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Abstract 
 
Uncertainty is a fundamental and irreducible aspect of our knowledge about the world. Until 
recently, classical first-order logic has reigned as the de facto standard logical foundation for 
artificial intelligence. The lack of a built-in, semantically grounded capability for reasoning under 
uncertainty renders classical first-order logic inadequate for many important classes of problems. 
General-purpose languages are beginning to emerge for which the fundamental logical basis is 
probability. Increasingly expressive probabilistic languages demand a theoretical foundation that 
fully integrates classical first-order logic and probability. In first-order Bayesian logic (FOBL), 
probability distributions are defined over interpretations of classical first-order axiom systems. 
Predicates and functions of a classical first-order theory correspond to a random variables in the 
corresponding first-order Bayesian theory.  This is a natural correspondence, given that random 
variables are formalized in mathematical statistics as measurable functions on a probability space. 
A formal system called Multi-Entity Bayesian Networks (MEBN) is presented for composing 
distributions on interpretations by instantiating and combining parameterized fragments of 
directed graphical models. A construction is given of a MEBN theory that assigns a non-zero 
probability to any satisfiable sentence in classical first-order logic. By conditioning this 
distribution on consistent sets of sentences, FOBL can represent a probability distribution over 
interpretations of any finitely axiomatizable first-order theory, as well as over interpretations of 
infinite axiom sets when a limiting distribution exists. FOBL is inherently open, having the ability 
to incorporate new axioms into existing theories, and to modify probabilities in the light of 
evidence. Bayesian inference provides both a proof theory for combining prior knowledge with 
observations, and a learning theory for refining a representation as evidence accrues. The results of 
this paper provide a logical foundation for the rapidly evolving literature on first-order Bayesian 
knowledge representation, and point the way toward Bayesian languages suitable for general-
purpose knowledge representation and computing. Because FOBL contains classical first-order 
logic as a deterministic subset, it is a natural candidate as a universal representation for integrating 
domain ontologies expressed in languages based on classical first-order logic or subsets thereof. 
 
Keywords: Bayesian network, Bayesian learning, graphical probability models, knowledge 
representation, multi-entity Bayesian network, random variable, probabilistic ontology 

1 Introduction  
First-order logic is primary among logical systems from both a theoretical and a practical 

standpoint.  It has been proposed as a unifying logical foundation for defining extended logics 
and interchanging knowledge among applications written in different languages. However, its 
applicability has been limited by the lack of a coherent semantics for plausible reasoning. A 
theory in first-order logic assigns definite truth-values only to sentences that have the same truth-
value (either true or false) in all interpretations of the theory.  The most that can be said about any 
other sentence is that its truth-value is indeterminate. A reasoner that requires logical proof before 
it can draw conclusions is inadequate for many practical applications. This problem has been 
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addressed with a proliferation of plausible reasoning logics, but these have lacked firm theoretical 
grounding.  The need for plausible reasoning is especially acute for the problem of knowledge 
interchange. Different applications have different ontologies, different semantics, and different 
knowledge and data stores.  Legacy applications are usually only partially documented, and may 
rely on tacit usage conventions that even proficient users do not fully understand or appreciate. 
Even if these problems could be circumvented and a full formal specification for each application 
could be achieved in first-order logic, the alignment of different applications into a single unified 
ontology, semantics, and data store is an ill-specified problem with no unique solution. This is a 
consequence of the fundamental truth that axiom sets in first-order logic do not in general admit 
unique interpretations. Because knowledge interchange is fraught with irreducible uncertainty, it 
should be founded on a logic that supports plausible inference. 

Among the many proposed logics for plausible inference, probability is the strongest 
contender as a universal representation for translating among different plausible reasoning logics. 
There are numerous arguments in favor of probability as a rationally justified calculus for 
plausible inference under uncertainty (e.g., de Finetti, 1934/1975; Howson and Urbach, 1993, 
Jaynes, 2003; Savage, 1954). Until recently, the development of a fully general probabilistic logic 
was hindered by the lack of modularity of probabilistic reasoning, the intractability of worst-case 
probabilistic inference, and the difficulty of ensuring that a set of probability assignments 
specified a unique and well-defined probability distribution.  Probability is not truth-functional.  
That is, the probability of a compound expression cannot be expressed solely as a function of the 
probabilities of its constituent expressions.  The number of probabilities required to express a 
fully general probability distribution over truth-values of a collection of assertions is exponential 
in the number of assertions, making a brute-force approach to specification and inference 
infeasible for all but the smallest problems. Typically, independence assumptions are used to 
decompose complex problems into manageable sub-problems. Recently developed graphical 
probability languages (e.g., Jensen, 2001; Neapolitan, 2003; Pearl, 1988) exploit independence 
relationships to achieve parsimonious representation and efficient inference. The introduction of 
graphs to represent conditional dependence relationships has sparked rapid evolution of 
increasingly powerful languages for computational probabilistic reasoning (e.g., Buntine, 1994; 
D’Ambrosio, et al, 2001; Getoor et al, 2001; Gilks et al, 1994; Glesner and Koller, 1995; Halpern, 
1991; Jaeger, 2001; Koller and Pfeffer, 1997; Laskey and Costa, 2005; Laskey and Mahoney, 
1997; Ngo and Haddawy, 1997; Pfeffer, 2001; Sato, 1998; et al., 1996).  Different communities 
appear to be converging around certain fundamental approaches to representing uncertain 
information about the attributes, behavior, and interrelationships of structured entities (cf., 
Heckerman, et al., 2004).   

This paper presents a logical foundation for the emerging consensus. First-order Bayesian 
logic (FOBL) combines the expressive power of first-order logic with a sound and logically 
consistent treatment of uncertainty. FOBL semantics unifies the standard model-theoretic 
semantics for first-order logic with the theory of random variables as formalized in mathematical 
statistics. A theory in FOBL assigns probabilities to sets of interpretations of an associated 
classical first-order logic (FOL) theory. Functions and predicates in the FOL theory correspond to 
random variables, or measurable functions on the probability space defined by the FOBL theory. 
The probability of a sentence is defined as the probability of the set of interpretations in which it 
is true. The probability calculus provides an inference and learning theory for FOBL theories. 
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The language of multi-entity Bayesian networks (MEBN)1 is presented as a vehicle for 
expressing first-order Bayesian theories and for analyzing theoretical properties of first-order 
Bayesian logic. Although MEBN syntax is designed to highlight the relationship between a 
MEBN theory and its first-order logic counterpart, the primary focus of this paper is the 
underlying logic and not the language. That is, MEBN syntax should be viewed not as a 
competitor to other syntactic conventions for expressing first-order probabilistic knowledge, but 
as a vehicle for expressing and analyzing logical notions that cut across surface syntactic 
differences.  

