRAFT 4 2/27/06

arise across a variety of application domains. A logic encodes particular approaches to these
issues in a form that can be reused across domains. A logic has the following basic elements (cf.,
Sowa, 2000):

 The vocabulary consists of symbols that can be combined to form expressions to
represent and reason about entities in a given domain of discourse. Symbols are of
two kinds:

a. Logical symbols (e.g., variables, connectives, punctuation) are common to
any language based on the logic;

b. Non-logical symbols (e.g., constant symbols, function symbols, relation
symbols) vary from language to language, and provide vocabulary tailored
to a particular domain of application.

 The syntax consists of rules for combining these symbols to form legal expressions.
The proof rules specify ways in which new legal expressions can be derived from
existing legal expressions. The proof rules provide the operational semantics for
computer languages that implement the logic.

 The semantics characterizes the meaning of expressions. Semantics includes two
aspects:

c. The theory of reference specifies what the expressions denote in the
domain of discourse. The theory of reference corresponds to the
denotational semantics of a computer language implementing the logic.

d. The model theory specifies domain-independent aspects of meaning that
are purely logical consequences of collections of expressions. The model
theory establishes an isomorphism, or one-to-one meaning-preserving
mapping, between different formally equivalent collections of expressions,
regardless of the domain of discourse to which each collection refers or the
objects to which the expressions refer. The model theory corresponds to
the axiomatic semantics of a computer language implementing the logic.

A theory is a collection of sentences in a given language2, called the proper axioms of the
theory, together with all the consequences of those sentences as determined by the semantics of
the logic. In a computational theory, expressions are encoded as data structures on a computer
and the proof rules are implemented as computer programs. To be useful for practical problems,
a computational theory must be able to represent task-relevant aspects of the domain well enough
for the purpose, and must admit implementations that quickly and accurately map expressions
representing user queries to the logical consequences of the axioms with respect to the query.

A logic with propositional expressive power can reason about particular individuals but
cannot express generalizations. A logic with first-order expressive power can reason about
general properties and relationships that apply to collections of individuals. Higher-order logics
can generalize not just over particular individuals in the application domain, but also over
functions, relations, sets, and/or sentences defined on the domain. Modal logics allow reasoning
not just about the truth-values of expressions, but also about necessity, possibility, belief,
desirability, permissibility, and other non truth-functional qualifiers of statements. The greater
expressive power of higher-order and modal logics allows one to say complex things more
compactly, but tends to complicate proof and model theories.

2 Sentences are legal expressions that make assertions about the domain.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 5 2/27/06

By far the most commonly used, studied, and implemented logical system is first-order logic
(FOL), invented independently by Frege and Peirce in the late nineteenth century (Frege,
1879/1967; Peirce, 1898). The notational conventions of this paper are similar to those used in
standard references (e.g., Davis, 1990; Genesereth and Nielsson, 1987; Russell and Norvig, 2002;
Sowa, 2000). The basic syntax of first-order logic can be summarized as follows:

 The logical symbols consist of the logical connectives ¬ (not), ∧ (and), ∨ (or), ⇒
(implies), and ⇔ (if and only if); the equality relation =; the universal and existential
quantifiers ∀ and ∃;3 the comma, the open and close parentheses, and a countably infinite
collection of variable symbols. Variables are denoted as alphanumeric strings beginning
with lowercase letters, e.g., x, person32, something.4

 The nonlogical symbols consist of constant symbols, function symbols, and predicate
symbols. Constant symbols are written as alphanumeric strings beginning with either
numbers or uppercase letters, e.g., 1978; Marcus, Machine37. Function and predicate
symbols are denoted as alphanumeric strings beginning with uppercase letters, e.g., Red,
BrotherOf, StandardDeviation. Each function and predicate symbol has an associated
integer indicating the number of arguments it takes.

 A term is a constant symbol, a variable symbol, or a function symbol followed by a
parenthesized list of terms separated by commas, e.g., Machine37, m,
RoomTemp(MachineLocation(m)), Manager(Maintenance,2003). Terms are used to refer
to entities in the domain. They serve as arguments to functions and predicates.

 An atomic formula is:
o A predicate symbol followed by a parenthesized list of terms, e.g.,

Warmer(MachineLocation(m),30,Celsius); or
o A parenthesized expression consisting of a term followed by an equal sign followed

by another term, e.g., (Fernandez = Manager(Maintenance,2003)).
 A formula is:

o An atomic formula;
o An expression of the form ¬α, (α∧β); (α∨β); (α⇒β), or (α⇔β), where α and β are

formulas, e.g.,
((Fernandez = Manager(Maintenance,2003))

∨ (Nguyen = Manager(Maintenance,2003))); or
o An expression of the form ∀µα or ∃µα, where µ is a variable symbol and α is a

formula, e.g. ∃x (Employee(x) ∧ (x = Manager(department,year))).
 An open formula is a formula in which some variables are free, or not within the scope of

a quantifier, e.g., (r=MachineLocation(m)). A closed formula, or sentence, is a formula
in which there are no free variables, e.g.,

∀m (Isa(Machine,m) ⇒ ∃r (Isa(MachineRoom,r) ∧ (r=MachineLocation(m)))).

Parentheses may be omitted in any of the above expressions if no confusion will result.
First-order logic is applied by defining a set of axioms, or sentences intended to assert

relevant truths or assumptions about a domain. The axioms, together with the set of logical

3 A formal specification of first-order logic requires only two connectives and one quantifier (e.g., ¬, ⇒, and ∃); the
others can be defined from these.
4 Although words are often used to convey intended meaning, the variable, function and predicate symbols are treated
by the logic as meaningless tokens. A theory may contain axioms that enforce intended meanings, but there is nothing
in the logic itself to prevent person32 from being used to refer to a frog or an asteroid.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 6 2/27/06

consequences of the axioms, comprise a theory of the domain. If the axioms are consistent, the set
of consequences is a proper subset of all syntactically correct sentences. Because anything
follows from a contradiction, if the axioms are inconsistent, the set of consequences consists of
all sentences. Until referents for the symbols are specified, a theory is a syntactic structure
devoid of meaning. An interpretation for a theory specifies a definition of each constant,
predicate and function symbol in terms of the domain. An interpretation assigns each constant
symbol to a specific individual entity, each predicate to a set containing the entities for which the
predicate holds, and each function symbol to a function defined on the domain. The purely
logical consequences of a set of axioms consist of the sentences that are true in all interpretations,
also called the valid sentences. A logical system is complete if all valid sentences can be proven
and negation complete if for every sentence, either the sentence or its negation can be proven.
Kurt Gödel proved both that first-order logic is complete, and that no consistent logical system
strong enough to axiomatize arithmetic can be negation complete (cf., Stoll, 1963; Enderton,
2001).

A number of proof systems have been defined for first-order logic. Resolution with
Skolemization is a refutation-complete proof system5 that is straightforward to specify,
implement and control. Russell and Norvig (2002) present a detailed description of resolution
with Skolemization and a proof of refutation-completeness. Natural deduction is a complete proof
system that is more intuitive than resolution, but harder to implement. Davis (1990) presents a
natural deduction proof system for first-order logic.

Special-purpose logics built on first-order logic give pre-defined meaning to reserved
constant, function and/or predicate symbols. Such logics provide built-in constructs that are
useful in many applications. There are logics that provide constants, predicates, and functions for
reasoning about types, space and time, parts and wholes, actions and plans, etc. When a logic is
applied to reason about a particular domain, the modeler assigns meaning to additional domain-
specific constant, predicate and function symbols. This is accomplished by specifying a set of
proper axioms encoding knowledge about the domain. A domain ontology (Gruber, 1993; Sowa,
2000) expresses knowledge about the types of entities in a domain of application, the attributes
and allowable behaviors of entities of a given type, allowable relationships among entities of
different types, and (optionally) characteristics of particular individual entities. Formal ontologies
are usually expressed in languages based on first-order logic or one of its subsets.

Because of the essential role of uncertainty management in intelligent reasoning, probabilistic
logic has long been an active research area in artificial intelligence. Because probability is not
truth-functional, naive attempts to generalize the standard logical connectives and quantifiers into
combining rules for probabilities were unsuccessful. The situation changed with the introduction
of graphical probability models. Bayesian networks, or directed graphical probability models,
provide a mathematically well-founded formalism for composing coherent multivariate
probability distributions from modular components involving only a few random variables. As
formalized in standard texts, Bayesian networks have only propositional expressive power. Many
languages have appeared that extend the expressive power of standard Bayesian networks. The
next section gives a brief overview of Bayesian networks, and the following section presents an
extension of Bayesian networks to a language having full first-order expressive power.

5 That is, if a sentence is unsatisfiable, resolution will generate a proof of unsatisfiability in finitely many steps.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 7 2/27/06

3 Bayesian Networks
Graphical probability and decision models (Whittaker, 1990, Cowell, et al., 1999) have become
increasingly popular both as a parsimonious language for representing knowledge about uncertain
phenomena and as an architecture to support efficient algorithms for inference, search,
optimization, and learning. A graphical probability model expresses a probability distribution
over a collection of interrelated hypotheses as a graph and a collection of local probability
distributions. The graph encodes dependencies among the hypotheses. The local probability
distributions specify numerical probability information. Specification is tractable because each
local distribution depends on only a small set of directly related hypotheses. Tractable exact or
approximate inference is possible for complex tasks because independence relationships allow
inference to be decomposed into local inference problems involving only small numbers of
hypotheses.

A Bayesian network (e.g., Pearl, 1988; Jensen, 2001; Neapolitan, 2003) is a graphical
probability model in which the dependency graph is an acyclic directed graph. Figure 1 shows a
Bayesian network for a diagnosis task. The nodes in the graph denote random variables. In
mathematical statistics, a random variable is defined as a function that maps elements of a set
called the sample space to elements of another set called the outcome space.6 Random variables
in a Bayesian network map entities in a domain of application to attributes or features of the
entities. For example, in the Bayesian network of Figure 1, the EngineStatus random variable
maps a piece of equipment to a value in the set {Satisfactory,Overheated}, depending on whether
its engine is operating normally or is overheated. Each random variable can take on one of a
mutually exclusive and collectively exhaustive set of possible values. Given any state of
information about the other random variables, each possible value for a random variable has a
probability that ranges between zero and one. This probability represents the likelihood, given
the available information, that the attribute in question takes on the indicated value.

Probabilities for the possible values of the random variables are specified by means of local
distributions that together implicitly specify a joint distribution over all possible configurations of
values for the random variables. The graph for a Bayesian network represents a set of conditional
independence assertions satisfied by the implicitly encoded probability distribution (Cowell, et
al., 1999; Jensen, 2001; Lauritzen, 1996; Pearl, 1988; Whittaker, 1990). The graph must contain
no directed cycles, ensuring non-circularity in the specification of probabilities. The parents of a
node in the graph denote the random variables whose values directly influence the probability of
the node’s random variable. The probability that a random variable takes on a given value is
independent of the values of the random variable’s non-descendants given the values of its
parents. For example, in Figure 1, if the values of BeltStatus and RoomTemp are specified, the
probabilities for the values of EngineStatus do not depend on the value of MaintenancePractice
or TempSensor. That is, although the organization’s maintenance practices and the temperature
sensor reading are relevant to whether the engine is functioning properly, the influence operates
via the condition of the belt and temperature of the room. Once the condition of the belt and the
temperature of the room are given, there is no remaining influence from other ancestors of
EngineStatus.

6 Additional technical conditions must be satisfied for a function to be a random variable: the sample space must be a
probability space; the outcome space must be a measurable space; and the function must be measurable. The graph and
local distributions of a Bayesian network implicitly specify a set of random variables satisfying these conditions.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 8 2/27/06

The local distribution for a root
node consists of a single probability
distribution. For non-root nodes, a
probability distribution is specified for
each combination of possible values of
the node’s parents. In Figure 1, for
example, only one probability
distribution needs to be specified for
MaintenancePractice. For EngineStatus,
a probability distribution must be
specified for each combination of values
of its parents. If the possible values of
BeltStatus and RoomTemp are {OK,
Broken} and {Normal, High},
respectively, then four probability
distributions must be specified – one for
each member of the set {(OK, Normal),
(OK, High), (Broken, Normal), (Broken,
High)}.

Some authors assume that random
variables in a Bayesian network have

finitely many possible values. Some require only that each random variable have an associated
function mapping values of its parents to probability distributions on its set of possible values. In
an unconstrained local distribution on finite-cardinality random variables, a separate probability is
specified for each value of a random variable given each combination of values of its parents.
Because the complexity of specifying local distributions is exponential in the number of parents,
constrained families of local distributions are often used to simplify specification and inference.
In distributions exhibiting context-specific independence (Geiger and Heckerman, 1991;
Boutilier, et al., 1996; Mahoney and Laskey, 1999; Mahoney, 1999), the parent configurations are
partitioned into subsets having a common distribution for the child random variable.
Independence of causal influence (ICI) refers to a class of local distributions in which each parent
random variable makes an independent contribution to the probability distribution of the child
random variable. The most common ICI models are the “noisy or” and other noisy functional
dependence models (Jensen, 2001; Pearl, 1988). Local expression languages (D’Ambrosio,
1991) can be used to specify arbitrary functional relationships between states of the parent
random variables and probabilities of the child random variable. When a random variable and/or
its parents have infinitely many possible values, local distributions cannot be listed explicitly, but
can be specified as parameterized functions. When a random variable has an uncountable set of
possible values, then the local distributions specify probability density functions with respect to a
measure on the set of possible outcomes (cf., DeGroot and Schervish, 2002; Robert, 2001).

A Bayesian network can be used to compute probabilities of some random variables given
information about other random variables. For example, we might use the Bayesian network of
Figure 1 to compute the probability of producing a defective product, and to update this
distribution to incorporate evidence such whether the temperature light is blinking. Efficient
algorithms have been developed for computing probabilities and propagating the impact of
evidence (D’Ambrosio, 1999). Methods have also been developed for learning Bayesian

ProductDefect

ACStatus

MaintenancePractice

BeltStatus

RoomTemp

EngineStatus TempSensor

TempLight
Figure 1: Bayesian Network for Diagnostic Task

FIRST-ORDER BAYESIAN LOGIC

DRAFT 9 2/27/06

networks from data and for combining observations with expert knowledge (e.g., Heckerman, et
al., 1995; Dybowski, et al., 2003). By further reducing the dimensionality of the parameter space,
use of local expressions can ease the specification burden, reduce the sample size required to
learn the local distributions, and improve the tractability of inference.

The simple attribute-value representation of standard Bayesian networks is insufficiently
expressive for many problems. For example, the Bayesian network of Figure 1 applies to a single
piece of equipment located in a particular room and owned and maintained by a single
organization. We may need to consider problems that involve multiple organizations, each of
which owns and maintains multiple pieces of equipment of different types, some of which are in
rooms that contain other items of equipment. The room temperature and air conditioner status
random variables would have the same value for co-located items, and the maintenance practice
random variable would have the same value for items with the same owner. Standard Bayesian
networks provide no way of compactly representing the correlation between failures of co-located
and/or commonly owned items of equipment or of properly accounting for these correlations
when learning from observation. For this reason, more expressive extensions to the Bayesian
network formalism have been developed (e.g., Buntine, 1994; D’Ambrosio, et al, 2001; Getoor et
al, 2000, 2001; Gilks et al, 1994; Heckerman, et al., 2004; Jaeger, 2001; Koller and Pfeffer, 1997;
Laskey, et al, 2001; Laskey and Mahoney, 1997; Ngo and Haddawy, 1997; Pfeffer, 2001; Sato,
1998; Spiegelhalter et al., 1996). First-order Bayesian logic provides a unifying logical
foundation for the emerging collection of more expressive probabilistic languages. The next
section describes a first-order extension to Bayesian networks that implements first-order
Bayesian logic.

4 Multi-Entity Bayesian Networks
Like Bayesian networks, MEBN theories use directed graphs to specify joint probability
distributions for a collection of interrelated random variables. Like Bayesian networks, MEBN
theories represent relationships among hypotheses using directed graphs in which nodes represent
uncertain hypotheses and edges represent probabilistic dependencies. The MEBN language
extends ordinary Bayesian networks to provide first-order expressive power, and also extends
first-order logic (FOL) to provide a means of specifying probability distributions over
interpretations of first-order theories.

Knowledge in MEBN theories is expressed via MEBN Fragments (MFrags), each of which
represents probability information about a group of related random variables. Just as first-order
logic extends propositional logic to provide an inner structure for sentences, MEBN theories
extend ordinary Bayesian networks to provide an inner structure for random variables. Random
variables in MEBN theories take arguments that refer to entities in the domain of application. For
example, Manager(d,y) might represent the manager of the department designated by the variable
d during the year designated by the variable y. To refer to the manager of the maintenance
department in 2003, we would fill in values for d and y to obtain an instance
Manager(Maintenance,2003) of the Manager random variable. A given situation might involve
any number of instances of the Manager random variable, referring to different departments
and/or different years. As shown below, the Boolean connectives and quantifiers of first-order
logic are represented as pre-defined MFrags whose meaning is fixed by the semantics. A MEBN
theory implicitly expresses a joint probability distribution over truth-values of sets of FOL
sentences. Any sentence that can be expressed in first-order logic can be represented as a random
variable in a MEBN theory. The MEBN language is modular and compositional. That is,

FIRST-ORDER BAYESIAN LOGIC

DRAFT 10 2/27/06

probability distributions are specified locally over small groups of hypotheses and composed into
globally consistent probability distributions over sets of hypotheses.

4.1 Entities and Random Variables
The MEBN language treats the world as being comprised of entities that have attributes and are
related to other entities. Constant and variable symbols are used to refer to entities. There are
three logical constants with meaning fixed by the semantics of the logic, an infinite collection of
variable symbols, and an infinite collection of non-logical constant symbols with no pre-specified
referents. Random variables represent features of entities and relationships among entities. There
is a collection of logical random variable symbols with meaning fixed by the semantics of the
logic, and an infinite collection of non-logical random variable symbols with no pre-specified
referents. The logical constants and random variables are common to all MEBN theories; the
non-logical constants and random variables provide terminology for referring to objects and
relationships in a domain of application.