A MEBN theory builds a probability distribution from MEBN fragments (MFrags). An 
MFrag is a parameterized fragment of a directed graphical model, and expresses probabilistic 
relationships among a collection of related hypotheses. A MEBN theory is a collection of MFrags 
that satisfies global consistency constraints ensuring that it implicitly specifies a joint probability 
distribution over a possibly infinite collection of hypotheses. MEBN theories can be used to 
reason consistently about complex expressions involving nested function application, arbitrary 
logical formulas, and quantification. A set of built-in MFrags provides the full expressive power 
of first-order logic with functions and equality, the most commonly used variant of first-order 
logic.  Section 5.2 below constructs a MEBN theory that assigns non-zero probability to any 
satisfiable sentence in classical first-order logic. This distribution can be updated via Bayesian 
conditioning to express a probability distribution on interpretations of any consistent, finitely 
axiomatizable theory in classical first-order logic. Section 5.2 presents an inference algorithm 
called situation-specific Bayesian network (SSBN) construction. SSBN construction produces a 
sequence of Bayesian networks that approximates the probability distribution implicitly 
represented by the MEBN theory. If the associated FOL theory is inconsistent, SSBN 
construction discovers the inconsistency in finitely many steps. For queries about consistent, 
finitely axiomatizable FOL theories, SSBN construction may terminate with an exact answer or 
may converge to the correct answer in the infinite limit. Theories with infinitely many axioms can 
be represented as nested sequences of MEBN theories. Such an infinite sequence may or may not 
converge to a globally consistent joint distribution over interpretations, depending on whether the 
axioms define a generative process capable of representing the statistical behavior of the 
sequence. A construction due to Oakes (1986) demonstrates that no probabilistic logic can do 
better than this.  Oakes’ construction demonstrates that for any generative probabilistic theory, no 
matter how expressive and flexible, there exist infinite sequences of findings that falsify the 
probabilistic predictions of the theory. 

The remainder of the paper is organized as follows.  Section 2 provides an overview of first-
order logic and introduces notational conventions that will be used throughout the paper.  Section 
3 provides an overview of ordinary Bayesian networks, the propositional knowledge 
representation formalism for which MEBN is a first-order extension.  Section 4 defines the 
MEBN language.  Section 5 defines semantics, presents results on expressive power, and 
discusses inference.  Section 6 reviews current research on expressive first-order languages.  The 
final section is a summary and discussion.  Proofs and algorithms are given in the appendix. 

2 First-Order Logic 
Davis (1990) defines a logic as a schema for defining languages to describe and reason about 
entities in different domains of application. Certain key issues in representation and inference 
                                                
1 MEBN is pronounced “MEE-ben.” 
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arise across a variety of application domains.  A logic encodes particular approaches to these 
issues in a form that can be reused across domains. A logic has the following basic elements (cf., 
Sowa, 2000): 

 The vocabulary consists of symbols that can be combined to form expressions to 
represent and reason about entities in a given domain of discourse.  Symbols are of 
two kinds: 

a. Logical symbols (e.g., variables, connectives, punctuation) are common to 
any language based on the logic; 

b. Non-logical symbols (e.g., constant symbols, function symbols, relation 
symbols) vary from language to language, and provide vocabulary tailored 
to a particular domain of application. 

 The syntax consists of rules for combining these symbols to form legal expressions. 
The proof rules specify ways in which new legal expressions can be derived from 
existing legal expressions. The proof rules provide the operational semantics for 
computer languages that implement the logic. 

 The semantics characterizes the meaning of expressions. Semantics includes two 
aspects: 

c. The theory of reference specifies what the expressions denote in the 
domain of discourse.  The theory of reference corresponds to the 
denotational semantics of a computer language implementing the logic.   

d. The model theory specifies domain-independent aspects of meaning that 
are purely logical consequences of collections of expressions.  The model 
theory establishes an isomorphism, or one-to-one meaning-preserving 
mapping, between different formally equivalent collections of expressions, 
regardless of the domain of discourse to which each collection refers or the 
objects to which the expressions refer.  The model theory corresponds to 
the axiomatic semantics of a computer language implementing the logic. 

A theory is a collection of sentences in a given language2, called the proper axioms of the 
theory, together with all the consequences of those sentences as determined by the semantics of 
the logic. In a computational theory, expressions are encoded as data structures on a computer 
and the proof rules are implemented as computer programs.  To be useful for practical problems, 
a computational theory must be able to represent task-relevant aspects of the domain well enough 
for the purpose, and must admit implementations that quickly and accurately map expressions 
representing user queries to the logical consequences of the axioms with respect to the query. 

A logic with propositional expressive power can reason about particular individuals but 
cannot express generalizations. A logic with first-order expressive power can reason about 
general properties and relationships that apply to collections of individuals.  Higher-order logics 
can generalize not just over particular individuals in the application domain, but also over 
functions, relations, sets, and/or sentences defined on the domain.  Modal logics allow reasoning 
not just about the truth-values of expressions, but also about necessity, possibility, belief, 
desirability, permissibility, and other non truth-functional qualifiers of statements. The greater 
expressive power of higher-order and modal logics allows one to say complex things more 
compactly, but tends to complicate proof and model theories.   

                                                
2 Sentences are legal expressions that make assertions about the domain. 
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By far the most commonly used, studied, and implemented logical system is first-order logic 
(FOL), invented independently by Frege and Peirce in the late nineteenth century (Frege, 
1879/1967; Peirce, 1898).  The notational conventions of this paper are similar to those used in 
standard references (e.g., Davis, 1990; Genesereth and Nielsson, 1987; Russell and Norvig, 2002; 
Sowa, 2000).  The basic syntax of first-order logic can be summarized as follows:  

 The logical symbols consist of the logical connectives ¬ (not), ∧ (and), ∨ (or), ⇒ 
(implies), and ⇔ (if and only if); the equality relation =; the universal and existential 
quantifiers ∀ and ∃;3 the comma, the open and close parentheses, and a countably infinite 
collection of variable symbols. Variables are denoted as alphanumeric strings beginning 
with lowercase letters, e.g., x, person32, something.4  

 The nonlogical symbols consist of constant symbols, function symbols, and predicate 
symbols.  Constant symbols are written as alphanumeric strings beginning with either 
numbers or uppercase letters, e.g., 1978; Marcus, Machine37.  Function and predicate 
symbols are denoted as alphanumeric strings beginning with uppercase letters, e.g., Red, 
BrotherOf, StandardDeviation.  Each function and predicate symbol has an associated 
integer indicating the number of arguments it takes. 

 A term is a constant symbol, a variable symbol, or a function symbol followed by a 
parenthesized list of terms separated by commas, e.g., Machine37, m, 
RoomTemp(MachineLocation(m)), Manager(Maintenance,2003).  Terms are used to refer 
to entities in the domain.  They serve as arguments to functions and predicates.  

 An atomic formula is:  
o A predicate symbol followed by a parenthesized list of terms, e.g., 

Warmer(MachineLocation(m),30,Celsius); or 
o A parenthesized expression consisting of a term followed by an equal sign followed 

by another term, e.g., (Fernandez = Manager(Maintenance,2003)).   
 A formula is: 

o An atomic formula; 
o An expression of the form ¬α, (α∧β); (α∨β); (α⇒β), or (α⇔β), where α and β are 

formulas, e.g.,  
((Fernandez = Manager(Maintenance,2003))  

∨ (Nguyen = Manager(Maintenance,2003))); or 
o An expression of the form ∀µα or ∃µα, where µ is a variable symbol and α is a 

formula, e.g. ∃x (Employee(x) ∧ (x = Manager(department,year))). 
 An open formula is a formula in which some variables are free, or not within the scope of 

a quantifier, e.g., (r=MachineLocation(m)).  A closed formula, or sentence, is a formula 
in which there are no free variables, e.g.,  

∀m (Isa(Machine,m) ⇒ ∃r (Isa(MachineRoom,r) ∧ (r=MachineLocation(m)))). 

Parentheses may be omitted in any of the above expressions if no confusion will result. 
First-order logic is applied by defining a set of axioms, or sentences intended to assert 

relevant truths or assumptions about a domain.  The axioms, together with the set of logical 
                                                
3 A formal specification of first-order logic requires only two connectives and one quantifier (e.g., ¬, ⇒, and ∃); the 
others can be defined from these. 
4 Although words are often used to convey intended meaning, the variable, function and predicate symbols are treated 
by the logic as meaningless tokens.  A theory may contain axioms that enforce intended meanings, but there is nothing 
in the logic itself to prevent person32 from being used to refer to a frog or an asteroid. 
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consequences of the axioms, comprise a theory of the domain. If the axioms are consistent, the set 
of consequences is a proper subset of all syntactically correct sentences.  Because anything 
follows from a contradiction, if the axioms are inconsistent, the set of consequences consists of 
all sentences.  Until referents for the symbols are specified, a theory is a syntactic structure 
devoid of meaning. An interpretation for a theory specifies a definition of each constant, 
predicate and function symbol in terms of the domain.  An interpretation assigns each constant 
symbol to a specific individual entity, each predicate to a set containing the entities for which the 
predicate holds, and each function symbol to a function defined on the domain.  The purely 
logical consequences of a set of axioms consist of the sentences that are true in all interpretations, 
also called the valid sentences. A logical system is complete if all valid sentences can be proven 
and negation complete if for every sentence, either the sentence or its negation can be proven. 
Kurt Gödel proved both that first-order logic is complete, and that no consistent logical system 
strong enough to axiomatize arithmetic can be negation complete (cf., Stoll, 1963; Enderton, 
2001).   

A number of proof systems have been defined for first-order logic.  Resolution with 
Skolemization is a refutation-complete proof system5 that is straightforward to specify, 
implement and control. Russell and Norvig (2002) present a detailed description of resolution 
with Skolemization and a proof of refutation-completeness. Natural deduction is a complete proof 
system that is more intuitive than resolution, but harder to implement.  Davis (1990) presents a 
natural deduction proof system for first-order logic. 

Special-purpose logics built on first-order logic give pre-defined meaning to reserved 
constant, function and/or predicate symbols. Such logics provide built-in constructs that are 
useful in many applications.  There are logics that provide constants, predicates, and functions for 
reasoning about types, space and time, parts and wholes, actions and plans, etc. When a logic is 
applied to reason about a particular domain, the modeler assigns meaning to additional domain-
specific constant, predicate and function symbols.  This is accomplished by specifying a set of 
proper axioms encoding knowledge about the domain. A domain ontology (Gruber, 1993; Sowa, 
2000) expresses knowledge about the types of entities in a domain of application, the attributes 
and allowable behaviors of entities of a given type, allowable relationships among entities of 
different types, and (optionally) characteristics of particular individual entities. Formal ontologies 
are usually expressed in languages based on first-order logic or one of its subsets. 

Because of the essential role of uncertainty management in intelligent reasoning, probabilistic 
logic has long been an active research area in artificial intelligence. Because probability is not 
truth-functional, naive attempts to generalize the standard logical connectives and quantifiers into 
combining rules for probabilities were unsuccessful. The situation changed with the introduction 
of graphical probability models. Bayesian networks, or directed graphical probability models, 
provide a mathematically well-founded formalism for composing coherent multivariate 
probability distributions from modular components involving only a few random variables. As 
formalized in standard texts, Bayesian networks have only propositional expressive power.  Many 
languages have appeared that extend the expressive power of standard Bayesian networks. The 
next section gives a brief overview of Bayesian networks, and the following section presents an 
extension of Bayesian networks to a language having full first-order expressive power. 

                                                
5 That is, if a sentence is unsatisfiable, resolution will generate a proof of unsatisfiability in finitely many steps. 
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3 Bayesian Networks 
Graphical probability and decision models (Whittaker, 1990, Cowell, et al., 1999) have become 
increasingly popular both as a parsimonious language for representing knowledge about uncertain 
phenomena and as an architecture to support efficient algorithms for inference, search, 
optimization, and learning.  A graphical probability model expresses a probability distribution 
over a collection of interrelated hypotheses as a graph and a collection of local probability 
distributions.  The graph encodes dependencies among the hypotheses. The local probability 
distributions specify numerical probability information.  Specification is tractable because each 
local distribution depends on only a small set of directly related hypotheses. Tractable exact or 
approximate inference is possible for complex tasks because independence relationships allow 
inference to be decomposed into local inference problems involving only small numbers of 
hypotheses.  

A Bayesian network (e.g., Pearl, 1988; Jensen, 2001; Neapolitan, 2003) is a graphical 
probability model in which the dependency graph is an acyclic directed graph. Figure 1 shows a 
Bayesian network for a diagnosis task.  The nodes in the graph denote random variables. In 
mathematical statistics, a random variable is defined as a function that maps elements of a set 
called the sample space to elements of another set called the outcome space.6 Random variables 
in a Bayesian network map entities in a domain of application to attributes or features of the 
entities. For example, in the Bayesian network of Figure 1, the EngineStatus random variable 
maps a piece of equipment to a value in the set {Satisfactory,Overheated}, depending on whether 
its engine is operating normally or is overheated. Each random variable can take on one of a 
mutually exclusive and collectively exhaustive set of possible values.  Given any state of 
information about the other random variables, each possible value for a random variable has a 
probability that ranges between zero and one.  This probability represents the likelihood, given 
the available information, that the attribute in question takes on the indicated value.  

Probabilities for the possible values of the random variables are specified by means of local 
distributions that together implicitly specify a joint distribution over all possible configurations of 
values for the random variables. The graph for a Bayesian network represents a set of conditional 
independence assertions satisfied by the implicitly encoded probability distribution (Cowell, et 
al., 1999; Jensen, 2001; Lauritzen, 1996; Pearl, 1988; Whittaker, 1990). The graph must contain 
no directed cycles, ensuring non-circularity in the specification of probabilities. The parents of a 
node in the graph denote the random variables whose values directly influence the probability of 
the node’s random variable. The probability that a random variable takes on a given value is 
independent of the values of the random variable’s non-descendants given the values of its 
parents. For example, in Figure 1, if the values of BeltStatus and RoomTemp are specified, the 
probabilities for the values of EngineStatus do not depend on the value of MaintenancePractice 
or TempSensor.  That is, although the organization’s maintenance practices and the temperature 
sensor reading are relevant to whether the engine is functioning properly, the influence operates 
via the condition of the belt and temperature of the room.  Once the condition of the belt and the 
temperature of the room are given, there is no remaining influence from other ancestors of 
EngineStatus. 

                                                
6 Additional technical conditions must be satisfied for a function to be a random variable:  the sample space must be a 
probability space; the outcome space must be a measurable space; and the function must be measurable.  The graph and 
local distributions of a Bayesian network implicitly specify a set of random variables satisfying these conditions. 