Constant and variable symbols:
 (Ordinary) variable symbols: As in FOL, variables are used as placeholders to refer to

non-specific entities. Variables are written as alphanumeric strings beginning with
lowercase letters, e.g., department7. To avoid confusion, the adjective “ordinary” is
sometimes used to distinguish ordinary variables from random variables.

 Non-logical constant symbols: Particular named entities are represented using constant
symbols. As in our FOL notation, non-logical constant symbols are written as
alphanumeric strings beginning with uppercase letters, e.g., Machine37, Fernandez.

 Unique Identifier symbols: The same entity may be represented by different non-logical
constant symbols. MEBN avoids ambiguity by assigning a unique identifier symbol to
each entity. The unique identifiers are the possible values of random variables. There are
two kinds of unique identifier symbols:
o Truth-value symbols and the undefined symbol: The reserved symbols T, F and ⊥,

are logical constants with pre-defined meaning fixed by the semantics. The symbol ⊥
denotes meaningless, undefined or contradictory hypotheses, i.e., hypotheses to
which a truth-value cannot be assigned. The symbols T and F denote truth-values of
meaningful hypotheses.

o Entity identifier symbols. There is an infinite set E of entity identifier symbols. An
interpretation of the theory uses entity identifiers as labels to refer to entities in the
domain. Entity identifiers are written either as numerals or as alphanumeric strings
beginning with an exclamation point, e.g., !M3, 48723.

Random variable symbols:
 Logical connectives and the equality operator: The logical connective symbols ¬, ∧, ∨,

⇒, and ⇔, together with the equality relation =, are reserved random variable symbols
with pre-defined meanings fixed by the semantics. Logical expressions may be written
using prefix notation (e.g,, ¬(x), ∨(x,y), =(x,y)), or in the more familiar infix notation
(e.g., ¬x, (x∨y); (x=y)). Different ways of writing the same expression (e.g., =(x,y),
(y=x)) are treated as the same random variable.

 Quantifiers: The symbols ∀ and ∃ are reserved random variable symbols with pre-
defined meaning fixed by the semantics. They are used to construct MEBN random
variables to represent FOL sentences containing quantifiers.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 11 2/27/06

 Identity: The reserved random variable symbol ◊ denotes the identity random variable. It
is the identity function on T, F, ⊥, and the set of entity identifiers that denote meaningful
entities in a domain. It maps meaningless, irrelevant, or contradictory random variable
terms to ⊥.

 Findings: The finding random variable symbol, denoted Φ, is used to represent observed
evidence, and also to represent constraints assumed to hold among entities in a domain of
application.

 Non-logical random variable symbols: The domain-specific random variable symbols are
written as alphanumeric strings beginning with an uppercase letter. With each random
variable symbol is associated a positive integer indicating the number of arguments it
takes. Each random variable also has an associated set of possible values consisting of a
recursively enumerable subset of the unique identifier symbols. The set of possible
values may be infinite, but if so, there must exist an effective procedure that lists all the
possible values and an effective procedure for determining whether any unique identifier
symbol is one of the possible values. If the set of possible values is contained in {T,F,⊥},
the random variable is called a Boolean random variable. For all other random variables,
called non-Boolean random variables, the set of possible values is contained in E∪{⊥}.
Boolean random variables correspond to predicates and non-Boolean random variables
correspond to functions in FOL.

 Exemplar symbols. There is an infinite set of exemplar symbols used to refer to
representative fillers for variables in the range of quantifiers. An exemplar symbol is
denoted by $ followed by an alphanumeric string, e.g., $b32.7

Punctuation:
 MEBN random variable terms are constructed using the above symbols and the

punctuation symbols comma, open parenthesis and close parenthesis.

A random variable term is a random variable symbol followed by a parenthesized list of
arguments separated by commas, where the arguments may be variables, constant symbols, or
(recursively) random variable terms. When α is a constant or ordinary variable, the random
variable term ◊(α) may be denoted simply as α. If φ is a random variable symbol, a value
assignment term for φ has the form =(ψ,α), where ψ is a random variable term and α is either an
ordinary variable symbol or one of the possible values of φ. The strings =(α,ψ), (α=ψ), and
(ψ=α) are treated as synonyms for =(ψ,α). A random variable term is closed if it contains no
ordinary variable symbols and open if it contains ordinary variable symbols. An open random
variable term is also called a random variable class; a closed random variable term is called a
random variable instance. If a random variable instance is obtained by substituting constant
terms for the variable terms in a random variable class, then it is called an instance of the class.
For example, the value assignment term =(BeltStatus(!B1), !OK), also written (BeltStatus(!B1) =
!OK), is an instance of both (BeltStatus(b)=x) and (BeltStatus(!B1)=x), but not of (BeltStatus(b) =
!Broken). When no confusion is likely to result, random variable classes and instances may be
referred to as random variables. A random variable term is called simple if all its arguments are
either unique identifier symbols or variable symbols; otherwise, it is called composite. For
example, =(BeltStatus(!B1), !OK) is a composite random variable term containing the simple

7 Exemplar symbols were called Skolem symbols in earlier work (e.g., Laskey and Costa, 2005) because, in analogy to
Skolem functions, exemplar symbols replace variables in the range of quantifiers. However, exemplars are different
from Skolem functions, and the terminology was changed to avoid confusion.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 12 2/27/06

random variable term BeltStatus(!B1) as an argument. It is assumed that the sets consisting of
ordinary variable symbols, unique identifier symbols, exemplar random variable symbols, non-
logical constant symbols, and non-logical random variable symbols are all recursive.

4.2 MEBN Fragments
In MEBN theories, multivariate probability distributions are built up from MEBN fragments or
MFrags (see Figure 2). An MFrag defines a probability distribution for a set of resident random
variables conditional on the values of context and input random variables. Random variables are
represented as nodes in a fragment graph whose arcs represent dependency relationships.

Definition 1: An MFrag F = (C,I,R,G,D) consists of a finite set C of context value assignment
terms;8 a finite set I of input random variable terms; a finite set R of resident random variable
terms; a fragment graph G; and a set D of local distributions, one for each member of R. The
sets C, I, and R are pairwise disjoint. The fragment graph G is an acyclic directed graph whose
nodes are in one-to-one correspondence with the random variables in I∪R, such that random
variables in I correspond to root nodes in G. Local distributions specify conditional probability
distributions for the resident random variables as described in Definition 3 below. 

An MFrag is a schema for specifying conditional probability distributions for instances of its
resident random variables given the values of instances of their parents in the fragment graph and
given the context constraints. A collection of MFrags that satisfies the global consistency
constraints defined in Section 4.3 below represents a joint probability distribution on an
unbounded and possibly infinite number of instances of its random variable terms. The joint
distribution is specified via the local distributions, which are defined formally below, together
with the conditional independence relationships implied by the fragment graphs. Context terms
are used to specify constraints under which the local distributions apply.

As in ordinary Bayesian networks, a local distribution maps configurations of values of the
parents of a random variable instance to probability distributions for its possible values. When all
ordinary variables in the parents of a resident random variable term also appear in the resident
term itself, as for the RoomTemp and TempLight random variables of the temperature
observability MFrag of Figure 2, a local distribution can be specified simply by listing a
probability distribution for the child random variable for each combination of values of the parent
random variables. The situation is more complicated when ordinary variables in a parent random
variable do not appear in the child. In this case, there may be an arbitrary, possibly infinite
number of instances of a parent for any given instance of the child. For example, in the engine
status fragment of Figure 2, if it is uncertain where a machine is located, the temperature in any
room in which it might be located is relevant to the distribution of the EngineStatus random
variable. If a machine has more than one belt, then the status of any of its belts is relevant to the
distribution of the EngineStatus random variable. Thus, any number of instances of the
RoomTemp and BeltStatus random variables might be relevant to the distributions of the
EngineStatus random variable. In this case, the local distribution for a random variable must
specify how to combine influences from all relevant instances of its parents. The standard
approaches to this problem are aggregation functions and combining rules (cf., Natarajan, et al.,
2005).

8 If φ is a Boolean random variable, the context constraint φ=T may be abbreviated φ and the context constraint φ=F
may be abbreviated ¬φ.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 13 2/27/06

MEBN local distributions combine influences of multiple parents through influence counts.
In a standard Bayesian network, the probability distribution for a node depends on the
configuration of states of its parents. In a MEBN theory, different substitutions for the ordinary
variables may yield multiple instantiations of the parents. Each allowable substitution defines a
parent set, and each parent set has a configuration of states. Influence counts tally the number of
times each configuration of the parents occurs among these parent sets. Influence counts can
represent both aggregation functions and combining rules.

Configurations of the parent random variables that are relevant to the distribution of the child
are called influencing configurations. The local distribution πψ for a resident random variable ψ in
MFrag F specifies, for each instance of ψ: (i) a set of possible values; (ii) a rule for determining
the influencing configurations; and (iii) a rule for assigning probabilities to the possible values
given an influencing configuration.

Definition 2: Let F be an MFrag containing ordinary variables θ1, …, θk, and let ψ(θ) denote a
resident random variable in F that may depend on some or all of the θi.

2a. A binding set B = {(θ1:ε1), (θ2:ε2), … (θk:εk)} for F is a set of ordered pairs associating a
unique identifier symbol εi with each ordinary variable θi of F. The constant symbol εi is
called the binding for variable θi determined by B. The εi are not required to be distinct.

2b. Let B = {(θ1:ε1), (θ2:ε2), … (θk:εk)} be a binding set for F, and let ψ(ε) denote the
instance of ψ obtained by substituting εi for each occurrence of θi in ψ(θ). A potential

Context

Input

Resident

m=Producer(p)

ProductDefect(p)

EngineStatus(m)

Product Defect

MFrag

Isa(Machine,m)

Isa(Product,p)

BeltLocation(b)

Isa(Belt,b)

Belt Location MFrag

Belt Status MFrag

o=Owner(m)

Isa(Machine,m)

Isa(Organization,o)

Isa(Belt,b)

m=BeltLocation(b)

BeltStatus(b)

MaintPractice(o)

Isa(Product,p)

Producer(p)

Producer MFrag

Temperature

Observability

MFrag

r=MachineLocation(m)

SensorStatus(m)

RoomTemp(r)

EngineStatus(m)

Isa(Machine,m)

Isa(Room,r)

TempLight(m)

Engine

Status

MFrag

RoomTemp(r)BeltStatus(b)

EngineStatus(m)

r=MachineLocation(m)

Isa(Machine,m) Isa(Room,r)

Isa(Belt,b)m=BeltLocation(b)

Room

Temperature

MFrag

o=Tenant(r)

RoomTemp(r)

ACStatus(r)

MaintPractice(o)

Isa(Room,r)

Isa(Organization,o)Isa(Organization,o)

MaintPractice(o)

Maintenance MFrag

Machine

Location

MFrag MachineLocation(m)

Tenant(r)Owner(m)

Isa(Machine,m) Isa(Room,r)

Entity Type

MFrag Isa(t,e)

Type(e)!(e)

Figure 2: MEBN Fragments for Equipment Diagnosis Problem

FIRST-ORDER BAYESIAN LOGIC

DRAFT 14 2/27/06

influencing configuration for ψ(ε) and B is a set of value assignment terms {(γ=φ(ε))},
one for each parent of ψ and one for each context random variable of F. Here, φ(ε)
denotes the instance of the context or parent random variable φ(θ) obtained by
substituting εi for each occurrence of θi;9 and γ denotes one of the possible values of φ(ε)
(as specified by the local distribution πψ; see Definition 3 below). An influencing
configuration for ψ(ε) and B is a potential influencing configuration in which the value
assignments match the context constraints of F. Two influencing configurations are
equivalent if substituting θi back in for εi yields the same result for both configurations.
The equivalence classes for this equivalence relation correspond to distinct configurations
of parents of ψ(θ) in F.

2c. Let {ε1, ε2, …, εn } be a non-empty, finite set of entity identifier symbols. The partial
world W for ψ and {ε1, ε2, …, εn } is the set consisting of all instances of the parents of ψ
and the context random variables of F that can be formed by substituting the εi for
ordinary variables of F. A partial world state SW for a partial world is a set of value
assignment terms, one for each random variable in the partial world.

2d. Let W be a partial world for ψ and {ε1, ε2, …, εn }, let SW be a partial world state for W,
let B = {(θ1:εB1), (θ2:εB2), … (θk:εBk)} be a binding set for F with bindings chosen from
{ε1, ε2, …, εn }, and let ψ(εB) be the instance of ψ(θ) from B. The influence counts #SWψ
for ψ(αB) in SW consist of the number of influencing configurations SW contains for each
equivalence class of influencing configurations (i.e., each configuration of the parents of
ψ(θ) in F). 

As an example, Table 1 shows a partial world state for the EngineStatus(m) random variable
from Figure 2 with unique identifiers {!M1, !R1, !R2, !B1, !B2, !O1}. In the intended meaning of
the partial world of Table 1, !M1 denotes a machine, !B1 and !B2 denote belts located in !M1, !R1
denotes the room where !M1 is located, !R2 denotes a room where !M1 is not located, and !O1
denotes an entity that is not a machine, a room, or a belt. The partial world state specifies the
value of each random variable for each of the entity identifiers. Random variables map
meaningless attributes (e.g., the value of RoomTemp for an entity that is not a room) to the absurd
symbol ⊥.

The partial world state of Table 1 contains two equivalent influencing configurations for
EngineStatus(!M1):

IC1: { (Isa(Machine,!M1)=T), (Isa(Belt,!B1)=T), (Isa(Room,!R1)=T),
(BeltLocation(!B1)=!M1), (MachineLocation(!M1)=!R1), (RoomTemp(!R1)=!Normal),
(BeltStatus(!B1)=!OK)};

IC2: { Isa(Machine,!M1)=T), (Isa(Belt,!B2)=T), (Isa(Room,!R1)=T),
(BeltLocation(!B2)=M1), (MachineLocation(!M1)=!R1), (RoomTemp(!R1)=!Normal),
(BeltStatus(!B2)=!OK)}.

It contains no other influencing configurations for EngineStatus(M1). Thus, the influence counts
for EngineStatus(M1) in this possible world state are:

RoomTemp=!Normal, BeltStatus=!OK : 2
RoomTemp=!Normal, BeltStatus=!Broken : 0
RoomTemp=!Hot, BeltStatus=!OK : 0

9 If a context value assignment term (γ=φ) has no arguments, then no substitution is needed.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 15 2/27/06

RoomTemp=!Hot, BeltStatus=!Broken : 0 .

The local distribution assigned to EngineStatus(M1) in this partial world would thus be the one
for a machine having two intact and no broken belts, and located in a room with normal room
temperature.

Definition 3: The local distribution πψ for resident random variable ψ in MFrag F specifies, for
each instance ψ(ε) of ψ: (i) a subset Vψ(ε) of possible values for ψ(ε); and (ii) a function πψ(ε)(α|S)
that maps unique identifiers α and partial world states S to real numbers, such that the following
conditions are satisfied:

3a. For a given partial world state S, πψ(ε)(⋅ |S) is a probability distribution on the unique
identifier symbols. That is, πψ(ε)(α |S) ≥ 0 and

!" (#) ($ | S)$% = 1 , where α ranges over the

unique identifier symbols.10
3b. For each instance ψ(ε) of ψ, the set Vψ(ε) of possible values of the instance ψ(ε) is a

recursively enumerable subset of the unique identifiers, and πψ(ε)(Vψ(ε)|S) = 1 for each
partial world S.

3c. There is an algorithm such that for any recursive subset A of the possible values of ψ(ε)
not containing ⊥, and for any partial world state S for ψ, either the algorithm halts with
output πψ(ε)(A|S) or there exists a value N(A,S) such that if the algorithm is interrupted
after a number of time steps greater than N(A,S), the output is πψ(ε)(A|S).11

3d. πψ(ε) depends on the partial world state only through the influence counts. That is, any
two partial world states having the same influence counts map to the same probability
distribution;

10 Although random variables in MEBN logic have finite or countably infinite sample spaces, and local distributions are
discrete, MEBN logic can represent continuous distributions (see Laskey, 2006).
11 It is required that N(A,S) exists, but there need not be an effective procedure for computing it.

Isa(Machine,!M1)=T
Isa(Belt,!M1)=F
Isa(Room,!M1)=F
BeltLocation(!M1)=⊥
MachineLocation(!M1)=!R1
RoomTemp(!M1)=⊥
BeltStatus(!M1)=⊥

Isa(Machine,!R1)=F
Isa(Belt,!R1)=F
Isa(Room,!R1)=T
BeltLocation(!R1)=⊥
MachineLocation(!R1)=⊥
RoomTemp(!R1)=!Normal
BeltStatus(!R1)=⊥

Isa(Machine,!R2)=F
Isa(Belt,!R2)=F
Isa(Room,!R2)=T
BeltLocation(!R2)=⊥
MachineLocation(!R2)=⊥
RoomTemp(!R2)=Hot
BeltStatus(!R2)=⊥

Isa(Machine,!B1)=F
Isa(Belt,!B1)=T
Isa(Room,!B1)=F
BeltLocation(!B1)=!M1
MachineLocation(!B1)=⊥
RoomTemp(!B1)=⊥
BeltStatus(!B1)=!OK

Isa(Machine,!B2)=F
Isa(Belt,!B2)=T
Isa(Room,!B2)=F
BeltLocation(!B2)=!M1
MachineLocation(!B2)=⊥
RoomTemp(!B2)=⊥
BeltStatus(!B2)=!OK

Isa(Machine,!O1)=F
Isa(Belt,!O1)=F
Isa(Room,!O1)=F
BeltLocation(!O1)=⊥
MachineLocation(!O1)=⊥
RoomTemp(!O1)=⊥
BeltStatus(!O1)=⊥

Table 1: Partial World State for EngineStatus Partial World

FIRST-ORDER BAYESIAN LOGIC

DRAFT 16 2/27/06

3e. Let S1 ⊂ S2 ⊂ … be an increasing sequence of partial world states for ψ, and let α be one
of the possible values for ψ. There exists an integer N such that if k > N, πψ(ε)(α |Sk) =
πψ(ε)(α |SN).12

The probability distribution πψ(ε|∅) is called the default distribution for ψ. It is the
probability distribution for ψ given that no potential influencing configurations satisfy the
conditioning constraints of F. If ψ is a root node in an MFrag F containing no context constraints,
then the local distribution for ψ is just the default distribution. 