FIRST-ORDER BAYESIAN LOGIC 

*DRAFT* 8 2/27/06 

The local distribution for a root 
node consists of a single probability 
distribution.  For non-root nodes, a 
probability distribution is specified for 
each combination of possible values of 
the node’s parents. In Figure 1, for 
example, only one probability 
distribution needs to be specified for 
MaintenancePractice. For EngineStatus, 
a probability distribution must be 
specified for each combination of values 
of its parents.  If the possible values of 
BeltStatus and RoomTemp are {OK, 
Broken} and {Normal, High}, 
respectively, then four probability 
distributions must be specified – one for 
each member of the set {(OK, Normal), 
(OK, High), (Broken, Normal), (Broken, 
High)}.  

Some authors assume that random 
variables in a Bayesian network have 

finitely many possible values. Some require only that each random variable have an associated 
function mapping values of its parents to probability distributions on its set of possible values. In 
an unconstrained local distribution on finite-cardinality random variables, a separate probability is 
specified for each value of a random variable given each combination of values of its parents. 
Because the complexity of specifying local distributions is exponential in the number of parents, 
constrained families of local distributions are often used to simplify specification and inference.  
In distributions exhibiting context-specific independence (Geiger and Heckerman, 1991; 
Boutilier, et al., 1996; Mahoney and Laskey, 1999; Mahoney, 1999), the parent configurations are 
partitioned into subsets having a common distribution for the child random variable.  
Independence of causal influence (ICI) refers to a class of local distributions in which each parent 
random variable makes an independent contribution to the probability distribution of the child 
random variable.  The most common ICI models are the “noisy or” and other noisy functional 
dependence models (Jensen, 2001; Pearl, 1988).  Local expression languages (D’Ambrosio, 
1991) can be used to specify arbitrary functional relationships between states of the parent 
random variables and probabilities of the child random variable.  When a random variable and/or 
its parents have infinitely many possible values, local distributions cannot be listed explicitly, but 
can be specified as parameterized functions.  When a random variable has an uncountable set of 
possible values, then the local distributions specify probability density functions with respect to a 
measure on the set of possible outcomes (cf., DeGroot and Schervish, 2002; Robert, 2001). 

A Bayesian network can be used to compute probabilities of some random variables given 
information about other random variables.  For example, we might use the Bayesian network of 
Figure 1 to compute the probability of producing a defective product, and to update this 
distribution to incorporate evidence such whether the temperature light is blinking.  Efficient 
algorithms have been developed for computing probabilities and propagating the impact of 
evidence (D’Ambrosio, 1999).  Methods have also been developed for learning Bayesian 
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Figure 1:  Bayesian Network for Diagnostic Task 
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networks from data and for combining observations with expert knowledge (e.g., Heckerman, et 
al., 1995; Dybowski, et al., 2003).  By further reducing the dimensionality of the parameter space, 
use of local expressions can ease the specification burden, reduce the sample size required to 
learn the local distributions, and improve the tractability of inference.  

The simple attribute-value representation of standard Bayesian networks is insufficiently 
expressive for many problems.  For example, the Bayesian network of Figure 1 applies to a single 
piece of equipment located in a particular room and owned and maintained by a single 
organization. We may need to consider problems that involve multiple organizations, each of 
which owns and maintains multiple pieces of equipment of different types, some of which are in 
rooms that contain other items of equipment.  The room temperature and air conditioner status 
random variables would have the same value for co-located items, and the maintenance practice 
random variable would have the same value for items with the same owner. Standard Bayesian 
networks provide no way of compactly representing the correlation between failures of co-located 
and/or commonly owned items of equipment or of properly accounting for these correlations 
when learning from observation. For this reason, more expressive extensions to the Bayesian 
network formalism have been developed (e.g., Buntine, 1994; D’Ambrosio, et al, 2001; Getoor et 
al, 2000, 2001; Gilks et al, 1994; Heckerman, et al., 2004; Jaeger, 2001; Koller and Pfeffer, 1997; 
Laskey, et al, 2001; Laskey and Mahoney, 1997; Ngo and Haddawy, 1997; Pfeffer, 2001; Sato, 
1998; Spiegelhalter et al., 1996). First-order Bayesian logic provides a unifying logical 
foundation for the emerging collection of more expressive probabilistic languages. The next 
section describes a first-order extension to Bayesian networks that implements first-order 
Bayesian logic. 

4 Multi-Entity Bayesian Networks 
Like Bayesian networks, MEBN theories use directed graphs to specify joint probability 
distributions for a collection of interrelated random variables. Like Bayesian networks, MEBN 
theories represent relationships among hypotheses using directed graphs in which nodes represent 
uncertain hypotheses and edges represent probabilistic dependencies.  The MEBN language 
extends ordinary Bayesian networks to provide first-order expressive power, and also extends 
first-order logic (FOL) to provide a means of specifying probability distributions over 
interpretations of first-order theories.  

Knowledge in MEBN theories is expressed via MEBN Fragments (MFrags), each of which 
represents probability information about a group of related random variables. Just as first-order 
logic extends propositional logic to provide an inner structure for sentences, MEBN theories 
extend ordinary Bayesian networks to provide an inner structure for random variables.  Random 
variables in MEBN theories take arguments that refer to entities in the domain of application.  For 
example, Manager(d,y) might represent the manager of the department designated by the variable 
d during the year designated by the variable y. To refer to the manager of the maintenance 
department in 2003, we would fill in values for d and y to obtain an instance 
Manager(Maintenance,2003) of the Manager random variable. A given situation might involve 
any number of instances of the Manager random variable, referring to different departments 
and/or different years. As shown below, the Boolean connectives and quantifiers of first-order 
logic are represented as pre-defined MFrags whose meaning is fixed by the semantics. A MEBN 
theory implicitly expresses a joint probability distribution over truth-values of sets of FOL 
sentences. Any sentence that can be expressed in first-order logic can be represented as a random 
variable in a MEBN theory. The MEBN language is modular and compositional.  That is, 
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probability distributions are specified locally over small groups of hypotheses and composed into 
globally consistent probability distributions over sets of hypotheses. 

4.1 Entities and Random Variables 
The MEBN language treats the world as being comprised of entities that have attributes and are 
related to other entities. Constant and variable symbols are used to refer to entities.  There are 
three logical constants with meaning fixed by the semantics of the logic, an infinite collection of 
variable symbols, and an infinite collection of non-logical constant symbols with no pre-specified 
referents. Random variables represent features of entities and relationships among entities. There 
is a collection of logical random variable symbols with meaning fixed by the semantics of the 
logic, and an infinite collection of non-logical random variable symbols with no pre-specified 
referents.  The logical constants and random variables are common to all MEBN theories; the 
non-logical constants and random variables provide terminology for referring to objects and 
relationships in a domain of application. 

Constant and variable symbols: 
 (Ordinary) variable symbols: As in FOL, variables are used as placeholders to refer to 

non-specific entities.  Variables are written as alphanumeric strings beginning with 
lowercase letters, e.g., department7.  To avoid confusion, the adjective “ordinary” is 
sometimes used to distinguish ordinary variables from random variables. 

 Non-logical constant symbols: Particular named entities are represented using constant 
symbols. As in our FOL notation, non-logical constant symbols are written as 
alphanumeric strings beginning with uppercase letters, e.g., Machine37, Fernandez.   

 Unique Identifier symbols: The same entity may be represented by different non-logical 
constant symbols. MEBN avoids ambiguity by assigning a unique identifier symbol to 
each entity. The unique identifiers are the possible values of random variables. There are 
two kinds of unique identifier symbols: 
o Truth-value symbols and the undefined symbol:  The reserved symbols T, F and ⊥, 

are logical constants with pre-defined meaning fixed by the semantics. The symbol ⊥ 
denotes meaningless, undefined or contradictory hypotheses, i.e., hypotheses to 
which a truth-value cannot be assigned. The symbols T and F denote truth-values of 
meaningful hypotheses. 

o Entity identifier symbols. There is an infinite set E of entity identifier symbols.  An 
interpretation of the theory uses entity identifiers as labels to refer to entities in the 
domain. Entity identifiers are written either as numerals or as alphanumeric strings 
beginning with an exclamation point, e.g., !M3, 48723.  

Random variable symbols: 
 Logical connectives and the equality operator:  The logical connective symbols ¬, ∧, ∨, 

⇒, and ⇔, together with the equality relation =, are reserved random variable symbols 
with pre-defined meanings fixed by the semantics. Logical expressions may be written 
using prefix notation (e.g,, ¬(x), ∨(x,y), =(x,y)), or in the more familiar infix notation 
(e.g., ¬x, (x∨y); (x=y)).  Different ways of writing the same expression (e.g., =(x,y), 
(y=x)) are treated as the same random variable. 

 Quantifiers: The symbols ∀ and ∃ are reserved random variable symbols with pre-
defined meaning fixed by the semantics.  They are used to construct MEBN random 
variables to represent FOL sentences containing quantifiers.  
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 Identity: The reserved random variable symbol ◊ denotes the identity random variable.  It 
is the identity function on T, F, ⊥, and the set of entity identifiers that denote meaningful 
entities in a domain.  It maps meaningless, irrelevant, or contradictory random variable 
terms to ⊥. 

 Findings: The finding random variable symbol, denoted Φ, is used to represent observed 
evidence, and also to represent constraints assumed to hold among entities in a domain of 
application. 

 Non-logical random variable symbols: The domain-specific random variable symbols are 
written as alphanumeric strings beginning with an uppercase letter.  With each random 
variable symbol is associated a positive integer indicating the number of arguments it 
takes.  Each random variable also has an associated set of possible values consisting of a 
recursively enumerable subset of the unique identifier symbols.  The set of possible 
values may be infinite, but if so, there must exist an effective procedure that lists all the 
possible values and an effective procedure for determining whether any unique identifier 
symbol is one of the possible values. If the set of possible values is contained in {T,F,⊥}, 
the random variable is called a Boolean random variable.  For all other random variables, 
called non-Boolean random variables, the set of possible values is contained in E∪{⊥}. 
Boolean random variables correspond to predicates and non-Boolean random variables 
correspond to functions in FOL.  

 Exemplar symbols.  There is an infinite set of exemplar symbols used to refer to 
representative fillers for variables in the range of quantifiers. An exemplar symbol is 
denoted by $ followed by an alphanumeric string, e.g., $b32.7 

Punctuation: 
 MEBN random variable terms are constructed using the above symbols and the 

punctuation symbols comma, open parenthesis and close parenthesis.  

A random variable term is a random variable symbol followed by a parenthesized list of 
arguments separated by commas, where the arguments may be variables, constant symbols, or 
(recursively) random variable terms. When α is a constant or ordinary variable, the random 
variable term ◊(α) may be denoted simply as α.  If φ is a random variable symbol, a value 
assignment term for φ has the form =(ψ,α), where ψ is a random variable term and α is either an 
ordinary variable symbol or one of the possible values of φ.  The strings =(α,ψ), (α=ψ), and 
(ψ=α) are treated as synonyms for =(ψ,α). A random variable term is closed if it contains no 
ordinary variable symbols and open if it contains ordinary variable symbols. An open random 
variable term is also called a random variable class; a closed random variable term is called a 
random variable instance.  If a random variable instance is obtained by substituting constant 
terms for the variable terms in a random variable class, then it is called an instance of the class. 
For example, the value assignment term =(BeltStatus(!B1), !OK), also written (BeltStatus(!B1) = 
!OK), is an instance of both (BeltStatus(b)=x) and (BeltStatus(!B1)=x), but not of (BeltStatus(b) = 
!Broken). When no confusion is likely to result, random variable classes and instances may be 
referred to as random variables.  A random variable term is called simple if all its arguments are 
either unique identifier symbols or variable symbols; otherwise, it is called composite.  For 
example, =(BeltStatus(!B1), !OK) is a composite random variable term containing the simple 

                                                
7 Exemplar symbols were called Skolem symbols in earlier work (e.g., Laskey and Costa, 2005) because, in analogy to 
Skolem functions, exemplar symbols replace variables in the range of quantifiers. However, exemplars are different 
from Skolem functions, and the terminology was changed to avoid confusion.  



FIRST-ORDER BAYESIAN LOGIC 

*DRAFT* 12 2/27/06 

random variable term BeltStatus(!B1) as an argument. It is assumed that the sets consisting of 
ordinary variable symbols, unique identifier symbols, exemplar random variable symbols, non-
logical constant symbols, and non-logical random variable symbols are all recursive.   

4.2 MEBN Fragments  
In MEBN theories, multivariate probability distributions are built up from MEBN fragments or 
MFrags (see Figure 2). An MFrag defines a probability distribution for a set of resident random 
variables conditional on the values of context and input random variables.  Random variables are 
represented as nodes in a fragment graph whose arcs represent dependency relationships.  

Definition 1:  An MFrag F = (C,I,R,G,D) consists of a finite set C of context value assignment 
terms;8 a finite set I of input random variable terms; a finite set R of resident random variable 
terms; a fragment graph G; and a set D of local distributions, one for each member of R. The 
sets C, I, and R are pairwise disjoint. The fragment graph G is an acyclic directed graph whose 
nodes are in one-to-one correspondence with the random variables in I∪R, such that random 
variables in I correspond to root nodes in G. Local distributions specify conditional probability 
distributions for the resident random variables as described in Definition 3 below.   

An MFrag is a schema for specifying conditional probability distributions for instances of its 
resident random variables given the values of instances of their parents in the fragment graph and 
given the context constraints. A collection of MFrags that satisfies the global consistency 
constraints defined in Section 4.3 below represents a joint probability distribution on an 
unbounded and possibly infinite number of instances of its random variable terms. The joint 
distribution is specified via the local distributions, which are defined formally below, together 
with the conditional independence relationships implied by the fragment graphs. Context terms 
are used to specify constraints under which the local distributions apply.  

As in ordinary Bayesian networks, a local distribution maps configurations of values of the 
parents of a random variable instance to probability distributions for its possible values.  When all 
ordinary variables in the parents of a resident random variable term also appear in the resident 
term itself, as for the RoomTemp and TempLight random variables of the temperature 
observability MFrag of Figure 2, a local distribution can be specified simply by listing a 
probability distribution for the child random variable for each combination of values of the parent 
random variables. The situation is more complicated when ordinary variables in a parent random 
variable do not appear in the child.  In this case, there may be an arbitrary, possibly infinite 
number of instances of a parent for any given instance of the child.  For example, in the engine 
status fragment of Figure 2, if it is uncertain where a machine is located, the temperature in any 
room in which it might be located is relevant to the distribution of the EngineStatus random 
variable.  If a machine has more than one belt, then the status of any of its belts is relevant to the 
distribution of the EngineStatus random variable. Thus, any number of instances of the 
RoomTemp and BeltStatus random variables might be relevant to the distributions of the 
EngineStatus random variable. In this case, the local distribution for a random variable must 
specify how to combine influences from all relevant instances of its parents. The standard 
approaches to this problem are aggregation functions and combining rules  (cf., Natarajan, et al., 
2005).  