Conditions such as 3c and 3e are needed to ensure that a global joint distribution exists and
can be approximated by a sequence of finite Bayesian networks. The conditions given here are
stronger than strictly necessary. Because they are satisfied in the MEBN theory for first-order
logic presented in Section 5.2 below, they are sufficient to demonstrate the existence of a fully
first-order Bayesian logic. Nevertheless, identifying suitable relaxations of these conditions is an
important topic for future research. For example, in many applications it would be useful to
define a random variable as the average of an unbounded number of instances of its parent. It is
clear that such a local distribution would not satisfy Condition 3e. Standard results on
convergence of averages to limiting distributions (see, e.g., Billingsley, 1995) might be applied to
identify suitable generalizations of the restrictions of Definition 3.

Although the sets Vψ(ε) are finite or countably infinite, it is possible to define distributions on
arbitrary measure spaces. We can view the entity identifiers as labels for the elements of a
sequence sampled randomly from a set that may be uncountably infinite. The characteristics of
the sampled elements are specified via the distributions of features. For example, StdUniform(1),
StdUniform(2), …, might represent labels for uniform random numbers drawn from the unit
interval. We might define these labels as StdUniform(1) = !StdUniform1, StdUniform(2) =
!StdUniform2, …, respectively. The random variable Digit(u,k) might then denote the kth digit of
the nth uniform random number. The values Digit(u,k) would then be mutually independent with
uniform distributions on the set {0, 1}.

Table 2 shows an example of a local distribution for the engine status MFrag. The
conditioning constraints imply there can be at most one RoomTemp parent that satisfies the
context constraint MachineLocation(m) = r. When this parent has value !Normal, probability αk,n
is assigned to !Normal and probability 1-αk,n is assigned to !Overheated, where k is the number of
distinct BeltStatus parents having the value OK, out of a total of n>0 distinct BeltStatus parents.
When the RoomTemp parent corresponding to MachineLocation(m) has value !Hot, the
probability of a satisfactory engine is βk,n and the probability of an overheated engine is 1-βk,n,

12 Again, it is not required that there be an effective procedure for computing N.

EngineStatus(m) Context RoomTemp(r) BeltStatus(b)
Satisfactory Overheated ⊥

!OK : k !Normal !Broken : n-k αk,n 1-αk,n 0

!OK : k

Belt b located
in machine

m, located in
room r !Hot !Broken : n-k βk,n 1-βk,n 0

Default 0 0 1

Table 2: Local Distribution as Function of Influence Counts

FIRST-ORDER BAYESIAN LOGIC

DRAFT 17 2/27/06

where again k denotes the number of distinct belts with
value OK and n>0 denotes the total number of distinct
belts. The default distribution applies when no
combination of entities meets the conditioning
constraints. It assigns probability 1 to ⊥, meaning that
EngineStatus(m) is meaningless when the context
constraints are not met (i.e., m does not denote a
machine, m is not located in a room, or m has no belt).
Default distributions are not required to assign
probability 1 to ⊥. For example, the default distribution
could be used to represent the engine status of beltless
machines. Note, however, that the default distribution does not distinguish situations in which m
refers to a machine with no belt from situations in which m is not a machine. Thus, this modeling
approach would assign the same EngineStatus distribution to non-machines as to machines with
no belt.

MFrags may contain recursive influences. Recursive influences allow instances of a random
variable to depend directly or indirectly on other instances of the same random variable. One
common type of recursive graphical model is a dynamic Bayesian network (Ghahramani, 1998;
Murphy, 1998). Recursion is permissible as long as no random variable instance can directly or
indirectly influence itself. This requirement is satisfied when the conditioning constraints prevent
circular influences. For example, Figure 3 modifies the belt status MFrag from Figure 2 so that
the status of a belt depends not only on the maintenance practice of the organization, but also on
the status of the belt at the previous time. The function Prev(n), defined for natural numbers,
maps a positive natural number to the previous natural number, and has value ⊥ when n is zero.
The context constraint s = Prev(t), prevents circular influences in instances of the MFrag. If the
variable t is bound to zero, there will be no influencing configurations satisfying the context
constraints (because Prev(0) has value ⊥ and NatNumber(⊥)=⊥.). Thus, any instance of the
BeltStatus random variable for which s is bound to zero will have no parents, and its local
distribution will be the default distribution.

MFrags can represent a rich family of probability distributions over interpretations of first-
order theories. The ability of MFrags to represent uncertainty about parameters of local dist-
ributions provides a logical foundation for parameter learning in first-order probabilistic theories.
Uncertainty about structure can be represented by sets of MFrags having mutually exclusive
context constraints and different fragment graphs, thus providing a logical foundation for struc-
ture learning (Laskey, 2006).

MEBN comes equipped with a set of built-in MFrags representing logical operations, func-
tion composition, and quantification. There are also constraints that must be satisfied by domain-
specific MFrags. The built-in MFrags, the constraints on domain-specific MFrag definitions, and
the rules for combining MFrags and performing inference provide the logical content of Bayesian
logic. An applied MEBN theory specifies a set of domain-dependent MFrags that provide
empirical and/or mathematical content.

The built-in MFrags are defined below:
 Indirect reference. The rules for instantiating MFrags allow only unique identifier sym-

bols to be substituted for the ordinary variable symbols. Probability distributions for in-
direct references are handled with built-in composition MFrags, as illustrated in Figure 4.
These MFrags enforce logical constraints on function composition. Let ψ(φ1(α1), …,

Dynamic Belt

Status MFrag

o=Owner(m)

BeltStatus(b,t)

MaintPractice(o)

Isa(Machine,m)

Isa(Organization,o)

Isa(Belt,b)

m=BeltLocation(b)

BeltStatus(b,s)

s=Prev(t)

Isa(NatNumber,s)

Isa(NatNumber,t)

Figure 3: Recursive MFrag

FIRST-ORDER BAYESIAN LOGIC

DRAFT 18 2/27/06

φk(αk)) be a random variable in-
stance, where ψ and φi are random
variable symbols and each αi is a
list of arguments. The random
variable instance ψ(φ1(α1), …
,φk(αk)) has a parent φi(αi) for each
of the arguments and a reference
parent ψ(y1, …, yk), where the yi
denote ordinary variable symbols such that yi may be the same as yj only if φi(αi) and
φj(αj) are logically equivalent expressions.13 The local distribution for ψ(φ1(α1),…,φk(αk))
assigns it the same value as ψ(y1,…,yk) when the value of yi is the same as the value of
φi(αi). Although there are infinitely many possible substitutions for ψ(y1,…,yk) and hence
infinitely many potential influencing configurations, in any given world only one of the
influences is active. Thus, condition 3e is satisfied. The default distribution specifies a
value for ψ(φ1(α1),…,φk(αk)) when there are no influencing configurations.

 Equality random variable. The resident random variable in the equality MFrag has the
form =(u,v), also written (u=v). There are two parents, one for each argument. The
equality operator has value ⊥ if either u or v has value ⊥, T if φ and ψ have the same
value and are not equal to ⊥, and F otherwise. It is assumed that meaningful entity
identifiers are distinct. That is, if ε1 and ε2 are distinct entity identifiers, then (ε1=ε2) has
value ⊥ if ◊(ε1) or ◊(ε2) has value ⊥, and F otherwise.

 Logical connectives. The random variable ¬(u) has a single parent, ◊(u); the other
logical connectives have two parents, ◊(u) and ◊(v). The value of ¬(u) is T if its parent
has value F, F if its parent has value T, and ⊥ otherwise. The other logical connectives
map truth-values according to the usual truth tables and parents other than T or F to ⊥
(see Figure 5).

 Quantifiers. Let φ(γ) be an open Boolean random variable term containing the ordinary
variable γ. A quantifier random variable has the form ∀(σ, φ(σ)) or ∃(σ, φ(σ)), where
φ(σ) is obtained by substituting the exemplar term σ into φ(γ). A quantifier random
variable instance has a single parent φ(γ). The value of ∀(σ, φ(σ)) is T by default and F if
any instance of φ(γ) has value F. The value of ∃(σ, φ(σ)) is F by default and T if any
instance of φ(γ) has value T. It
is assumed that a unique
exemplar symbol is assigned to
each ordinary variable of each
Boolean random variable term
of the language.14 Figure 6
shows quantifier MFrags rep-
resenting the hypothesis that
every machine has a belt. In
FOL, the corresponding
sentence is:

13 It is always permissible to use distinct variables in a composition MFrag, but it is more efficient to use the same
variable when the expressions are known to be logically equivalent.
14 A countable infinity of exemplar symbols is sufficient for this purpose.

Random Variable

Composition MFrag

CertificationLevel(Manager(Maintenance, 2003))

CertificationLevel(p)

Manager(Maintenance,2003)

Figure 4: Indirect Reference

Figure 5: Logical Connective MFrag

FIRST-ORDER BAYESIAN LOGIC

DRAFT 19 2/27/06

∀m∃b (Isa(Machine,m)⇒Isa(Belt,b)∧(m=BeltLocation(b))).

An important feature of MEBN is its logically consistent treatment of reference uncertainty.
For example, suppose the random variable instance CertificationLevel(Manager(Maintenance,
2003)) is intended to refer to the individual who managed the maintenance department in 2003. If
the possible managers are !Employee37 and !Employee49, the probability distribution for
CertificationLevel(Manager(Maintenance, 2003)) will be a weighted average of the probability
distributions for CertificationLevel(!Employee37) and CertificationLevel(!Employee49), where
the weights are the probabilities that Manager(Maintenance, 2003) has value !Employee37 and
!Employee49, respectively. Furthermore, if !Employee39 refers to an individual who is also
referred to as Carlos, Fernandez, and Father(Miguel), any information germane to the cert-
ification level of Carlos, Fernandez or Father(Miguel) will propagate consistently to
CertificationLevel(Manager(Maintenance, 2003)) when Bayesian inference is applied (see Figure
7).

The built-in MFrags defined above provide sufficient expressive power to represent a prob-
ability distribution over interpretations of any finitely axiomatizable FOL theory. Bayesian condi-
tioning can be applied to generate a sequence of MEBN theories, where each theory in the
sequence conditions the preceding theory on new axioms that are consistent with all previous
axioms. MEBN theories can be used to define special-purpose logics such logics for planning and
decision making.

There are two kinds of domain-specific MFrags: generative MFrags and finding MFrags.
The distinction between generative MFrags and finding MFrags corresponds roughly to the
terminological box, or T-box, and the assertional reasoner, or A-box (Brachman, et al., 1983).
The generative domain-specific MFrags specify information about statistical regularities charac-
terizing the class of situations to
which a MEBN theory applies.
Findings can be used to specify
particular information about a
specific situation in the class
defined by the generative theory.
Findings can also be used to
represent constraints assumed to
hold in the domain (cf., Jensen,

!("m, #("b, Isa(Machine,"m)$Isa(Belt,"b)%("m=BeltLocation("b))))

#("b, Isa(Machine,m)&Isa(Belt,"b)%(m=BeltLocation("b)))

#("b, Isa(Machine,m)$Isa(Belt,"b)%(m=BeltLocation("b)))

Isa(Machine,m)&Isa(Belt,b)%(m=BeltLocation(b))

Figure 6: Quantifier MFrags

Alternate Name MFrag

CertificationLevel(Fernandez)

CertificationLevel(p)!(Fernandez)

Figure 7: Relating a Name to a Unique

Identifier

FIRST-ORDER BAYESIAN LOGIC

DRAFT 20 2/27/06

2001; Heckerman, et al., 2004), although there are both computational and interpretation
advantages to using generative MFrags when “constraint findings” can be avoided.

Definition 4: A finding MFrag satisfies the following conditions:
4a. There is a single resident random variable, Φ(ψ), where ψ is a closed value assignment

term. For Boolean random variable instances, we may abbreviate Φ(φ=T) as Φ(φ), and
Φ(φ=F) as Φ(¬(φ)).

4b. There are no context random variable terms. There is a single input random variable term
ψ, which is a parent of the resident random variable Φ(ψ).

4c. The local distribution for Φ(ψ) is deterministic, assigning value T if ψ has value T and
⊥ if it has value F or ⊥. 

Definition 5: A generative domain-specific MFrag F must satisfy the following conditions.
5a. None of the random variable terms in F is a finding random variable term.
5b. Each resident random variable term in F is a simple open random variable term, i.e., a

constant symbol, an ordinary variable symbol, or a random variable term that consists of
a random variable symbol followed by a parenthesized list of ordinary variable symbols.

5c. The only possible values for the identity random variable ◊(ε) are ε and ⊥. Furthermore,
◊(T)=T; ◊(F)=F; and ◊(⊥)=⊥.15

5d. For any resident random variable term ψ other than the identity, the local distribution for
ψ must assign probability zero to any unique identifier ε for which ◊(ε) ≠ ε. One way to
ensure this constraint is met is to make ◊(ε) a parent of ψ for any possible value ε for
which there is non-zero probability that ◊(ε) ≠ ε, and to specify a local distribution that
assigns probability zero to ε if ◊(ε) ≠ ε. 

In summary, MFrags represent influences among clusters of related random variables.
Repeated patterns can be represented using ordinary variables as placeholders into which entity
identifiers can be substituted. Probability information for an MFrag’s resident random variables
are specified via local distributions, which map influence counts for a random variable’s parents
to probability distributions over its possible values. When ordinary variables appear in a parent
but not in a child, the local distribution specifies how to combine influences from multiple copies
of the parent random variables. Restricting variable bindings to unique identifiers prevents
double counting of repeated instances. Multiple ways of referring to an entity are handled
through built-in MFrags that enforce logical constraints on function composition. Context
constraints permit recursive relationships to be specified without circular references.

4.3 MEBN Theories

A MEBN theory is a collection of MFrags that satisfies consistency constraints ensuring the
existence of a unique joint probability distribution over the random variables mentioned in the
theory. The built-in MFrags provide logical content and the domain-specific MFrags provide
empirical content. This section defines a MEBN theory and states the main existence theorem,
that a joint distribution exists for the random variable instances of a MEBN theory. A proof is
given in the Appendix.

15 A finite domain can be represented by specifying an ordering ε1, ε2,… on the unique identifiers, and specifying a
probability of 1 that ◊(εi+1) = ⊥ if ◊(εi) = ⊥. In this case, the cardinality of the domain is the last i for which ◊(εi) ≠ ⊥.
The cardinality may of course be uncertain.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 21 2/27/06

A MEBN theory containing only generative domain-specific MFrags is called a generative
MEBN theory. Generative MEBN theories can be used to express domain-specific ontologies that
capture statistical regularities in a particular domain of application. MEBN theories with findings
can augment statistical information with particular facts germane to a given reasoning problem.
MEBN uses Bayesian learning to refine domain-specific ontologies to incorporate observed
evidence.

The MFrags of Figure 2 specify a generative MEBN theory for the equipment diagnosis
problem. These MFrags specify local probability distributions for their resident random variables.
The conditioning constraints in each MFrag specify type restrictions (e.g., the symbol m must be
replaced by an identifier for an entity of type Machine) and functional relationships an
influencing configuration must satisfy (e.g., the room identifier r must be equal to the value of
MachineLocation(m)). Each local distribution provides a rule for calculating the distribution of a
resident random variable given any instance of the MFrag.

Reasoning about a particular task proceeds as follows. First, finding MFrags are added to a
generative MEBN theory to represent task-specific information. Next, random variables are
identified to represent queries of interest. Finally, Bayesian inference is applied to compute a
response to the queries. Bayesian inference can also be applied to refine the local distributions
and/or MFrag structures given the task-specific data. For example, to assert that the temperature
light is blinking in the machine denoted by !Machine37, which is located in the room denoted by
!Room103A, we could add the findings Φ(TempLight(!Machine37)=!Blinking) and Φ(Machine-
Location(Machine37)=!Room103A) to the generative MEBN theory of Figure 2. To inquire
about the likelihood that there are any overheated engines, the FOL sentence
∃m (Isa(Machine,m)∧(EngineStatus(m)=!Overheated)) would be translated into the quantifier
random variable instance ∃($m, Isa(Machine,$m)∧(EngineStatus($m)=!Overheated)). A Bayesian
inference algorithm would be applied to evaluate its posterior probability given the evidence.

As with ordinary Bayesian networks, global consistency conditions are required to ensure that
the local distributions collectively specify a well-defined probability distribution over
interpretations. Specifically, the MFrags must combine in such a way that no random variable
instance can directly or indirectly influence itself, and initial conditions must be specified for
recursive definitions. Non-circularity is ensured in ordinary Bayesian networks by defining a
partial order on random variables and requiring that a random variable’s parents precede it in the
partial ordering. In dynamic Bayesian networks, random variables are indexed by time, an
unconditional distribution is specified at the first time step, and each subsequent distribution may
depend on the values of the random variables at the previous time step. Non-circularity is
ensured by prohibiting links from future to past and by requiring that links within a time step
respect the random variable partial ordering. Other kinds of recursive relationships, such as
genetic inheritance, have been discussed in the literature (cf., Pfeffer, 2000). Recursive Bayesian
networks (Jaeger, 2001) can represent a very general class of recursively specified probability
distributions for Boolean random variables on finite domains. No previously published
probabilistic knowledge representation language provides general-purpose rules for defining
probability distributions that can include both recursive and non-recursive influences for random
variables Boolean and non-Boolean random variables on finite and/or countably infinite domains.