                                                
8 If φ is a Boolean random variable, the context constraint φ=T may be abbreviated φ and the context constraint φ=F 
may be abbreviated ¬φ. 
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MEBN local distributions combine influences of multiple parents through influence counts. 
In a standard Bayesian network, the probability distribution for a node depends on the 
configuration of states of its parents.  In a MEBN theory, different substitutions for the ordinary 
variables may yield multiple instantiations of the parents.  Each allowable substitution defines a 
parent set, and each parent set has a configuration of states.  Influence counts tally the number of 
times each configuration of the parents occurs among these parent sets.  Influence counts can 
represent both aggregation functions and combining rules. 

Configurations of the parent random variables that are relevant to the distribution of the child 
are called influencing configurations. The local distribution πψ for a resident random variable ψ in 
MFrag F specifies, for each instance of ψ: (i) a set of possible values; (ii) a rule for determining 
the influencing configurations; and (iii) a rule for assigning probabilities to the possible values 
given an influencing configuration. 

Definition 2: Let F be an MFrag containing ordinary variables θ1, …, θk, and let ψ(θ)  denote a 
resident random variable in F that may depend on some or all of the θi. 

2a. A binding set B = {(θ1:ε1), (θ2:ε2), … (θk:εk)} for F is a set of ordered pairs associating a 
unique identifier symbol εi with each ordinary variable θi of F. The constant symbol εi is 
called the binding for variable θi determined by B.  The εi are not required to be distinct. 

2b. Let B = {(θ1:ε1), (θ2:ε2), … (θk:εk)} be a binding set for F, and let ψ(ε) denote the 
instance of ψ obtained by substituting εi for each occurrence of θi in ψ(θ). A potential 
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Figure 2:  MEBN Fragments for Equipment Diagnosis Problem 
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influencing configuration for ψ(ε) and B is a set of value assignment terms {(γ=φ(ε))}, 
one for each parent of ψ and one for each context random variable of F.  Here, φ(ε) 
denotes the instance of the context or parent random variable φ(θ) obtained by 
substituting εi for each occurrence of θi;9 and γ denotes one of the possible values of φ(ε) 
(as specified by the local distribution πψ; see Definition 3 below). An influencing 
configuration for ψ(ε) and B is a potential influencing configuration in which the value 
assignments match the context constraints of F.  Two influencing configurations are 
equivalent if substituting θi back in for εi yields the same result for both configurations.  
The equivalence classes for this equivalence relation correspond to distinct configurations 
of parents of ψ(θ) in F. 

2c. Let {ε1, ε2, …, εn } be a non-empty, finite set of entity identifier symbols.  The partial 
world W for ψ and {ε1, ε2, …, εn } is the set consisting of all instances of the parents of ψ  
and the context random variables of F that can be formed by substituting the εi for 
ordinary variables of F. A partial world state SW for a partial world is a set of value 
assignment terms, one for each random variable in the partial world. 

2d. Let W be a partial world for ψ and {ε1, ε2, …, εn }, let SW be a partial world state for W,  
let B = {(θ1:εB1), (θ2:εB2), … (θk:εBk)} be a binding set for F with bindings chosen from 
{ε1, ε2, …, εn }, and let ψ(εB) be the instance of ψ(θ) from B.  The influence counts #SWψ 
for ψ(αB) in SW consist of the number of influencing configurations SW contains for each 
equivalence class of influencing configurations (i.e., each configuration of the parents of 
ψ(θ)  in F).  

As an example, Table 1 shows a partial world state for the EngineStatus(m) random variable 
from Figure 2 with unique identifiers {!M1, !R1, !R2, !B1, !B2, !O1}.  In the intended meaning of 
the partial world of Table 1, !M1 denotes a machine, !B1 and !B2 denote belts located in !M1, !R1 
denotes the room where !M1 is located, !R2 denotes a room where !M1 is not located, and !O1 
denotes an entity that is not a machine, a room, or a belt. The partial world state specifies the 
value of each random variable for each of the entity identifiers.  Random variables map 
meaningless attributes (e.g., the value of RoomTemp for an entity that is not a room) to the absurd 
symbol ⊥.  

The partial world state of Table 1 contains two equivalent influencing configurations for 
EngineStatus(!M1): 

IC1: { (Isa(Machine,!M1)=T), (Isa(Belt,!B1)=T), (Isa(Room,!R1)=T), 
(BeltLocation(!B1)=!M1), (MachineLocation(!M1)=!R1), (RoomTemp(!R1)=!Normal), 
(BeltStatus(!B1)=!OK)};  

IC2: { Isa(Machine,!M1)=T), (Isa(Belt,!B2)=T), (Isa(Room,!R1)=T), 
(BeltLocation(!B2)=M1), (MachineLocation(!M1)=!R1), (RoomTemp(!R1)=!Normal), 
(BeltStatus(!B2)=!OK)}. 

It contains no other influencing configurations for EngineStatus(M1). Thus, the influence counts 
for EngineStatus(M1) in this possible world state are: 

RoomTemp=!Normal, BeltStatus=!OK : 2 
RoomTemp=!Normal,  BeltStatus=!Broken : 0    
RoomTemp=!Hot, BeltStatus=!OK : 0 

                                                
9 If a context value assignment term (γ=φ) has no arguments, then no substitution is needed. 
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RoomTemp=!Hot, BeltStatus=!Broken : 0 . 

The local distribution assigned to EngineStatus(M1) in this partial world would thus be the one 
for a machine having two intact and no broken belts, and located in a room with normal room 
temperature. 

Definition 3:  The local distribution πψ for resident random variable ψ in MFrag F specifies, for 
each instance ψ(ε) of ψ: (i) a subset Vψ(ε) of possible values for ψ(ε); and (ii) a function πψ(ε)(α|S) 
that maps unique identifiers α and partial world states S to real numbers, such that the following 
conditions are satisfied: 

3a. For a given partial world state S, πψ(ε)(⋅ |S) is a probability distribution on the unique 
identifier symbols.  That is, πψ(ε)(α |S) ≥ 0 and 

 
!" (# ) ($ | S)$% = 1 , where α ranges over the 

unique identifier symbols.10 
3b. For each instance ψ(ε) of ψ, the set Vψ(ε) of possible values of the instance ψ(ε) is a 

recursively enumerable subset of the unique identifiers, and πψ(ε)(Vψ(ε)|S)  = 1 for each 
partial world S. 

3c. There is an algorithm such that for any recursive subset A of the possible values of ψ(ε) 
not containing ⊥, and for any partial world state S for ψ, either the algorithm halts with 
output πψ(ε)(A|S) or there exists a value N(A,S) such that if the algorithm is interrupted 
after a number of time steps greater than N(A,S),  the output is πψ(ε)(A|S).11 

3d. πψ(ε) depends on the partial world state only through the influence counts.  That is, any 
two partial world states having the same influence counts map to the same probability 
distribution; 

                                                
10 Although random variables in MEBN logic have finite or countably infinite sample spaces, and local distributions are 
discrete, MEBN logic can represent continuous distributions (see Laskey, 2006). 
11 It is required that N(A,S) exists, but there need not be an effective procedure for computing it. 

Isa(Machine,!M1)=T 
Isa(Belt,!M1)=F 
Isa(Room,!M1)=F  
BeltLocation(!M1)=⊥ 
MachineLocation(!M1)=!R1 
RoomTemp(!M1)=⊥ 
BeltStatus(!M1)=⊥ 

Isa(Machine,!R1)=F 
Isa(Belt,!R1)=F 
Isa(Room,!R1)=T  
BeltLocation(!R1)=⊥ 
MachineLocation(!R1)=⊥ 
RoomTemp(!R1)=!Normal 
BeltStatus(!R1)=⊥ 

Isa(Machine,!R2)=F 
Isa(Belt,!R2)=F 
Isa(Room,!R2)=T  
BeltLocation(!R2)=⊥ 
MachineLocation(!R2)=⊥ 
RoomTemp(!R2)=Hot 
BeltStatus(!R2)=⊥ 

Isa(Machine,!B1)=F 
Isa(Belt,!B1)=T 
Isa(Room,!B1)=F  
BeltLocation(!B1)=!M1 
MachineLocation(!B1)=⊥ 
RoomTemp(!B1)=⊥ 
BeltStatus(!B1)=!OK 

Isa(Machine,!B2)=F 
Isa(Belt,!B2)=T 
Isa(Room,!B2)=F  
BeltLocation(!B2)=!M1 
MachineLocation(!B2)=⊥ 
RoomTemp(!B2)=⊥ 
BeltStatus(!B2)=!OK 

Isa(Machine,!O1)=F 
Isa(Belt,!O1)=F 
Isa(Room,!O1)=F  
BeltLocation(!O1)=⊥ 
MachineLocation(!O1)=⊥ 
RoomTemp(!O1)=⊥ 
BeltStatus(!O1)=⊥ 

Table 1:  Partial World State for EngineStatus Partial World 
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3e. Let S1 ⊂ S2 ⊂ … be an increasing sequence of partial world states for ψ, and let α  be one 
of the possible values for ψ.  There exists an integer N such that if k > N, πψ(ε)(α |Sk) = 
πψ(ε)(α |SN).12 

The probability distribution πψ(ε|∅) is called the default distribution for ψ.  It is the 
probability distribution for ψ given that no potential influencing configurations satisfy the 
conditioning constraints of F. If ψ is a root node in an MFrag F containing no context constraints, 
then the local distribution for ψ is just the default distribution.  

Conditions such as 3c and 3e are needed to ensure that a global joint distribution exists and 
can be approximated by a sequence of finite Bayesian networks.  The conditions given here are 
stronger than strictly necessary. Because they are satisfied in the MEBN theory for first-order 
logic presented in Section 5.2 below, they are sufficient to demonstrate the existence of a fully 
first-order Bayesian logic. Nevertheless, identifying suitable relaxations of these conditions is an 
important topic for future research. For example, in many applications it would be useful to 
define a random variable as the average of an unbounded number of instances of its parent. It is 
clear that such a local distribution would not satisfy Condition 3e. Standard results on 
convergence of averages to limiting distributions (see, e.g., Billingsley, 1995) might be applied to 
identify suitable generalizations of the restrictions of Definition 3.   

Although the sets Vψ(ε) are finite or countably infinite, it is possible to define distributions on 
arbitrary measure spaces. We can view the entity identifiers as labels for the elements of a 
sequence sampled randomly from a set that may be uncountably infinite. The characteristics of 
the sampled elements are specified via the distributions of features. For example, StdUniform(1), 
StdUniform(2), …, might represent labels for uniform random numbers drawn from the unit 
interval. We might define these labels as StdUniform(1) = !StdUniform1, StdUniform(2) = 
!StdUniform2, …, respectively. The random variable Digit(u,k) might then denote the kth digit of 
the nth uniform random number. The values Digit(u,k) would then be mutually independent with 
uniform distributions on the set {0, 1}. 

Table 2 shows an example of a local distribution for the engine status MFrag.  The 
conditioning constraints imply there can be at most one RoomTemp parent that satisfies the 
context constraint MachineLocation(m) = r.  When this parent has value !Normal, probability αk,n 
is assigned to !Normal and probability 1-αk,n is assigned to !Overheated, where k is the number of 
distinct BeltStatus parents having the value OK, out of a total of n>0 distinct BeltStatus parents.  
When the RoomTemp parent corresponding to MachineLocation(m) has value !Hot,  the 
probability of a satisfactory engine is βk,n and the probability  of an overheated engine is 1-βk,n, 

                                                
12 Again, it is not required that there be an effective procedure for computing N. 

 

EngineStatus(m) Context RoomTemp(r) BeltStatus(b) 
Satisfactory Overheated ⊥  

!OK : k !Normal !Broken : n-k αk,n 1-αk,n 0 

!OK : k 

Belt b located 
in machine 

m, located in 
room r !Hot !Broken : n-k βk,n 1-βk,n 0 

Default 0 0 1 

Table 2: Local Distribution as Function of Influence Counts 
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where again k denotes the number of distinct belts with 
value OK and n>0 denotes the total number of distinct 
belts. The default distribution applies when no 
combination of entities meets the conditioning 
constraints. It assigns probability 1 to ⊥, meaning that 
EngineStatus(m) is meaningless when the context 
constraints are not met (i.e., m does not denote a 
machine, m is not located in a room, or m has no belt). 
Default distributions are not required to assign 
probability 1 to ⊥.  For example, the default distribution 
could be used to represent the engine status of beltless 
machines.  Note, however, that the default distribution does not distinguish situations in which m 
refers to a machine with no belt from situations in which m is not a machine. Thus, this modeling 
approach would assign the same EngineStatus distribution to non-machines as to machines with 
no belt. 

MFrags may contain recursive influences. Recursive influences allow instances of a random 
variable to depend directly or indirectly on other instances of the same random variable.  One 
common type of recursive graphical model is a dynamic Bayesian network (Ghahramani, 1998; 
Murphy, 1998).  Recursion is permissible as long as no random variable instance can directly or 
indirectly influence itself.  This requirement is satisfied when the conditioning constraints prevent 
circular influences. For example, Figure 3 modifies the belt status MFrag from Figure 2 so that 
the status of a belt depends not only on the maintenance practice of the organization, but also on 
the status of the belt at the previous time. The function Prev(n), defined for natural numbers, 
maps a positive natural number to the previous natural number, and has value ⊥ when n is zero. 
The context constraint s = Prev(t), prevents circular influences in instances of the MFrag.  If the 
variable t is bound to zero, there will be no influencing configurations satisfying the context 
constraints (because Prev(0) has value ⊥ and NatNumber(⊥)=⊥.).  Thus, any instance of the 
BeltStatus random variable for which s is bound to zero will have no parents, and its local 
distribution will be the default distribution. 

MFrags can represent a rich family of probability distributions over interpretations of first-
order theories.  The ability of MFrags to represent uncertainty about parameters of local dist-
ributions provides a logical foundation for parameter learning in first-order probabilistic theories. 
Uncertainty about structure can be represented by sets of MFrags having mutually exclusive 
context constraints and different fragment graphs, thus providing a logical foundation for struc-
ture learning (Laskey, 2006). 