Definition 6: Let T = {F1, F2 … } be a set of MFrags. The sequence φd(εd) → φd-1(εd-1)
→…→φ0(ε0) is called an ancestor chain for T if there exist B0, …, Bd such that:

6a. Each Bi is a binding set for one of the MFrags Fji∈T;

FIRST-ORDER BAYESIAN LOGIC

DRAFT 22 2/27/06

6b. The random variable instance φi(εi) is obtained by applying the bindings in Bi to a
resident random variable term φi(θi) of Fji;

6c. For i<d, either:
 φi+1(εi+1) is obtained by applying the bindings in Bi to an input random variable term

φi+1(θi+1) of Fji, and there is an influencing configuration for φi(εi) and Bi that
contains φi+1(θi+1), or

 φi+1(εi+1) is obtained by applying the bindings in Bi to a context value assignment
term φi+1(θi+1) of Fji.

The integer d is called the depth of the ancestor chain. The random variable instance φj(εj) is an
ancestor of φ0(ε0) if there exists an ancestor chain φd(εd) →…→ φj(εj) →…→φ0(ε0) for T. 

Definition 7: Let T = { F1, F2 … } be a set of MFrags. Let VT denote the set of random variable
terms contained in the Fi, and let NT denote the set of random variable instances T that can be
formed from VT. T is a simple MEBN theory if the following conditions hold:

7a. No cycles. No random variable instance is an ancestor of itself;16
7b. Bounded causal depth. For any random variable instance φ(ε)∈NT containing the

(possibly empty) unique identifier symbols ε, there exists an integer Nφ(ε) such that if
φd(εd) → φd-1(εd-1) →…→φ(ε) is an ancestor chain for T, then d ≤ Nφ(ε). The smallest such
Nφ(ε) is called the depth dφ(ε) of φ(ε).

7c. Unique home MFrags. For each φ(ε)∈NT , there exists exactly one MFrag Fφ(ε)∈T,
called the home MFrag of φ(ε), such that φ(ε) is an instance of a resident random variable
φ(θ) of Fφ(ε).17

7d. Recursive specification. T may contain infinitely many domain-specific MFrags, but if
so, the MFrag specifications must be recursively enumerable. That is, there must be an
algorithm that lists a specification (i.e., an algorithm that generates the input, output,
context random variables, fragment graph, and local distributions) for each MFrag in
turn, and eventually lists a specification for each MFrag of T. 

Condition 7c simplifies the theoretical analysis, but there are many circumstances in which it
would be useful to relax it. For example, in an independence of causal influence model, it might
be convenient to specify influences due to different clusters of related causes to be specified in
separate MFrags. In a polymorphic version of MEBN, it might be convenient to specify local
distributions for separate subtypes in separate MFrags (Costa, 2005). Relaxing Condition 7c
would also allow a more natural treatment of structural learning. It is clear that the main results of
this paper would remain valid under appropriately weakened conditions. Costa (2005) defines a
typed version of MEBN that relaxes Condition 7c.
Theorem 1: Let T = { F1, F2 … } be a simple MEBN theory. There exists a joint probability
distribution

P

T

gen on the set of instances of the random variables of its MFrags that is consistent
with the local distributions assigned by the MFrags of T. 

The proof of Theorem 1 is found in the appendix.

16 This condition can be relaxed as long as it can be demonstrated that the local distributions are specified non-
circularly.
17 It may be desirable to relax this condition. For example, in an independence of causal influence model, it might be
convenient to specify influences due to different clusters of related causes to be specified in separate MFrags. In a
polymorphic version of MEBN logic, it might be convenient to specify local distributions for separate subtypes in
separate MFrags. It is clear that the main results would remain valid under appropriately weakened conditions.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 23 2/27/06

MEBN inference conditions the joint probability distribution implied by Theorem 1 on the
proposition that all findings have value T. This conditional distribution clearly exists if there is a
non-zero probability that all findings have value T. However, when there is an infinite sequence
of findings or there are findings on quantifier random variables, then any individual sequence of
findings may have probability zero even though some such sequence is certain to occur. For
example, each possible realization of an infinite sequence of rolls of a fair die has zero
probability, yet some such sequence will occur if tossing continues indefinitely. Although any
individual sequence of tosses has probability zero, the assumption that the die is fair allows us to
draw conclusions about properties of the sequences of tosses that will actually occur. In
particular, it is a practical (although not a logical) certainty that if the die is fair, then the limiting
frequency of rolling a four will be once in every six trials. That is, although a sequence having
limiting probability 1/6 and a sequence having limiting probability 1/3 both have probability zero,
the set of worlds in which the limit is 1/6 is infinitely more probable than the set of worlds in
which the limit is 1/3. Practical certainties about stochastic phenomena are formalized as
propositions that are true “almost surely” or “except on a set of measure zero” (Billingsley,
1995). Almost sure propositions are not true in all possible interpretations of the FOL theory
corresponding to a MEBN theory, but the set of worlds in which they are true has probability 1
under the probability distribution represented by the MEBN theory. In the above example, the set
of worlds in which the limiting frequency is1/6 has probability 1.

The following results pertain to the existence of conditional distributions in a MEBN theory.

Definition 8: The distribution

P

T

gen is called the generative or prior distribution for T. Let
Φ={Φ(ψ1=α1), Φ(ψ2=α2), … } be the finding MFrags for T. A finding alternative for T is a set
{Φ(ψ1=α’1), Φ(ψ2=α’2), … } of values for the finding random variables of T, possibly assigning
different values to the finding random variables from the values assigned by T. Finding
alternatives represent counterfactual worlds for T – that is, worlds that were a priori possible but
are different from the world asserted by the findings to have occurred. 

Corollary 2: Let T be a MEBN theory with findings {Φ(ψ1=α1), Φ(ψ2=α2), … }. Then a
conditional distribution exists for

P

T

gen given {ψ1, ψ2, …}. This distribution is unique in the
sense that any two such distributions differ at most on a set of finding alternatives assigned
probability zero by

P

T

gen . 

Corollary 2 follows immediately from Theorem 1 and the Radon-Nikodym Theorem
(Billingsley, 1995). The distribution

P

T
!
1
,!
2
... |"(#

1
= $

1
),"(#

2
= $

2
),…() for {ξ1, ξ2, …}

obtained by conditioning

P

T

gen on all findings having value T is called the posterior distribution
for T given its findings. The posterior distribution is abbreviated

P

T
! |"(# = $)() . The

following corollary states that even when the joint probability of an infinite sequence of findings
is zero, if the individual findings have positive probability and a limiting posterior distribution
exists, it is unique.

Corollary 3: Suppose

P

T

gen assigns strictly positive probability to the event that the first n
findings Φ(ψ1=α1), Φ(ψ2=α2), …, Φ(ψn=αn) all have value T. Then there is a unique conditional
distribution for

P

T

gen given that the first n findings Φ(ψ1=α1), Φ(ψ2=α2), …, Φ(ψn=αn) all have
value T. Furthermore, if the positivity condition holds for all n and a limiting distribution

lim
n!"

P
T

#1,#2 ... |$(% 1 = &1),$(% 2 = &2),…,$(%
n
= &

n
)() exists, then the limit is unique. 

Corollary 3 is a straightforward consequence of basic identities of conditional probability.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 24 2/27/06

MEBN theories represent a conjugate family of probability distributions. That is, if finding
random variables are added to a MEBN theory, the result is another MEBN theory. Although
simple MEBN theories are adequate to express probability distributions over interpretations of
arbitrary finitely axiomatizable FOL theories, expressing structural uncertainty with simple
MEBN theories is cumbersome. Structural uncertainty can be more compactly expressed using
mixture MEBN theories, which provide the logical basis for a typed version of MEBN (Costa,
2005).

Definition 9: If the posterior distribution for T

P

T
! |"(# = $)() is not unique, T is said to be

disconfirmed by its findings. 

Definition 10: A mixture MEBN theory is a set T = { (T1, p1), (T2, p2), … } of MFrags
satisfying the following conditions:

10a. Each Ti is a simple MEBN theory;
10b. None of the Ti is disconfirmed by its findings;
10c. The pi are positive numbers that sum to 1;
10d. There must be an effective procedure for computing each pi;
10e. For each finding Φ(ψ=ε) of one of the Ti, and for each j≠i, the posterior

distribution of Tj assigns probability 1 to ψ=ε.
The Ti are called mixture components with mixture weights pi. A MEBN theory is either a simple
MEBN theory or a mixture MEBN theory. 

Corollary 4: Let T be a MEBN theory. Then there exists a joint probability distribution on the
set of instances of the random variables in its MFrags that is consistent with the local distributions
assigned by the MFrags of T. 

Corollary 4 is an immediate consequence of Theorem 1.

5 Semantics, Representation Power, and Inference
In mathematical statistics, a random variable is defined as a measurable function mapping
elements of a sample space to a measurable set, where a sample space is a set on which a
probability measure has been defined. Section 5.1 relates this definition to the standard model
theoretic semantics for classical first-order logic, and defines random variable semantics for first-
order Bayesian logic. Section 5.2 demonstrates that multi-entity Bayesian networks as formalized
in Section 4 can express a probability distribution over interpretations of any classical first-order
theory, and constructs a MEBN theory in which every satisfiable sentence has non-zero
probability. Section 5.3 describes an algorithm for performing inference with MEBN theories.

5.1 Random Variables and Model Theory
In the standard model theoretic semantics for first-order logic developed by Tarski (1944), a FOL
theory is interpreted in a domain by assigning each constant symbol to an element of the domain,
each function symbol on k arguments to a function mapping k-tuples of domain elements to
domain elements, and each predicate symbol on k arguments to a subset of k-tuples of domain
elements corresponding to the entities for which the predicate is true (or, equivalently, to a
function mapping k-tuples of domain elements to truth-values). If the axioms are consistent, then
there exists a domain and an interpretation such that all the axioms of the theory are true
assertions about the domain, given the correspondences defined by the interpretation. Such an
interpretation is called a model for the axioms.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 25 2/27/06

MEBN theories define probability distributions over interpretations of an associated FOL
theory. Each k-argument random variable in a MEBN theory represents a function mapping k-
tuples of unique identifiers to possible values of the random variable. Any function consistent
with the logical constraints of the MEBN theory is allowable, and the probability that the function
takes on given values is specified by the joint probability distribution represented by the MEBN
theory. For Boolean random variables, the possible values of the function are T, F, and ⊥; for
non-Boolean random variables, the possible values are entity identifiers and ⊥. Through the
correspondence between entity identifiers and entities in the domain, a random variable also
represents a function mapping k-tuples of domain entities either to domain entities (for non-
Boolean random variables) or to truth-values of assertions about the domain (for Boolean random
variables).

Interpreting random variable symbols as functions on the unique identifiers is consistent with
the way random variables are formalized in mathematical statistics. A random variable is defined
as a function that maps a sample space endowed with a probability measure to a set of possible
outcomes (e.g., Billingsley, 1995; DeGroot and Schervish, 2002). In the standard definition, the
global joint distribution is taken as given, and distributions for subsets of random variables are
obtained by marginalizing the global joint probability measure. MEBN provides a logically
coherent means of specifying a global joint distribution by composing local conditional
distributions involving small sets of random variables. Formerly, this could be achieved only for
restricted kinds of distributions. Standard Bayesian networks allow joint distributions on a finite
number of random variables to be composed from locally defined conditional distributions.
There are well-known special cases, such as independent and identically distributed sequences or
Markov chains, for which joint distributions on infinite sets of random variables can be composed
from locally defined conditional distributions. MEBN provides the ability to construct joint
distributions from local elements for a much wider class of distributions on infinite collections of
random variables. As shown in Corollary 5 below, MEBN can represent a joint distribution over
sentences in first-order logic having the property that any satisfiable sentence has non-zero
probability. Thus, through Bayesian conditioning, a probability distribution can be expressed on
interpretations of any consistent, finitely axiomatizable first-order theory. This distribution can be
updated through Bayesian conditioning when new axioms are added, thus providing a theoretical
framework for analyzing limiting distributions over interpretations of infinite sequences of first-
order sentences.

Consider a MEBN theory TM in a language LM having domain-specific non-Boolean random
variable symbols X={ξi}, domain-specific constant symbols A={αi}, domain-specific Boolean
random variable symbols B={βi}, exemplar symbols S={σφi} and entity identifier symbols
E={εi}. It is assumed that the sets X, A, B, and E are pairwise disjoint, are either finite or
countably infinite, and do not contain the symbols T, F, or ⊥. It is assumed that S contains a
distinct exemplar symbol σφi∉ X∪A∪B∪E∪{T,F,⊥} for each pair consisting of an open
Boolean random variable term φ(γ1,…, γn) of LM and index i of an ordinary variable γi occurring in
φ(γ1,…, γn).

To facilitate the comparison with model theoretic semantics, suppose TM satisfies the
following conditions:

FOL1: There are no quantifier random variable terms among the context terms in any of
the MFrags of TM, and no simple random variable term of TM has a quantifier
random variable term as a parent.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 26 2/27/06

FOL2: Random variables ξ∈X or β∈B have value ⊥ if any of their arguments belong to
{T, F, ⊥};

FOL3: If the values of all arguments to a non-Boolean random variable ξ belong to E,
then the value of ξ belongs to E with probability 1;

FOL4: Any constant symbol α∈A has value in E with probability 1;
FOL5: If the values of all arguments to a Boolean random variable β belong to E, then

the value of β belongs to {T, F} with probability 1.

Given these conditions,

P

T
M

gen generates random interpretations of the domain-specific random
variable symbols of LM in the domain {ε∈E : ◊(ε)≠⊥)} of meaningful entity identifiers. That is,
for each constant symbol,

P

T
M

gen generates a meaningful entity identifier. For each non-Boolean
random variable symbol,

P

T
M

gen generates a random function mapping k-tuples of meaningful entity
identifiers to meaningful entity identifiers. For each Boolean random variable symbol,

P

T
M

gen
generates a random function mapping k-tuples of meaningful entity identifiers to {T, F} (or
equivalently, the subset of k-tuples for which the randomly generated function has value T).

 A classical first-order theory TF that represents the logical content of TM is defined as
follows:

1. The language LF for TF has function symbols X, constant symbols A∪E∪{⊥}, and
predicate symbols B, where the number of arguments for functions and predicates in LF
is the same as the number of arguments for the corresponding random variables in TM.

2. For each pair ε1 and ε2 of distinct entity identifiers, TF contains an axiom (ε1=ε2)⇒
(ε1=⊥) ∧ (ε2=⊥).

3. For each non-Boolean random variable symbol ξ, TF contains axioms asserting that no
instance of ξ may take on values outside the set of possible values as defined in the home
MFrag for ξ.

4. If a local distribution in a domain-specific MFrag of TM assigns probability zero to
possible value ε of a non-Boolean resident random variable ξ(x) for some set #SWξ(x) of
influence counts, there is an axiom of TF specifying that the function corresponding to
ξ(x) is not equal to ε when the context constraints hold and the parents of ξ(x) satisfy
#SWξ(x). Each such axiom is universally quantified over any ordinary variables appearing
in ξ and/or its parents and/or the context random variables in the home MFrag of ξ.
Formally, TF contains an axiom ∀x ((κ(x)∧#SWξ(x)) ⇒ ¬(ξ(x)= ε)). Here, κ(x) and #SWξ(x)
denote formulae in LF asserting that the context constraints hold and that the influence
counts for the parents of ξ(x) are equal to ξ(x); and x denotes any ordinary variables on
which ξ, κ, and/or the parents of ξ depend.

5. If a local distribution in a domain-specific MFrag of TM assigns probability one to T for a
Boolean random variable β(x) for some set #SWβ(x) of influence counts, there is an axiom
of TF specifying that the predicate β(x) is true under these conditions. That is, TF
contains an axiom ∀x ((κ(x)∧#SWβ(x)) ⇒ β(x)). Here, κ(x) and #SWβ(x) denote formulae in
LF asserting that the context constraints hold and that the influence counts for the parents
of β(x) are equal to β(x), respectively; and x denotes any ordinary variables on which β,
κ, and/or the parents of β depend.

6. If a local distribution in a domain-specific MFrag of TM assigns probability one to F for a
Boolean random variable β(x) for some set #SWβ(x) of influence counts, there is an axiom
of TF specifying that the predicate β(x) is false under these conditions. That is, TF
contains an axiom ∀x ((κ(x)∧#SWβ(x)) ⇒ ¬β(x)). Here, κ(x) and #SWβ(x) denote formulae in

FIRST-ORDER BAYESIAN LOGIC

DRAFT 27 2/27/06

LF asserting that the context constraints hold and that the influence counts for the parents
of β(x) are equal to β(x), respectively; and x denotes any ordinary variables on which β,
κ, and/or the parents of β depend.

The logical combination MFrags (see Figure 8) ensure that any interpretation generated by

P

T
M

gen , specifies a well-defined truth-value for any sentence of TF. The assumptions FOL1-FOL5
ensure that these truth-values satisfy the axioms defining TF. That is,

P

T
M

gen generates random
models of the axioms of TF. However, there may be sentences satisfiable under the axioms of TF
to which

P

T
M

gen assigns probability zero. When a satisfiable sentence of TF is assigned probability
zero by

P

T
M

gen , there is no assurance that a well-defined conditional distribution exists given that the
corresponding Boolean random variable has value T. The following additional condition ensures
that a well-defined conditional distribution exists given any finite set of logically possible
findings on random variables of TM.

FOL6: If φ(γ1,…, γn) is a Boolean random variable of TM that corresponds to a satisfiable
formula of TF, and σφi is the exemplar symbol for ordinary variable γi in
φ(γ1,…, γn), then

P

T
M

gen assigns strictly positive probability to the value T for the
quantifier random variables θ(σφ1, θ(σφ2, …, θ(σφn, φ(σφ1, σφ2, …, σφn)))), where θ
is one of the quantifier symbols ∃ or ∀.

Corollary 5: Suppose TM satisfies FOL1-FOL6, and suppose that TF is the first-order theory,
constructed as above, expressing the logical content of TM. Let {Φ(ψ1=α1), Φ(ψ2=α2), …,
Φ(ψn=αn)} be a finite set of findings such that the conjunction of the (ψi=αi) is satisfiable as a
sentence of TF. Then the posterior distribution

P

T
M

! |"(# = $)() exists and is unique. 

Corollary 5 is a straightforward consequence of Corollary 3. Specifying a generative
distribution that satisfies FOL1-FOL5 is relatively straightforward. A construction is provided in
Section 5.2 of a MEBN theory TM* for which

P

T
M*

gen satisfies FOL6.
A MEBN theory is interpreted in a domain of application by associating each entity identifier

symbol with an entity in the domain. Through this correspondence between identifiers and the
entities they represent, the probability distribution on entity identifiers induces a probability
distribution on attributes of and relationships among entities in the domain of application. In

Figure 8: Logical MFrags

FIRST-ORDER BAYESIAN LOGIC

DRAFT 28 2/27/06

particular, although the generative distribution for a MEBN theory constructs interpretations in
the countable domain of entity identifiers, a MEBN theory can be applied to reason about
domains of any cardinality. Under the assumption that the entities associated with the entity
identifiers constitute a representative sample of entities in the domain, statistical conclusions
drawn about the domain are valid for domains of any cardinality.

Important advantages of MEBN random variable semantics are clarity and modularity. For
example, we could add a new collection of MFrags to our equipment diagnosis MEBN theory,
say for reasoning about the vacation and holiday schedule of maintenance technicians, without
affecting the probabilities of any assertions unrelated to the change. Furthermore, the probability
distribution represented by a MEBN theory is a well-defined mathematical object independent of
its correspondence with actual objects in the world, having a clearly specified semantics as a
probability distribution on E∪{⊥}. Its adequacy for reasoning about the actual world rests in
how well the relationships in the model reflect the empirical relationships among the entities to
which the symbols refer in a given domain of application. Our approach thus enforces a
distinction between logical and empirical aspects of a representation and provides a clearly
defined interface between the two. This supports a principled approach to empirical evaluation
and refinement of domain ontologies.

5.2 A Generative Distribution for First-Order Logic
This section demonstrates how to construct a generative MEBN theory TM* such that

P

T
M*

gen places positive probability on value T for any Boolean random variable φ that corresponds to
a satisfiable sentence in first-order logic.

Consider a MEBN language LM* and classical FOL language LF* related to each other as
described in Section 5.1. We assume there is a total ordering ϕ1, ϕ2, … of the domain-specific
constant, non-Boolean and Boolean random variable terms ϕi∈A∪X∪B, and a total ordering ε1,
ε2, …∈E of entity identifiers. The domain-specific MFrags of a generative MEBN theory must
define a distribution for each simple open random variable term

!
i
(u
1
,…,u

n
i

) , where the uj are
ordinary variables and ni is the number of arguments taken by ϕi. A distribution is also defined
for the exemplar constants. The remaining random variables are defined via the logical MFrags
of Figure 8.

The joint distribution for simple open random variables and exemplar constants is defined as
follows. Let ψ1, ψ2, … be a total ordering of the quantifier random variables; let π1, π2, … be a
strictly positive probability distribution on the entity identifiers, and let 0 < θ, ρ < 1 be real
numbers. We use the notation ψk to refer a quantifier random variable and !" k

 to refer to the
exemplar constant for ψk. That is, ψk denotes a Boolean random variable of the form
!("# k

,$("# k

)) or !("# k

,$("# k

)) , where !(u) is an open Boolean random variable called the
body of ψk. We can think of the exemplar constant !" k

 as denoting a generic filler entity for its
place in the quantifier random variable.

Exemplar constant distributions: The distributions for exemplar constants are defined
inductively such that the exemplar term ◊(!" k

) has value ⊥ in models in which ψk is constrained
to have value F, and otherwise is sampled randomly from the entity identifiers that are logically
possible values for !" k

. Specifically:
• The parents of ◊(!" k

) are ◊(!"
1

), ◊(!"
2

), …, and ◊(!" k#1
).

• By the inductive hypothesis, it is assumed that if ◊(!"
i

)=⊥ for i < k, then ψk has
value F. (It will be verified below that the inductive hypothesis is true for k, then it is

FIRST-ORDER BAYESIAN LOGIC

DRAFT 29 2/27/06

true for k + 1.) Conditional on ◊(!"
1

), ◊(!"
2

), …, and ◊(!" k#1
), the distribution of

◊(!" k

) is defined as follows:
o If ψk is unsatisfiable as a formula of LF* given the constraints on ψ1, …, ψk-1

implied by the values of its parents, then ◊(!" k

) has value ⊥ with probability
1.

o If ¬ψk is unsatisfiable as a formula of LF* given the constraints on ψ1, …,
ψk-1 implied by the values of its parents, then ◊(!"

i

) has value εj with
probability πj.

o Otherwise, ◊(!"
i

) has value ⊥ with probability θ and εj with probability
(1- θ)πj.

This construction requires checking for satisfiability of ψk and ¬ψk, which is in
general undecidable. We can construct a process that satisfies Definition 3 as
follows. First, we assign probability θ to ⊥ and (1- θ)πj to εj. Then we execute the
satisfiability checker. If at any point ψk is proven unsatisfiable, we change the
distribution to assign probability 1 to ⊥. If ¬ψk is proven unsatisfiable, we assign
probability zero to ⊥ and πj to εj. If either ψk or ¬ψk is unsatisfiable, this algorithm
will eventually halt with the correct result. Otherwise, it was initialized with the
correct distribution and this distribution never changes, so if the algorithm is
interrupted it will give the correct result.

Domain-specific random variable distributions: The distribution of

!
k
(u
1
,…,u

nk
) is defined

as follows.
• The parents of

!
k
(u
1
,…,u

nk
) are:

o

!
i
(v
1
,…,v

n
i

) for all i<k, where vj is a different ordinary variable than uj,
implying that all instances of

!
i
(v
1
,…,v

n
i

) are parents of each instance of

!
k
(u
1
,…,u

nk
) ;

o Instances of

!
k
(v
1
,…,v

nk
) such that the entity identifier bound to each uj is

equal to or precedes the entity identifier bound to vj, and strictly precedes it
for at least one j. (This can be specified by a recursive definition with
appropriate context constraints);

o The identity random variables ◊(e).
• If

!
k
(u
1
,…,u

nk
) is a non-Boolean random variable, its probability distribution is

calculated as follows. For any binding

!
1
,…,!

nk
 of entity identifiers to the variables

u
1
,…,u

nk
, the value

!
k
("
1
,…,"

nk
) =εj is assigned randomly, with probability πj, from

among the entity identifiers whose value is consistent with the satisfiability
constraints implied by the assignment of values to the parents of

!
k
("
1
,…,"

nk
) .

Again, this step requires satisfiability checks. Definition 3 is satisfied if it is
implemented by initially assigning probability πj to εj, and if

!
k
("
1
,…,"

nk
) =εj is

proven unsatisfiable, setting the probability of εj to zero. The probability assigned to
⊥ converges to the correct value, but may never stop changing. This is allowed by
Definition 3.

• If

!
k
(u
1
,…,u

nk
) is a Boolean random variable, its probability distribution is

calculated as follows. For any binding

!
1
,…,!

nk
 of entity identifiers to the variables

u
1
,…,u

nk
:

o

!
k
("
1
,…,"

nk
) has value T if

¬!

k
("
1
,…,"

nk
) is inconsistent with the

satisfiability constraints implied by the assignment of values to the parents of

!
k
("
1
,…,"

nk
) ;

FIRST-ORDER BAYESIAN LOGIC

DRAFT 30 2/27/06

o

!
k
("
1
,…,"

nk
) has value F if

!
k
("
1
,…,"

nk
) is inconsistent with the

satisfiability constraints implied by the assignment of values to the parents of

!
k
("
1
,…,"

nk
) ;

o Otherwise,

!
k
(u
1
,…,u

nk
) has value T with probability ρ and F with

probability (1-ρ).
As before, this calculation is implemented by initially assigning probability ρ to T
and probability (1-ρ) to F, and revising the distribution if one of the satisfiability
checks fails.

Theorem 6: If ψ is a closed Boolean random variable corresponding to a sentence of LF* that
does not contradict the axioms of TF* then

P

T
M*

gen places non-zero probability on the value T for ψ.

Proof: The above construction ensures that if ψ corresponds to a satisfiable sentence of TF*, then
there is a non-zero probability that ◊(!

¬") has value ⊥. When ◊(!
¬") has value ⊥, the local

distributions for the domain-specific random variables are assigned in a way that constrains ψ to
have value T. Therefore, there is a non-zero probability that ψ has value T. 

Theorem 6 shows that

P

T
M*

gen places non-zero probability on the value T for sentences of LF*
that are consistent with the axioms of TF*, which is a first-order theory constructed from

P

T
M*

gen by
following the rules of Section 5.1. The final step in our argument is to show how to use Theorem
6 to define a probability distribution that places non-zero probability on the models of any
satisfiable sentence in first-order logic.

Let L be a first-order language with function symbols X, constant symbols A, and predicate
symbols B, and let ψ be a sentence of L. The correspondences defined in the logical MFrags of
Figure 8 provide a recipe for constructing a language LM* that augments L with the special logical
constants and random variables common to all MEBN theories. Following the above definitions,
we can construct a MEBN theory TM* that has the same domain-specific random variable
symbols as L. This MEBN theory has a Boolean random variable ψM* that makes the same
assertion as ψ. The construction of Section 5.1 defines a corresponding sentence ψF* of TF*. By
examining how ψM* is constructed from ψ and how TF* is constructed from TM*, it is clear that
ψF* is satisfiable as a sentence of LF* if and only if ψ is satisfiable as a sentence of L. Thus, given
a satisfiable sentence in a first-order language with countably many symbols, we can construct a
MEBN theory in which there is a non-zero probability that a sentence with the same logical
content has value T. Furthermore, the same holds for any finite set of jointly satisfiable sentences,
because their conjunction is a satisfiable sentence. It is also clear that this approach fails for
infinite sequences of sentences.

5.3 MEBN Inference: Situation-Specific Bayesian Networks
As noted above, MEBN inference conditions the prior distribution represented by a MEBN theory
on its findings. Figure 9 sketches an inference algorithm that uses knowledge-based model
construction (Wellman, et al., 1992) to produce a sequence of approximate situation-specific
Bayesian networks. Mahoney and Laskey (1998) define a situation-specific Bayesian network
(SSBN) as a minimal Bayesian network sufficient to compute the response to a query, where a
query consists of obtaining the posterior distribution for a set of target random variable instances
given a set of finding random variable instances. This algorithm is a version of the simple bottom-
up construction algorithm given in Mahoney and Laskey (1998), adapted to the case in which the
true SSBN may be infinite. The algorithm begins with a query set consisting of a finite set of

FIRST-ORDER BAYESIAN LOGIC

DRAFT 31 2/27/06

target random variable instances and a finite set of finding random variable instances. These are
combined to construct an approximate SSBN. The approximate SSBN has an arc between a pair
of random variables when one is an instance of an influencing configuration for the other in its
home MFrag. At each step, the algorithm obtains a new approximate SSBN by adding findings,
instantiating the home MFrags of the random variables in the query set and their ancestors,
adding the resulting random variable instances to the query set, removing any that are not relevant
to the query, and combining the resulting set of random variable instances into a new approximate
SSBN. This process continues until either there are no changes to the approximate SSBN, or a
stopping criterion is met. If the algorithm is run without a stopping criterion, then if SSBN
construction terminates, the resulting SSBN provides an exact response to the query or an
indication that the findings are inconsistent. When the algorithm does not terminate, it defines an
anytime process that yields a sequence of approximate SSBNs converging to the correct query
response if one exists. In general, there may be no finite-length proof that a set of findings is
consistent, but inconsistent findings can be detected in a finite number of steps of SSBN
construction.

Figure 10 shows two SSBNs constructed from the MEBN theory of Figure 2 for a query on
the engine status of two machines, the first for the case in which the two machines are known to
be in the same room, and the second for the case in which the two machines are known to be in
different rooms. In the first case, learning that the engine in one machine is overheated results in
an increase in the probability that the other engine is overheated; in the second case, the same
information has almost no effect on the probability distribution for the other machine (there is a
small impact because of the influence of the evidence on beliefs about the maintenance practices
of the owner).

As noted above, when an ordinary variable appears in a parent but not in its child, the random
variable can have an unbounded number of parent instances in the constructed approximate

1. Initialization: Set the query set Q to the union of the target nodes and the finding
nodes. Initialize the RV instances R0 = Q. Set the maximum number of states per
random variable N0 equal to a finite integer. Set i = 0.

2. SSBN Structure Construction. Set the current SSBN Bi to contain the nodes in Ri
and all arcs corresponding to influencing configurations. Remove from Bi any
barren nodes, nodes d-separated from target nodes by finding nodes, and nuisance
nodes for which marginal distributions do not need to be updated.

3. Local Distribution Construction. Set the local distributions in Bi, modifying the
local distributions to restrict random variables to no more than Ni possible values
and, to approximate the effect of random variables that have not been enumerated,
and compute for no more than Ki steps.

4. Inference. Apply standard Bayesian network inference to compute conditional
distributions for the target random variables given the finding random variables. If
findings have probability zero, report that the findings are inconsistent.

5. Instance Enumeration and Approximation Parameter Updating. If a stopping
criterion is met, output Bi. Else add to Ri additional parents of random variables for
which adding additional parents might change the distribution, increase Ni and Ki
and return to Step 2.

Figure 9: SSBN Construction Algorithm Sketch
(See Appendix for details)

FIRST-ORDER BAYESIAN LOGIC

DRAFT 32 2/27/06

SSBN. Each step of SSBN construction instantiates finitely many parents of any random variable.
When there are infinitely many computationally relevant parent instances, additional instances are
added at each step until a termination condition is reached. Even when a finite-size SSBN exists,
constructing it and computing a query response is often intractable. It is typically necessary to
approximate the SSBN by pruning arcs and random variables that have little influence on a query,
and/or compiling parts of the SSBN to send to inference engines optimized for special problem
types. The process of controlling the addition and pruning of random variable instances and arcs
is called hypothesis management. More generally, execution management controls the inference
process to balance accuracy against computational resources. Often, portions of an inference task
can be solved exactly or approximately using efficient special-purpose reasoners. Such reasoners
include constraint satisfaction systems, deductive theorem provers, differential equation solvers,
heuristic search and optimization algorithms, Markov chain Monte Carlo algorithms, particle
filters, etc. Online reasoning systems may interleave addition of new findings, refinement of the
current approximate SSBN, computation of query responses given the current approximate
SSBN, and learning.

Laskey, et al. (2000, 2001) treat hypothesis management as a problem of balancing the
computational overhead of representing additional random variable instances against accuracy in
responding to queries. Charniak and Goldman (1993) and Levitt et al. (1995; Binford and Levitt,
2003) also consider hypothesis management in open-world computational probabilistic reasoning
systems. Hypothesis management is discussed extensively in the literature on tracking and multi-
source fusion (e.g., Stone, et al., 2000).

6 Probabilistic Logics and Languages
There is a growing literature on languages for representing probabilistic knowledge, the
semantics of probabilistic representations, and well-foundedness, tractability and decidability of
inference in probabilistic theories. The success of graphical models for parsimonious
representation and tractable inference has generated strong interest in more expressive languages
for reasoning with probability. Work in knowledge-based model construction (e.g., Wellman, et
al., 1992) focused on constructing Bayesian networks from knowledge bases consisting of
modular elements representing knowledge about small clusters of variables. Early KBMC
systems were not built on decision theoretically coherent declarative domain theories, and relied
on heuristic knowledge, typically encoded as procedural rules, for constructing complex models

EngineStatus(M1) TempSensor(M1)

TempLight(M1)

EngineStatus(M2) TempSensor(M2)

TempLight(M2)

ACStatus(R)

BeltStatus(M1)

RoomTemp(R)

BeltStatus(M)

MaintenancePractice(O)

EngineStatus(M1) TempSensor(M1)

TempLight(M1)

EngineStatus(M2) TempSensor(M2)

TempLight(M2)

MaintenancePractice(O)

ACStatus(R2)

RoomTemp(R2)

BeltStatus(M2)

ACStatus(R1)

RoomTemp(R1)BeltStatus(M1)

MachineLocation(M1) MachineLocation(M2)

a. Two machines in the same room b. Two machines that might or might

not be in the same room
Figure 10: Situation-Specific Bayesian Networks

FIRST-ORDER BAYESIAN LOGIC

DRAFT 33 2/27/06

from simpler components. As work in knowledge-based model construction progressed, interest
grew in the theoretical foundations of probabilistic representation languages, and in their
relationship to classical first-order logic. A number of authors have investigated approaches to
integrating classical logic with probability. A common approach has been to provide language
constructs that allow one to express first-order theories not just about objects in a domain of
discourse, but also about proportions and/or degrees of belief for statements about these objects.
Bacchus et al. (1997; Bacchus, 1990) augment first-order logic with proportion expressions that
represent the knowledge that a given proportion of objects in a domain have a certain property. A
principle of indifference is applied to assign degrees of belief to interpretations satisfying the
constraints imposed by ordinary first-order quantification and the proportion expressions.
Halpern’s (1991) logic can express both proportion expressions and degrees of belief, and
provides a semantics relating proportions to degrees of belief. Neither of these logical systems
provides a natural way to express theories in terms of modular and composable elements. Unlike
Bayesian networks, which have easy to verify conditions ensuring the existence of a coherent
domain theory, it is in general quite difficult in these logical systems to specify complete and
consistent probabilistic domain theories, or to verify that a set of axioms is coherent.

A number of languages have been developed that represent probabilistic knowledge as
modular units that with repeated substructures that can be composed into complex domain
models. These include pattern theory (Grenander, 1996), hidden Markov models (Elliott, et al.,
1995), the plates language implemented in BUGS (Gilks, et al., 1994; Buntine, 1994;
Spiegelhalter, et all, 1996), object-oriented Bayesian networks (Koller and Pfeffer, 1997; Bangsø
and Wuillemin, 2000; Langseth and Nielsen, 2003), and probabilistic relational models (Getoor,
et al., 2000, 2001; Pfeffer, 2000). There is a great deal of commonality among languages for
compactly expressing complex probabilistic domain theories (cf., Heckerman, et al., 2004). Plates
in BUGS, object classes in object-oriented Bayesian networks, and PRM structures in
probabilistic relational models all correspond to MFrag classes.

Figure 11 compares MEBN, PRM and plate representations for a theory fragment in the
equipment diagnosis domain. Like Bayesian networks, plates represent a joint distribution as an
acyclic directed graph in which nodes represent random variables, arcs represent direct
dependence relationships, and each node is annotated with a specification of a conditional
distribution of the random variable given its parents. Repeated structure in a plates model is
represented by indexing repeated random variables with subscripts, and enclosing the set of
random variables indexed by a given subscript in a rectangle called a “plate.” These indices play
the role of the ordinary variables in an MFrag. As in MEBN, a random variable’s parents may
contain indices not mentioned in the random variable, in which case the local distribution for the
child random variable must specify how to aggregate influences from multiple instances of the
parent random variable. Plate models are restricted to a finite number of instances of each
random variable. The number of instances of each random variable is a fixed attribute of the plate
model. BUGS has sophisticated capability for parameter learning, and although there is no built-
in mechanism for structure learning, plate models can be constructed to represent the problem of
reasoning about the presence or absence of conditional dependency relationships between random
variables.

A PRM contains the following elements (Heckerman, et al., 2004; see Figure 11b):

FIRST-ORDER BAYESIAN LOGIC

DRAFT 34 2/27/06

 A relational schema that specifies the types of objects and relationships that can exist
in the domain;

 A PRM structure that represents probabilistic dependencies and numerical
probability information;

 A skeleton that specifies a unique identifier and a blank template for each individual
entity instance;

 The data to fill the entries in the blank template.

Condition(m)

Machine(m)

Theta(1)

Experience(i)

Inspector(i)

Theta(2)

InspectedBy(m,i)

Inspector(i)Machine(m)

Theta(n)

Natnum(n)

Inspector(i)

WatchStatus(m)

Report(m,i)

Condition(m)

InspectedBy(m,i) Machine(m)

Experience(i)
!(Theta(3))

Machine(e)

Inspector(e)

Natnum(e)

!(e)

a. MEBN Fragments
(findings are not shown)

a. Probabilistic Relational Model – Relational Schema & PRM Structure

(skeleton and instances are not shown)

Condition[m]

Report[m,i] Experience[i]

WatchStatus[m]

 Machine m 1 : M

Alpha

 Inspector i 1 : I

Beta

Gamma

c. Plates

Figure 11: MFrags, PRM and Plates for Equipment Diagnosis Domain

FIRST-ORDER BAYESIAN LOGIC

DRAFT 35 2/27/06

Like a MEBN theory, a PRM represents a probability distribution over possible worlds. Any
given PRM can be expanded into a finite Bayesian network over attributes of and relationships
between the individuals explicitly represented in the skeleton. PRMs use aggregation rules to
combine influences when multiple instances of a parent random variable influence a child random
variable (as when multiple reports influence the WatchStatus random variable in Figure 11). In
addition to attribute value uncertainty, PRMs have been extended to handle type uncertainty,
reference uncertainty, and identity uncertainty. PRM learning theory provides a formal basis for
both parameter and structure learning. Learning methods have been published (e.g., Getoor, et al.,
2001) for learning both the structure and parameters of PRMs from instances in the skeleton. If
the probability distribution represented by a PRM is assumed to apply to similar entities not
explicitly represented in the skeleton, then PRM learning methods can be extended to allow
sequential learning as new individuals are added to the skeleton over time, thus providing the
logical basis for a form of open-world reasoning. One can also extend the relational schema and
PRM structure “by hand” to add new entity types.

Heckerman, et al. (2004) introduce a new language, DAPER, for expressing probabilistic
knowledge about structured entities and their relationships. DAPER combines the entity-relation
model from database theory with directed graphical models for expressing probabilistic
relationships. DAPER is capable of expressing both PRMs and plates, thus providing a unified
syntax and semantics for expressing probabilistic knowledge about structured entities and their
relationships. As presented in Heckerman, et al. (2004), DAPER expresses probabilistic models
over finite databases, and cannot express arbitrary first-order formulas involving quantifiers. That
is, DAPER is a macro language for compactly expressing finite Bayesian networks with repeated
structure, and not a true first-order probabilistic logic. Because DAPER can represent PRMs and
plates, this conclusion applies to these formalisms as well. On the other hand, the random variable
semantics described in Section 5.1 could provide a theoretical basis for extending DAPER, and
thus PRMs and plates, into a true first-order logic. Conditions could be identified under which
DAPER models of unbounded cardinality express well-defined probability distributions over
models. If developed more fully, the relationship sketched here between MEBN theories, PRMs
and plates would facilitate construction of such an extension.

Object-oriented Bayesian networks represent entities as instances of object classes with class-
specific attributes and probability distributions. Reference attributes allow representation of
function composition. Although OOBNs do not have multi-place relations, these can be handled
by defining new object types to represent multi-place relations. Structure and parameter learning
methods for OOBNs have been developed (e.g., Langseth and Nielsen, 2003; Langseth and
Bangsø, 2001). The current literature on OOBNs does not treat type and reference uncertainty,
although clearly it would be possible to extend OOBNs to handle these kinds of uncertainty. An
advantage of OOBNs is the ability to represent encapsulated information, or random variables
defined internally to an object that are independent of external random variables given the
interface random variables that shield an object from its environment. The semantics of
encapsulation is based on conditional independence relationships. Thus, the concept of
encapsulation could be extended to other languages based on graphical models, including MEBN
theories and DAPER models with encapsulated random variables. As with plates and PRMs, the
random variable semantics described in Section 5.1 could provide a theoretical basis for
extending OOBNs to achieve full first-order expressive power.

A feature of MEBN not present in PRMs, plates or OOBNs is the use of context constraints
to specify logical conditions that determine whether one random variable influences another. A

FIRST-ORDER BAYESIAN LOGIC

DRAFT 36 2/27/06

similar effect can be achieved by using aggregation functions that ignore influences ruled out by
the context, but this is more cumbersome. PRMs and OOBNs are founded on a type system.
Sophisticated implementations (e.g., IET 2004) have subtyping, inheritance, and the ability to
represent type uncertainty (e.g., IET, 2004). MEBN can be extended to a typed logic that has
many of the advantages of typed relational languages (Costa and Laskey 2005). Because there
presently is no direct MEBN implementation, several published applications have translated
MEBN theories into relational models and used the Quiddity*Suite probabilistic relational
modeling and KBMC toolkit (IET, 2004) to construct situation-specific Bayesian networks (e.g.,
Costa, et al., 2005; AlGhamdi, et al., 2005). There are some features of MEBN (most notably
context constraints) that cannot be represented declaratively in standard relational languages, but
the ability of Quiddity*Suite to combine Prolog-style rules with a frame-based relational
modeling language provides the ability to specify much more powerful declarative
representations (e.g., Fung, et al., 2005).

Like MEBN, relational Bayesian networks (Jaeger 1998; 2001) provide formal semantics for
probability languages that extend Bayesian networks to achieve first-order expressiveness.
Random variables in a relational Bayesian network are all Boolean. A RBN has a set of pre-
defined relations used in defining the local distributions and a set of probabilistic relational
symbols, which represent uncertain relations on the domain. A RBN defines a joint probability
distribution on models of the uncertain relations. Probability formulas specify how to combine
influences from multiple instances of the parents of a random variable to obtain a conditional
distribution for the random variable given finite sets of instances of its parents. General relational
Bayesian networks can represent probability distributions only over finite domains, although non-
recursive RBNs have been extended to represent probability distributions over countably infinite
domains (Jaeger, 1998).

 Bayesian logic programs (e.g., Kersting and De Raedt, 2001; De Raedt and Kersting, 2003)
also express uncertainty over interpretations of first-order theories. To ensure decidability, BLPs
have typically been restricted to Horn clause theories. Bayesian logic programs and MEBN
theories represent complementary approaches to specifying first-order probabilistic theories.
BLPs represent fragments of Bayesian networks in first-order logic; MEBN theories represent
first-order logic sentences as MFrags. Although the restriction to Horn clause logic limits the
expressiveness of BLP languages, this limitation is balanced by the efficiency of algorithms
specialized to Horn clause theories. Research in Bayesian logic programming is applicable to the
problem of execution management in SSBN construction. That is, an execution manager can
identify portions of an inference task that involve only Horn clauses, and send these to an
inference engine specialized for efficient reasoning with Horn clauses. MEBN semantics could be
used to develop extensions to BLP languages that could handle knowledge bases not limited to
Horn clauses.

Other research on integrating logic and probability includes Poole’s (2003) parameterized
Bayesian networks, Ngo and Haddawy’s (1997) work on context-specific probabilistic
knowledge bases, PRISM (Sato, 1998), IBAL (Pfeffer, 2001), and BLOG (Milch, et al., 2005).
Parameterized Bayesian networks are designed to provide the ability to reason about individuals
not explicitly named, an important capability lacking in most probabilistic languages. Poole
presents an algorithm for performing inference without grounding out the theory. Like MEBN,
random variables in a parameterized Bayesian network can take arguments; individuals in a
population can be substituted for the parameters to form instances of the random variables. Like
MEBN, the population over which the parameters range can be finite or infinite. Poole considers

FIRST-ORDER BAYESIAN LOGIC

DRAFT 37 2/27/06

only models without recursion. Thus, a parameterized Bayesian network corresponds to a MEBN
theory with no recursive links. Ngo and Haddawy represent probabilistic knowledge as
universally quantified sentences that depend on context. Like MEBN, Ngo and Haddawy exploit
context constraints to focus inference on relevant portions of the knowledge base. Unlike MEBN,
Ngo and Haddawy separate context, which is non-probabilistic, from uncertain hypotheses, for
which context-specific probability distributions are defined. A context-sensitive knowledge base
corresponds to a partially specified MEBN theory in which there is a reserved subset of Boolean
random variables that may appear as context random variables in MFrags, but that have no home
MFrags and whose truth-values are assumed to be known at problem solving time. PRISM is a
logic programming language in which facts can have parameterized probability distributions.
Like a MEBN theory, a PRISM program defines a probability distribution over interpretations. A
PRISM program can be used as a random sampler from the distribution it defines. PRISM also
supports abductive reasoning and EM learning. IBAL is a probabilistic programming language
that allows users to write functional programs with stochastic branches. Given such a program,
IBAL uses a variety of inference methods to provide a probability distribution over outputs of the
program. Results may be conditioned on user-specified evidence. IBAL supports parameter
learning and utility maximization. BLOG (Milch, et al., 2005) is a new language that enables
probabilistic reasoning about unknown entities, and about domains that can contain unknown
numbers of entities. Under appropriate conditions such as the ones defined in 4.3, BLOG could
also express probability distributions over interpretations of a broad class of first-order theories.

Hidden Markov models are applied extensively in pattern recognition tasks such as speech
and handwriting recognition. Formally, a hidden Markov model can be represented as a dynamic
Bayesian network in which an observable random variable depends on a latent or hidden variable
that follows a Markov transition. Dynamic Bayesian networks and partially dynamic Bayesian
networks (Bayesian networks containing both static and dynamic nodes) allow a richer range of
representation possibilities, in that complex dependency structures for hidden and observable
random variables can be compactly represented. There is a large literature on efficient estimation
and inference methods for hidden Markov models. HMMs and DBNs represent temporal
recursion. Pfeffer (2000) also considers recursive probabilistic models, which can express non-
temporal recursive relationships. It is straightforward to express HMMs, DBNs, and recursive
probabilistic models as MEBN theories (e.g., Figure 3).

Pattern theory (Grenander, 1996) is a graphical modeling language based on undirected
graphs. There is an extensive literature on applications of undirected graphical models to image
understanding, geospatial data, and other problems in which there is no natural direction of
influence. A hybrid language could be defined that extends MEBN to permit both directed and
undirected arcs. Such an extension is not considered here.

A common problem for first-order graphical probabilistic languages is how to specify local
distributions when a random variable has different numbers of parents in different ground
Bayesian networks corresponding to a given first-order probabilistic theory. Probabilistic
relational models use aggregation functions, in which a summary statistic is computed from the
instances of a given parent, and the local distribution depends on the summary statistic. For
example, the distribution for WatchStatus in Figure 11 depends on a summary statistic that
aggregates the total number of problematic reports received about an item. Many knowledge-
based Bayesian network construction approaches use combination rules (e.g., Natarajan, 2005;
Ngo and Haddawy, 1997). With combination rules, the modeler defines a probability distribution
for a single instance of each of the parents of a random variable, and a combination rule that

FIRST-ORDER BAYESIAN LOGIC

DRAFT 38 2/27/06

specifies how to combine these distributions when the ground model contains multiple instances
of some or all of the parents. Influence counts can represent both combining rules and
aggregation functions. To define influence counts for a random variable, all possible substitutions
are formed for the variables in the parents of a random variable and the context random variables
in its home MFrag. Each substitution defines a parent set, and each parent set has a configuration
of states. Configurations in which a context random variable has a value other than T are
discarded. The number of times each configuration of the parents occurs among the remaining
parent sets is the influence count for that configuration.

It is clear that influence counts can represent combining rules. Consider an extension of our
diagnosis example in which EngineStatus(m) depends on BeltStatus(b) and GasketStatus(g), and
in which the context constraints specify Isa(Belt,b) and Isa(Gasket,g). To specify a combining
rule, the modeler would specify a probability distribution for EngineStatus(m) given each
belt/gasket configuration and each room temperature, and a combining function to combine these
distributions. Suppose a particular machine has two belts and three gaskets, and is located in one
of two rooms. Making all legal substitutions would yield twelve probability distributions: one for
each of the six belt/gasket combinations in each of the two rooms. The combining function would
specify how to obtain a single distribution from these twelve distributions. To use influence
counts to define a combining rule, we would simply specify a probability distribution for each
parent configuration, and then combine use each configuration’s influence count to specify the
number of copies of the corresponding distribution to combine.

To represent aggregation rules with influence counts is a little less straightforward. Suppose
we want to define an aggregation function that depends on the total number of broken belts and
the total number of broken gaskets. In our machine with two belts and three gaskets, each belt
contributes to three of the six influencing configurations, and each gasket contributes to two of
the six influencing combinations. Thus, we would need to divide the total influence counts for
broken belt configurations by 3 and the total influence counts for broken gaskets by two, in order
to obtain the needed aggregation function.

Many languages designed for implementation have taken the strategy of restricting
expressiveness to ensure that answers to probabilistic queries are decidable. In an open world,
the answer to many queries of interest will be undecidable, and the best that can be expected is an
approximate answer. Languages that provide decidable, closed-form responses to limited classes
of queries have an important place both theoretically and practically. Nevertheless, intelligent
reasoning in a complex world requires principled methods of coping with undecidable or
intractable problems. MEBN exploits the language of graphical models to compose consistent
domain theories out of modular components connected via clearly defined interfaces, and thus
can support efficient implementations of tractable domain theories. Yet, MEBN can represent
highly complex, intractable, and even undecidable domain theories. Although the answer to a
probabilistic query may be undecidable, and may be intractable even when it is decidable,
Bayesian decision theory provides a sound mathematical basis for designing and analyzing the
properties of processes that converge to the correct response to undecidable queries, and resource-
bounded processes that balance efficiency against accuracy. Bayesian theory also provides
semantics for the relationship between empirical proportions and probabilities, as well as a
logically justified and theoretically principled way to combine empirical frequencies with prior
knowledge to refine theories in the light of observed evidence.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 39 2/27/06

7 Summary and Discussion
Graphical models were initially limited to problems in which the relevant random variables

and relationships could be specified in advance. Languages based on graphical models are rapidly
reaching the expressive power required for general computing applications. It is becoming
possible to base computational inference and learning systems on rationally coherent domain
models implicitly encoded as sets of graphical model fragments, and to use such coherent deep
structure models to guide reasoning and knowledge discovery. Probability theory provides a
logically coherent calculus for combining prior knowledge with data to evolve an agent’s
knowledge as observations accrue. Probability theory also provides a principled approach to
knowledge interchange among different reasoners. This paper presents a logical system that
unifies Bayesian probability and statistics with classical first-order logic. An instance of a first-
order Bayesian language called Multi-Entity Bayesian Networks (MEBN) is presented. The
syntactic similarity of MEBN to standard first-order logic notation clarifies the relationship
between first-order logic and probabilistic logic. A MEBN theory (MEBN theory) assigns
probabilities to models of an associated FOL theory. MEBN theories partition FOL theories into
equivalence classes of theories with the same logical content but different probabilities assigned
to models. Provable statements in FOL correspond to statements in the associated MEBN theory
for which SSBN construction terminates with a probability of 1 assigned to the value T. A MEBN
theory corresponding to an inconsistent FOL theory has at least one finding equal to ⊥ with
probability 1. If the associated MEBN theory is inconsistent, SSBN can determine in finitely
many steps that it is inconsistent. When SSBN construction does not terminate but the MEBN
theory represents a globally consistent joint distribution, the construction process gives rise to an
anytime sequence of approximations that converges in the infinite limit to the correct response to
the query. MEBN is inherently open. Bayesian learning theory provides an inbuilt capability for
MEBN-based systems to learn better representations as observations accrue. Parameter learning
can be expressed as inference in MEBN theories that contain parameter random variables.
Structure learning can also be handled by introducing multiple versions of random variables
having home MFrags with different structures. A more natural approach to structure learning, as
well as a more flexible type system, requires a polymorphic extension of MEBN. Clearly, a typed
MEBN with polymorphism would be desirable for many applications. We chose in this paper to
focus on the basic version of the logic to highlight its relationship to classical first-order logic and
demonstrate that the logic is sufficiently powerful to represent general first-order theories.
Extensions of MEBN are planned to incorporate additional expressivity.

Appendix A: Proofs and Algorithms
This appendix proves that a MEBN theory represents a globally consistent joint distribution over
random variable instances, proves that a MEBN theory constructed as described in Section 5.2
places non-zero probability of value T on Boolean random variables corresponding to satisfiable
first-order sentences, presents the SSBN construction algorithm, shows that SSBN construction
identifies an unsatisfiable set of findings in finitely many steps, and proves that when findings are
consistent, SSBN construction converges with probability 1 to the posterior distribution over a
MEBN theory’s random variables given that all finding random variables have value T.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 40 2/27/06

A.1. Proof of Existence Theorem
Theorem 1: Let T = { F1, F2 … } be a simple MEBN theory. Then there exists a joint
probability distribution

P

T

gen on the set of instances of its random variables that is consistent with
the local distributions assigned by the MFrags of T.

Proof: Let Z={φ1(α1), …, φm(αm)} be a finite subset of NT, and let D = max [dφ(α) :
φ(α)∈{φ1(α1), …, φm(αm)}] be the maximum depth of the instances of Z. Suppose D = 0. Let
πT1(φ1(α1), …, φm(αm)) be a distribution in which the φi(αi) are independent and distributed
according to the default distributions

!"

i
(#
i
)
(i|$) from their home MFrags

F!

i
("

i
)
. All finite-

dimensional distributions constructed in this way from depth 0 elements of NT are consistent
with each other and with the local distributions of T. Therefore, Kolmogorov’s existence
theorem18 implies that these finite-dimensional distributions can be extended to a joint
distribution πT1 over all instances of depth zero random variables, and this joint distribution is
consistent with the local distributions of T.

Now, suppose T represents a joint distribution πTD over all instances of all random variables
of depth less than D. Let Z = {φ1(α1), …, φm(αm)} be a finite subset of NT such that no φi(αi) ∈ Z
has depth greater than D. Let A denote the (possibly infinite) subset of NT consisting of the
ancestors of depth D elements of Z, together with any elements of Z with depth strictly less than
D. Clearly, any instance ϕ(β)∈A must have depth less than D. Therefore, the marginal
distribution of πTD represents a joint distribution for A consistent with the local distributions of
T.

Let S={ϕ(β)=γ : ϕ(β)∈A} be a set of value assignment terms, one for each element of A.
Suppose φi(αi) ∈ Z. If φi(αi) has depth less than D, then φi(αi) ∈A and S assigns a particular value
to φi(αi) with probability 1. Otherwise, condition 3e implies that there is a finite subset

S!

i
("

i
)
⊂ S

such that

!"

i
(#

i
)
(i| S"

i
(#

i
)
)=

!"

i
(#

i
)
(i| S*) whenever

S!

i
("

i
)
⊂ S*⊂ S.19 Thus, given the value assign-

ments in S, T assigns a well-defined conditional distribution to each φi(αi) ∈ Z, which is denoted

!"

i
(#

i
)
(i| S) . Define a joint conditional distribution

πT(D+1)(φ1(α1)=γ1, …, φm(αm)=γm | S) =

!"
i
(#

i
)
("

i
(#

i
) = $

i
| S)

i=1

m

% .

in which the φi(αi) are independent and distributed as assigned by the local distributions in their
home MFrags conditional on the value assignments in S. Existence of both a joint conditional
distribution for the φi(αi) and a marginal distribution for S implies that the marginal joint
distribution

 πT(D+1)(φ1(α1), …, φm(αm)) =

!"i (#i)
("

i
(#

i
) | S)d!

TD
(S)

i=1

m

$% . (1)

exists and is consistent with the local distributions of T. The marginal distribution (1) is
expressed as an integral rather than a sum because there may be uncountably many different ways
to choose the value assignments S={ϕ(β)=γ : ϕ(β)∈A}.

This construction can be carried out for any finite set of depth D instances, and it is clear that
all the distributions thus defined are consistent with each other and with the local distributions of

18 Kolmogorov’s existence theorem (c.f., Billingsley, 1995) states that if joint distributions exist for all finite subsets of
a collection of random variables, and if all these finite-dimensional distributions are consistent with each other, then a
joint distribution exists for the infinite collection of random variables.
19 Theorem 1 holds under weaker conditions on the local distributions, but condition 3e suffices to show that MEBN
can represent classical first-order logic.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 41 2/27/06

T. This implies that T represents a joint distribution over arbitrary finite subsets of NT, and that
the distributions constructed in this way are consistent with each other and with the local
distributions of T. A second application of Kolmogorov’s existence theorem implies that T
represents a joint distribution over all instances of random variables in VT. It is clear that this
distribution is consistent with the local distributions of T. 

A.2. SSBN Construction Algorithm
The situation-specific Bayesian network construction algorithm takes a MEBN theory T, a

finite (possibly empty) set of target random variable instances, and a finite (possibly empty) set
of finding random variable instances, and computes a sequence of Bayesian networks containing
the target and finding random variable instances. The algorithm may be interrupted at any time to
obtain an approximate SSBN. If the findings are inconsistent and the algorithm is not interrupted,
it will discover the inconsistency in finitely many steps. If the algorithm terminates without
interruption and the findings are consistent, the last Bayesian network in the sequence can be used
to compute the joint distribution of the target random variable instances given that all finding
random variable instances have value T. That is, additional model construction would not change
the result of the query. For some problems, the algorithm will not terminate unless it is
interrupted, but it produces a sequence of approximate SSBNs that converge to the correct query
response.

We give the SSBN construction for simple MEBN theories only. The modification for
mixture MEBN theories is straightforward. SSBN construction proceeds as follows:

SSBNConstruct: The inputs to SSBNConstruct are:
 A simple MEBN theory T with partial ordering  and modeler-defined MFrags F

defined on a set X of random variable symbols and a set A of constant symbols;
 A finite (possibly empty) set {τi}i≤T of non-finding random variable instances called

the target random variable instances;
 A finite (possibly empty) set {φi}i≤F of finding random variable instances.

The steps in SSBNConstruct are:
1. Initialization. Set Q = {τi}i≤T∪{φi}i≤F, and set R0=Q. Let N0 and K0 be

positive integers. Set the iteration number i equal to 0.
2. SSBN structure construction. Set the structure of the approximate SSBN Bi

as follows:
 Set Bi equal to a Bayesian network in which the nodes are the

random variables in Ri. Add an arc from random variable α to β if α
is an instance of a parent of β or is a context random variable in the
home MFrag of β. Remove any arcs to β if there are no influencing
configurations for β (i.e., there are no configurations of its parents
and context random variables that match the context constraints).

FIRST-ORDER BAYESIAN LOGIC

DRAFT 42 2/27/06

 Do until no more changes to Bi occur:
• Remove from Bi all barren nodes, that is, nodes having no

descendants in Q;
• Remove from Bi all nodes that are d-separated by finding

nodes from any target nodes;
• Remove from Bi the parents of any nuisance node for which

there is a current cached marginal distribution. A nuisance
node (Lin and Druzdzel, 1997) is a node that is
computationally relevant given the query, but is on no
evidential trail20 between an evidence and a target node.

3. Local distribution construction. Calculate the local distributions in Bi from
the local distributions in the MFrags of T, with modifications to restrict
random variables to have no more than Ni possible values, to approximate the
effects of random variables that have not been enumerated, and to ensure that
computation of local distributions halts. Specifically:
• If ψ is a nuisance node with a current cached marginal distribution (in

this case, Step 2 above ensures that ψ will be a root node in Bi), assign it
the cached marginal distribution.

• For any other node ψ in Bi, let Sψ be a configuration of states of the
parents of ψ in Bi (by convention, Sψ=∅ if ψ has no parents in Bi).

o If Sψ assigns each parent ψ in Bi to its 1st, 2nd, …, or Ni-1st state,
then run the algorithm for computing the probabilities of the first
Ni possible values for ψ given Sψ, terminating the computation
after Ki steps. Assign the first Ni – 1 states of ψ to the
probabilities returned by this algorithm, and assign the Ni

th
possible value equal to 1 minus the sum of the probabilities for
the other values.

o If Sψ assigns any parent ψ in Bi to its Ni
th state, then assign ψ a

default distribution that gives non-zero probability to all states of

20 A node is computationally relevant if it remains after iteratively removing all barren and d-separated nodes. An
evidential trail between two sets of nodes is a minimal active undirected path from a node in one set to a node in the
other. If a global joint distribution exists, then nuisance nodes can be marginalized out without affecting the result of
the query.

In situation-specific network

Not in situation-specific network

N1 E2

D6

T3

E4

I3

E1

B2

D5

B1

I5

B3

I2

T1

N4

T2

E3

N2

N5

B4

B5

D1

D3

I1

E2

N3

D2

D4
I4

N1

E: Evidence node
T: Target node
I: Internal node
N: Nuisance node
B: Barren node
D: d-separated node

Figure 12: Situation-Specific Bayesian Network

FIRST-ORDER BAYESIAN LOGIC

DRAFT 43 2/27/06

ψ (i.e., to all states if there are fewer than Ni or to the first Ni
states otherwise).

4. Inference. Apply a standard Bayesian network inference algorithm to
compute the conditional distribution for the non-finding random variables in
Bi given the finding random variables in Bi. For each node β in Bi, cache its
marginal distribution and mark it current.

 If the inference algorithm indicates that the findings are inconsistent,
then set the SSBN S equal to Bi, output S, and stop with an
indication that SSBN construction terminated and T is inconsistent.

 Else, if all computationally relevant random variables have been
added, no random variable in Bi has more than Ni possible values,
and no local distribution computation terminated prior to completion,
then set the SSBN S equal to Bi; return Bi and the joint distribution
of the target random variables; and stop with a flag indicating that
SSBN construction terminated and T is consistent.

 Else, go to Step 3.
5. Instance enumeration and approximation parameter updating. This step

enumerates additional instances of random variables and increases the limits
on the number of allowable states per random variable and computational
steps for local distributions.

 If the stopping criterion is met, output Bi and the joint distribution
computed in Step 4, and stop with an indication that SSBN
construction did not terminate.

 Else, set Ri+1 = Ri. For each random variable instance β∈Bi for
which a change in the local distribution may occur if additional
parents are added, add a finite number of instances of parents of β to
Ri+1, using a process that ensures eventual addition of all instances of
parents of β. (Here, a context random variable in a random variable’s
home MFrag counts as a parent.)

 Set Ni+1 and Ki+1 to positive integers strictly greater than Ni and Ki,
respectively.

 For any node in which (i) new parents have been added, or (ii) new
states of an ancestor have been added, or (iii) the computation did
not halt in computing the local distribution of the node or one of its
ancestors, mark its marginal distribution as not current.

 Increment i, and go to Step 4.

It is well known that if a set of sentences in FOL is unsatisfiable, then there exists a finite set
of ground instances of a set of logically equivalent sentences that is also unsatisfiable (see, for
example, Russell and Norvig, 2002). The SSBN construction algorithm produces a sequence of
Bayesian networks, each of which can be translated into a set of constraints on truth-values of a
finite set of ground instances of FOL sentences implied by the MEBN theory T. Each of these
Bayesian networks encodes a probability distribution that assigns non-zero probability to any
assignment of truth-values consistent with the constraints it encodes. Each approximate SSBN
includes all constraints represented in the preceding approximate SSBNs, together with additional
constraints. If the query set contains only the findings, then eventually all logical constraints

FIRST-ORDER BAYESIAN LOGIC

DRAFT 44 2/27/06

implied by the findings and their predecessors in the random variable instance partial order are
enumerated. If the set of all logical constraints is unsatisfiable, then so is a finite subset, and
eventually the constraints encoded in the SSBN will include a finite unsatisfiable subset.

The following theorem states that an inconsistent theory can be discovered in a finite number
of steps of SSBN construction by specifying a query set consisting of only the findings, and
setting SSBN construction never to stop unless .

Theorem 7: If the logical constraints represented by T are unsatisfiable and Step 5 of
SSBNConstruct is set never to stop, then SSBN construction on a query set consisting only of the
findings of T terminates in finitely many steps with an indication that T is inconsistent.

Proof: Each approximate SSBN Bi represents a probability distribution over interpretations
of a theory for which the logical axioms form a subset of the logical axioms of T. The domain of
this interpretation is a finite set consisting of all possible assignments of values to the random
variables of Bi such that all finding random variables have value T. The approximate SSBN Bi
assigns non-zero probability to the hypothesis that all finding random variables have value T if
and only if there is at least one interpretation on this finite domain that satisfies all the logical
axioms represented in Bi, which in turn is the case if and only if the logical axioms represented in
Bi are simultaneously satisfiable. For k>i, the approximate SSBN Bk includes all logical
constraints included in Bi, along with any additional constraints implied by the local distributions
of random variables appearing in Bi+1 but not in Bi. The SSBN construction process eventually
adds all computationally relevant random variables, and therefore eventually includes all logical
constraints represented by the local distributions of any random variable instances that are either
findings or ancestors of findings in the random variable partial ordering . Thus, if the findings
are unsatisfiable, eventually there will be an approximate SSBN in the sequence that represents
an unsatisfiable set of constraints. 

Note that SSBN construction will never add random variables d-separated from the target
random variables by findings. Therefore, if the query set contains non-finding target random
variables, then inconsistencies that would be introduced only by adding d-separated random
variables will not be discovered. It is often asserted in logic texts that an inconsistent theory is
“useless” because anything can be proven from a contradiction. In practice, though, inconsistent
theories can be quite useful. MEBN can be used to reason with inconsistent theories, as long as
queries are structured so that the target of any given query is d-separated by a subset of the
findings from any findings that contradict this subset. Thus, MEBN may turn out to be a useful
tool for studying conditions under which inconsistent theories can provide accurate results to
probabilistic queries.

Condition 3e of Definition 3 implies that in any possible world, each local distribution can be
computed from finitely many instances of the random variable’s parents and context random
variables. However, which instances are needed can vary from possible world to possible world,
and there may be no upper bound on how many instances are needed. To show that SSBN
construction converges to the correct result, it is necessary to show that the correct response to a
query can be approximated to arbitrary accuracy by explicitly representing only a finite number
of random variable instances.

Lemma 8: Let Q = {θi}i≤M be a finite set of random variable instances from a MEBN theory T.
Let R denote the set of all random variable instances that are elements of Q or ancestors of

FIRST-ORDER BAYESIAN LOGIC

DRAFT 45 2/27/06

elements of Q. Let Q = R0⊂R1⊂ R2⊂… be finite sets of random variable instances such that R =
∪i Ri. Let Bi be the Bayesian network constructed from the random variables in Ri. That is: (i)
the nodes of Bi are the random variable instances in Ri; (ii) there is an arc from θi to θj if θi is
either a parent of θj or a context random variable in its home MFrag, and if there is at least one
influencing configuration containing a value assignment for θj; and (iii) the local distribution for
each θi is given by its local distribution !

"
i

 in its home MFrag. Let S = {θi=αi}i≤M be an
assignment of values to the random variables in Q. Then

P

B
i

(S) converges to

P

T

gen
(S) as i→∞.

Proof: The proof is by induction on the maximum depth of random variable instances in Q.
Clearly, the result holds if all instances in Q are of depth zero. Suppose the result holds for all
random variable instances of depth less than D.

Let

R

i

0 be the set obtained by removing the depth D random variables from Ri; and let Q0 =

R

0

0 . Let S0 be an assignment of values to random variables in Q0 that agrees with S on the
random variables in Q∩Q0 (that is, the random variables in Q of depth strictly less than D). Let

B
i

0 be the Bayesian network constructed as described above from the random variables in

R

i

0 .
By the induction hypothesis,

P

B
i

0 (S
0
)!P

T

gen
(S0) as i→∞.

Let Ui = Ri\Q. That is, Ui consists of random variables in Bi that are not in Q, and let U∞ =
∪i Ui. Let X∞ denote an assignment of values to the random variable instances in U∞, and let Xi
denote the subset of value assignments corresponding to random variables in Ui. Suppose none of
the depth D random variables in Ri has value ⊥. By condition 3e of Definition 3, there is an
integer N such that:

πθ(α|XN∪S0) = πθ(α|XN+1∪S0) = … = πθ(α|X∞∪S0) . (2)

Let N* denote the smallest N for which (2) holds. The number N* is a function of X∞∪S0.
Marginalized over X∞, N* has a probability distribution

P

T

gen (N* | S0) .
We can write:

P
T

gen (S) = !" (" =# |X
n
$S0)

("=#)%S
depth(")=D

& P
T

gen (X
n
$S0 | N* = n)

'

(

)
)

*

+

,
,

X
n

- P
T

gen (N* = n | S0)
n

- . (3)

Let

P

T

n*
(S) be an approximation of

P

T

gen
(S) obtained by enumerating only the finite set

Un*∪Q of random variables:

P

T

n*
(S) =

!" (" =# |X
n* $S0)

("=#)%S
depth(")=D

& P
T

gen (X
n* $S0)

X
n*

' (4)

Combining (3) and (4), and noting that

!

"
(" =# |X

N*
$S

0
) =

!

"
(" =# |X

n*
$S

0
) when N* ≤

n*, we have:

P

T

n*
(S)!P

T

gen
(S)

 =

!" (" =# |X
n
$S0)

("=#)%S
depth(")=D

& P
T

gen (X
n
$S0 | N* = n)

'

(

)
)

*

+

,
,

X
n

- P
T

gen (N* = n | S0)
n>n*

-

≤

P

T

gen (N* ! n | S0) . (5)

FIRST-ORDER BAYESIAN LOGIC

DRAFT 46 2/27/06

Let u be a positive real number, and let n* be an integer such that

P
T

gen
(N* = n)

n>n*! < u/2. Then

P

T

n*
(S)!P

T

gen
(S) < u/2. By the induction hypothesis, the distributions

P

B
i

0 (Xn*
!S

0
) converge

to

P

T

gen
(X

n* !S0) as i→∞. We can therefore choose k sufficiently large that:

PB

i

(S)!P
T

n*
(S) =

!" (" =# |X
n* $S0)

("=#)%S
depth(")=D

& P
B
i

0 (Xn* $S0)'P
T

n*(X
n* $S0)()

X
n*

(< u/2.

Then for i > k:

PB

i

(S)!P
T

gen
(S) ≤

PB

i

(S)!P
T

n*
(S) +

P

T

n*
(S)!P

T

gen
(S) < u. (6)

Therefore,

P

B
i

(S) converges to

P

T

gen
(S) .

Now consider the case in which one or more of the depth D random variables has value ⊥. It
is clear that if

P

B
i

(S) converges to

P

T

gen
(S) for all S in which k or fewer of the depth D random

variables has value ⊥, then it must also converge when k+1 of the depth D random variables has
value ⊥. This establishes the result for sets Q of depth no greater than D, and thus concludes the
proof. 

Theorem 9: Suppose the logical constraints represented by T are satisfiable. Furthermore,
suppose that the algorithm described in Definition 3c for computing values of πψ(ε)(A|S) returns a
zero value only if the exact value πψ(ε)(A|S) is equal to zero. If Step 7 of SSBNConstruct is set
never to stop, then SSBN construction on query set Q either terminates with the distribution

P

T

gen (Q0 | {φi}i= i≤F), or produces a sequence B1, B2, …, in which the probability distribution for Q0
given the findings in Bi converges to the distribution represented by T.

Proof: Lemma 8 establishes that the distribution on Q can be approximated to arbitrary
accuracy by enumerating only finitely many of the random variable instances enumerated during
SSBN construction. However, unlike in Lemma 8, SSBN construction also approximates the
local distributions by enumerating only finitely many possible values and terminating
computation after a finite of steps. Because the maximum number of possible values and the
maximum length of computation increase with the number of SSBN steps, and do not have an
upper bound, these additional approximations can be added without affecting convergence. 

Acknowledgements
Research for this paper was partially supported by DARPA & AFRL contract F33615-98-C-1314,
Alphatech subcontract 98036-7488. Additional support was provided by the Advanced Research
and Development Activity (ARDA), under contract NBCHC030059, issued by the Department of
the Interior. The views, opinions, and findings contained in this paper are those of the author and
should not be construed as an official position, policy, or decision, of DARPA orARDA unless
so designated by other official documentation. Appreciation is extended to Bruce D’Ambrosio,
Suzanne Mahoney, Mike Pool, Bikash Sabata, Masami Takikawa, Dan Upper, and Ed Wright for
many helpful discussions. Special thanks are due to Paulo Costa and Tod Levitt for extensive
feedback on earlier drafts. The author is grateful to the anonymous reviewers of an earlier draft
for many insightful comments and useful suggestions. Special thanks are due to an anonymous
reviewer of a previous version of this paper for identifying a few minor errors in the definitions.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 47 2/27/06

References
Alghamdi, G., Laskey, K.B., Wright, E., Barbara, D., and Chang, K.-C., 2005. "Modeling Insider

Behavior Using Multi-Entity Bayesian Networks." 10th Annual Command and Control
Research and Technology Symposium.

Bacchus, F., 1990. "Representing and Reasoning with Probabilistic Knowledge: A Logical
Approach to Probabilities." Boston, MA, MIT Press.

Bacchus, F., Grove, A., Halpern, J.Y., and Koller, D., 1997. "From statistical knowledge bases to
degrees of belief." Artificial Intelligence, Vol. 87: 75-143

Bangsø, O., Langseth, H., and Nielsen, T., 2001. "Structural Learning in Object Oriented
Domains." FLAIRS.

Bangsø, O. and Wuillemin, P.H., 2000. Object Oriented Bayesian Networks: A Framework for
Topdown Specification of Large Bayesian Networks and Repetitive Structures. Technical
Report CIT-87.2-00-obphw1. Aalborg: Department of Computer Science, Aalborg University

Billingsley, P., 1995. Probability and Measure. New York, NY: Wiley.
Binford, T. and Levitt, T.S., 2003. "Evidential reasoning for object recognition." IEEE

Transactions on Pattern Analysis and Machine Intelligence, 25(7), pp. 837-51.
Boutilier, C., Dean, T., and Hanks, S., 1999. "Decision-Theoretic Planning: Structural

Assumptions and Computational Leverage." Journal of Artificial Intelligence Research, 11,
pp. 1-94.

Brachman, R.J., Fikes, R.E., and Levesque, H.J., 1983. "KRYPTON: A Functional Approach to
Knowledge Representation." IEEE Computer Society, 16(10), pp. 67-73.

Buntine, W.L., 1994. "Operations for Learning with Graphical Models." Journal of Artificial
Intelligence Research, 2, pp. 159-225.

Charniak, E. and Goldman, R.P., 1993. "A Bayesian Model of Plan Recognition." Artificial
Intelligence, 64, pp. 53-79.

Costa, P., 2005. Bayesian Semantics for the Semantic Web. Doctoral Dissertation, Fairfax, VA:
School of Information Technology and Engineering, George Mason University.
http://hdl.handle.net/1920/455.

Costa, P., Laskey, K.B., Fung, F., Pool, M., Takikawa, M., and Wright, E., 2005. "MEBN Logic:
A Key Enabler for Network-Centric Warfare." 10th Annual Command and Control Research
and Technology Symposium.

Cowell, R.G., 1999. Probabilistic Networks and Expert Systems. Berlin: Springer-Verlag.
d'Ambrosio, B., 1991. "Local expression languages for probabilistic dependency." Uncertainty in

Artificial Intelligence: Proceedings of the Seventh Conference, San Mateo, California, Morgan
Kaufmann.

D'Ambrosio, B., 1999. "Inference in Bayesian Networks." AI Magazine, 20(2), pp. 21-36.
d'Ambrosio, B., Takikawa, M., Fitzgerald, J., Upper, D., and Mahoney, S.M., 2001. "Security

situation assessment and response evaluation (SSARE)." DARPA Information Survivability
Conference & Exposition II, IEEE Computer Society.

Davis, E., 1990. Representations of Commonsense Knowledge. San Mateo, California: Morgan
Kaufmann.

Dawid, A.P., 1984. "Statistical Theory, the Prequential Approach." Journal of the Royal
Statistical Society, 147, pp. 278-92.

de Finetti, B., 1974-75. Theory of Probability: A Critical Introductory Treatment. New York:
Wiley.

De Raedt, L. and Kersting, K., 2003. "Probabilistic Logic Learning." ACM-SIGKDD
Explorations: Special Issue on Multi-Relational Data Mining, 5(1), pp. 31-48.

DeGroot, M.H. and Schervish, M.J., 2002. Probability and Statistics. Boston, Massachusetts:
Addison Wesley.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 48 2/27/06

Dybowski, R., Laskey, K.B., Myers, J.W., and Parsons, S., 2003. "Introduction to the Special
Issue on the Fusion of Domain Knowledge with Data for Decision Support." Journal of
Machine Learning Research, 4(July), pp. 293-94.

Elliott, R.J., Aggoun, L., and Moore, J.B., 1995. Hidden Markov Models: Estimation and
Control. Berlin: Springer-Verlag.

Enderton, H.B., 2001. A Mathematical Introduction to Logic: Harcourt Academic Press.
Frege, G., 1967. Begriffsschrift. Cambridge, MA: Harvard University Press.
Fung, F., Laskey, K.B., Pool, M., Takikawa, M., and Wright, E., 2005. "PLASMA: Combining

Predicate Logic and Probability for Information Fusion and Decision Support." AAAI Spring
Symposium on Decision Support in a Changing World.

Geiger, D. and Heckerman, D., 1991. "Advances in Probabilistic Reasoning." Uncertainty in
Artificial Intelligence: Proceedings of the Seventh Conference, San Mateo, CA, Morgan
Kaufmann Publishers.

Genesereth, M., R. and Nilsson, N.J., 1987. Logical Foundations of Artificial Intelligence. San
Mateo, California: Morgan Kaufmann Publishers.

Getoor, L., Friedman, N., Koller, D., and Pfeffer, A., 2001. "Learning Probabilistic Relational
Models," in Relational Data Mining. Saso Dzeroski and Nada Lavrac (ed.), Berlin: Springer-
Verlag.

Getoor, L., Koller, D., Taskar, B., and Friedman, N., 2000. "Learning Probabilistic Relational
Models with Structural Uncertainty." ICML-2000 Workshop on Attribute-Value and
Relational Learning:Crossing the Boundaries, Standford, California.

Ghahramani, Z., 1998. "Learning Dynamic Bayesian Networks," in Adaptive Processing of
Sequences and Data Structures: Lecture Notes in Artificial Intelligence. C.L. Giles and M.
Gori (eds.), Berlin: Springer-Verlag, pp. 168-97.

Gilks, W., Thomas, A., and Spiegelhalter, D.J., 1994. "A language and program for complex
Bayesian modeling." The Statistician, 43, pp. 169-78.

Glesner, S. and Koller, D., 1995. "Constructing Flexible Dynamic Belief Networks from First-
Order Probabilistic Knowledge Bases." ECSQARU, pp. 217-26.

Grenander, U., 1996. Elements of Pattern Theory. Baltimore, MD: Johns Hopkins University
Press.

Gruber, T.R., 1993. "A Translation Approach to Portable Ontology Specifications." Knowledge
Acquisition, 5(2), pp. 199-220.

Halpern, J.Y., 1991. "An Analysis of First-Order Logics of Probability." Artificial Intelligence,
46(May), pp. 311-50.

Heckerman, D., Geiger, D., and Chickering, D.M., 1995. "Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data." Machine Learning, (20), pp. 197-243.

Heckerman, D., Meek, C., and Koller, D., 2004. Probabilistic Models for Relational Data. MSR-
TR-2004-30. Redmond, WA: Microsoft Corporation

Howson, C. and Urbach, P., 1993. Scientific Reasoning: The Bayesian Approach. Chicago, IL:
Open Court.

IET, 2004. "Quddity*Suite Technical Guide." Arlington, VA: Information Extraction and
Transport, Inc.

Jaeger, M., 1998. "Reasoning About Infinite Random Structures with Relational Bayesian
Networks." Proceedings of the 6th International Conference (KR '98).

Jaeger, M., 2001. "Complex Probabilistic Modeling with Recursive Relational Bayesian
Networks." Annals of Mathematics and Artificial Intelligence, 32, pp. 179-220.

Jaynes, E.T., 2003. Probability Theory: The Logic of Science. Cambridge, UK: Cambridge
University Press.

Jensen, F.V., 2001. Bayesian Networks and Decision Graphs. Berlin: Springer-Verlag.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 49 2/27/06

Jensen, F.V., Chamberlain, B., Nordahl, T., and Jensen, F., 1990. "Analysis in HUGIN of Data
Conflict." Uncertainty in Artificial Intelligence: Proceedings of the Sixth Conference, New
York, NY, Elsevier.

Kersting, K. and De Raedt, L., 2001. "Adaptive Bayesian Logic Programs." Proceedings of the
Eleventh International Conference on Inductive Logic Programming (ILP 2001), Springer-
Verlag.

Koller, D. and Pfeffer, A., 1997. "Object-Oriented Bayesian Networks." Uncertainty in Artificial
Intelligence: Proceedings of the Thirteenth Conference, San Francisco, CA, Morgan
Kaufmann.

Langseth, H. and Nielsen, T., 2003. "Fusion of Domain Knowledge with Data for Structured
Learning in Object-Oriented Domains." Journal of Machine Learning Research, 4, pp. 339-
68.

Laskey, K.B., 1991. "Conflict and Surprise: Heuristics for Model Revision." Uncertainty in
Artificial Intelligence: Proceedings of the Seventh Conference, San Mateo, CA, Morgan
Kaufmann.

Laskey, K.B., 2006. MEBN: A Logic for Open-World Probabilistic Reasoning. C4I Center
Technical Report C4I06-01. Fairfax, VA: George Mason University

Laskey, K.B. and Costa, P., 2005. "Of Klingons and Starships: Bayesian Logic for the 23rd
Century." Uncertainty in Artificial Intelligence: Proceedings of the Twenty-first Conference,
Arlington, VA, AUAI Press.

Laskey, K.B., D'Ambrosio, B., Levitt, T.S., and Mahoney, S.M., 2000. "Limited Rationality in
Action: Decision Support for Military Situation Assessment." Minds and Machines, Vol. 10:
53-77

Laskey, K.B. and Mahoney, S.M., 1997. "Network Fragments: Representing Knowledge for
Constructing Probabilistic Models." Uncertainty in Artificial Intelligence: Proceedings of the
Thirteenth Conference, San Mateo, CA, Morgan Kaufmann.

Laskey, K.B., Mahoney, S.M., and Wright, E., 2001. "Hypothesis Management in Situation-
Specific Network Construction." Uncertainty in Artificial Intelligence: Proceedings of the
Seventeenth Conference, San Mateo, CA, Morgan Kaufman.

Lauritzen, S., 1996. Graphical Models. Oxford: Oxford Science Publications.
Levitt, T.S., Winter, C.L., Turner, C., J., Chestek, R.A., Ettinger, G.J., and Sayre, S.M., 1995.

"Bayesian Inference-Based Fusion of Radar Imagery, Military Forces and Tactical Terrain
Models in the Image Exploitation System/Balanced Technology Initiative." International
Journal of Human-Computer Studies, 42.

Lin, Y. and Druzdzel, M.J., 1997. "Computational Advantages of Relevance Reasoning in
Bayesian Belief Networks." Uncertainty in Artificial Intelligence: Proceedings of the
Thirteenth Conference, San Francisco, CA, Morgan Kaufmann.

Mahoney, S.M., 1999. Network Fragments. Faifax, VA: School of Information Technology and
Engineering, George Mason University.

Mahoney, S.M. and Laskey, K.B., 1998. "Constructing Situation Specific Networks." Uncertainty
in Artificial Intelligence: Proceedings of the Fourteenth Conference, San Mateo, CA, Morgan
Kaufmann.

Mahoney, S.M. and Laskey, K.B., 1999. "Representing and Combining Partially Specified
Conditional Probability Tables." Uncertainty in Artificial Intelligence: Proceedings of the
Fifteenth Conference, San Mateo, CA, Morgan Kaufmann.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., and Kolobov, A., 2005. "Blog:
Probabilistic Models with Unknown Objects." Proceedings of the Nineteenth Joint Conference
on Artificial Intelligence.

Murphy, K., 1998. Dynamic Bayesian Networks: Representation, Inference and Learning.
Berkeley, CA: Computer Science Division, University of California.

FIRST-ORDER BAYESIAN LOGIC

DRAFT 50 2/27/06

Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T.G., Fern, A., and Restificar, A., 2005.
"Learning First-Order Probabilistic Models with Combining Rules." Proceedings of the 22nd
International Conference on Machine Learning.

Neapolitan, R.E., 2003. Learning Bayesian Networks. New York: Prentice Hall.
Ngo, L. and Haddawy, P., 1997. "Answering Queries from Context-Sensitive Probabilistic

Knowledge Bases." Theoretical Computer Science, 171, pp. 147-77.
Oakes, D., 1986. "Self-Calibrating Priors Do Not Exist." Journal of the American Statistical

Association, 80(390), pp. 339.
Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

San Mateo, CA: Morgan Kaufmann.
Peirce, C.S., 1885. "On the Algebra of Logic." American Journal of Mathematics, 7, pp. 180-202.
Pfeffer, A., 2000. Probabilistic Reasoning for Complex Systems. Stanford, CA, Stanford

University.
Pfeffer, A., 2001. "IBAL: An Integrated Bayesian Agent Language." Joint Conference on

Artificial Intelligence (IJCAI).
Poole, D., 1993. "Probabilistic Horn Abduction and Bayesian Networks." Artificial Intelligence,

64(1), pp. 81-129.
Poole, D., 2003. "First-Order Probabilistic Inference." Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence.
Russell, S. and Norvig, P., 2002. Artificial Intelligence: A Modern Approach. Upper Saddle

River, NJ: Prentice-Hall.
Sato, T., 1998. "Modeling Scientific Theories as PRISM Programs." ECAI98 Workshop on

Machine Discovery.
Savage, L.J., 1954. The Foundations of Statistics. New York: Wiley.
Sowa, J.F., 2000. "Knowledge Representation: Logical, Philosophical and Computational

Foundations," Brooks-Cole Publishers.
Spiegelhalter, D.J., Thomas, A., and Best, N., 1996. "Computation on Graphical Models."

Bayesian Statistics, 5, pp. 407-25.
Stoll, R.P., 1963. Set Theory and Logic. New York: Dover Publications Inc.
Stone, L.D., Barlow, C.A., and Corwin, T.L., 1999. Bayesian Multiple Target Tracking. Boston,

MA: Artech House.
Tarski, A., 1944. "The Semantical Concept of Truth and the Foundations of Semantics."

Philosophy and Phenomenological Research, 4.
Wellman, M.P., Breese, J.S., and Goldman, R.P., 1992. "From knowledge bases to decision

models." The Knoweldge Engineering Review, 7(1), pp. 35-53.
Whittaker, J., 1990. Graphical Models in Applied Multivariate Statistics. Chichester: John Wiley

& Sons.