MEBN comes equipped with a set of built-in MFrags representing logical operations, func-
tion composition, and quantification.  There are also constraints that must be satisfied by domain-
specific MFrags.  The built-in MFrags, the constraints on domain-specific MFrag definitions, and 
the rules for combining MFrags and performing inference provide the logical content of Bayesian 
logic. An applied MEBN theory specifies a set of domain-dependent MFrags that provide 
empirical and/or mathematical content.   

The built-in MFrags are defined below:  
 Indirect reference.  The rules for instantiating MFrags allow only unique identifier sym-

bols to be substituted for the ordinary variable symbols.  Probability distributions for in-
direct references are handled with built-in composition MFrags, as illustrated in Figure 4.  
These MFrags enforce logical constraints on function composition. Let ψ(φ1(α1), …, 
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Figure 3:  Recursive MFrag 
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φk(αk)) be a random variable in-
stance, where ψ and φi  are random 
variable symbols and each αi is a 
list of arguments.  The random 
variable instance ψ(φ1(α1), … 
,φk(αk)) has a parent φi(αi) for each 
of the arguments and a reference 
parent ψ(y1, …, yk), where the yi 
denote ordinary variable symbols such that yi may be the same as yj only if φi(αi) and 
φj(αj) are logically equivalent expressions.13 The local distribution for ψ(φ1(α1),…,φk(αk)) 
assigns it the same value as ψ(y1,…,yk) when the value of yi is the same as the value of 
φi(αi). Although there are infinitely many possible substitutions for ψ(y1,…,yk) and hence 
infinitely many potential influencing configurations, in any given world only one of the 
influences is active.  Thus, condition 3e is satisfied. The default distribution specifies a 
value for ψ(φ1(α1),…,φk(αk)) when there are no influencing configurations.  

 Equality random variable. The resident random variable in the equality MFrag has the 
form =(u,v), also written (u=v). There are two parents, one for each argument. The 
equality operator has value ⊥ if either u or v has value ⊥, T if φ and ψ have the same 
value and are not equal to ⊥, and F otherwise.  It is assumed that meaningful entity 
identifiers are distinct.  That is, if ε1 and ε2 are distinct entity identifiers, then (ε1=ε2) has 
value ⊥ if ◊(ε1) or ◊(ε2) has value ⊥, and F otherwise. 

 Logical connectives.  The random variable ¬(u) has a single parent, ◊(u); the other 
logical connectives have two parents, ◊(u) and ◊(v). The value of ¬(u) is T if its parent 
has value F, F if its parent has value T, and ⊥ otherwise. The other logical connectives 
map truth-values according to the usual truth tables and parents other than T or F to ⊥ 
(see Figure 5).  

 Quantifiers. Let φ(γ) be an open Boolean random variable term containing the ordinary 
variable γ. A quantifier random variable has the form ∀(σ, φ(σ)) or ∃(σ, φ(σ)), where  
φ(σ) is obtained by substituting the exemplar term σ into φ(γ). A quantifier random 
variable instance has a single parent φ(γ). The value of ∀(σ, φ(σ)) is T by default and F if 
any instance of φ(γ) has value F. The value of ∃(σ, φ(σ)) is F by default and T if any 
instance of φ(γ) has value T. It 
is assumed that a unique 
exemplar symbol is assigned to 
each ordinary variable of each 
Boolean random variable term 
of the language.14  Figure 6 
shows quantifier MFrags rep-
resenting the hypothesis that 
every machine has a belt.  In 
FOL, the corresponding 
sentence is: 

                                                
13 It is always permissible to use distinct variables in a composition MFrag, but it is more efficient to use the same 
variable when the expressions are known to be logically equivalent. 
14 A countable infinity of exemplar symbols is sufficient for this purpose. 

Random Variable

Composition MFrag

CertificationLevel(Manager(Maintenance, 2003))

CertificationLevel(p)

Manager(Maintenance,2003)

 
Figure 4:  Indirect Reference 

 
Figure 5:  Logical Connective MFrag 
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∀m∃b (Isa(Machine,m)⇒Isa(Belt,b)∧(m=BeltLocation(b))). 

An important feature of MEBN is its logically consistent treatment of reference uncertainty.  
For example, suppose the random variable instance CertificationLevel(Manager(Maintenance, 
2003)) is intended to refer to the individual who managed the maintenance department in 2003. If 
the possible managers are !Employee37 and !Employee49, the probability distribution for 
CertificationLevel(Manager(Maintenance, 2003))  will be a weighted average of the probability 
distributions for CertificationLevel(!Employee37) and CertificationLevel(!Employee49), where 
the weights are the probabilities that Manager(Maintenance, 2003) has value !Employee37 and 
!Employee49, respectively. Furthermore, if !Employee39 refers to an individual who is also 
referred to as Carlos, Fernandez, and Father(Miguel), any information germane to the cert-
ification level of Carlos, Fernandez or Father(Miguel) will propagate consistently to 
CertificationLevel(Manager(Maintenance, 2003)) when Bayesian inference is applied (see Figure 
7). 

The built-in MFrags defined above provide sufficient expressive power to represent a prob-
ability distribution over interpretations of any finitely axiomatizable FOL theory. Bayesian condi-
tioning can be applied to generate a sequence of MEBN theories, where each theory in the 
sequence conditions the preceding theory on new axioms that are consistent with all previous 
axioms. MEBN theories can be used to define special-purpose logics such logics for planning and 
decision making. 

There are two kinds of domain-specific MFrags:  generative MFrags and finding MFrags. 
The distinction between generative MFrags and finding MFrags corresponds roughly to the 
terminological box, or T-box, and the assertional reasoner, or A-box (Brachman, et al., 1983). 
The generative domain-specific MFrags specify information about statistical regularities charac-
terizing the class of situations to 
which a MEBN theory applies. 
Findings can be used to specify 
particular information about a 
specific situation in the class 
defined by the generative theory. 
Findings can also be used to 
represent constraints assumed to 
hold in the domain (cf., Jensen, 

!("m, #("b, Isa(Machine,"m)$Isa(Belt,"b)%("m=BeltLocation("b))))

#("b, Isa(Machine,m)&Isa(Belt,"b)%(m=BeltLocation("b)))

#("b, Isa(Machine,m)$Isa(Belt,"b)%(m=BeltLocation("b)))

Isa(Machine,m)&Isa(Belt,b)%(m=BeltLocation(b))

 
Figure 6: Quantifier MFrags 

Alternate Name MFrag

CertificationLevel(Fernandez)

CertificationLevel(p)!(Fernandez)

 
Figure 7:  Relating a Name to a Unique 

Identifier 
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2001; Heckerman, et al., 2004), although there are both computational and interpretation 
advantages to using generative MFrags when “constraint findings” can be avoided. 

Definition 4: A finding MFrag satisfies the following conditions: 
4a. There is a single resident random variable, Φ(ψ), where ψ is a closed value assignment 

term. For Boolean random variable instances, we may abbreviate Φ(φ=T) as Φ(φ), and 
Φ(φ=F) as Φ(¬(φ)). 

4b. There are no context random variable terms.  There is a single input random variable term 
ψ, which is a parent of the resident random variable Φ(ψ). 

4c. The local distribution for Φ(ψ) is deterministic, assigning value T if ψ has value T and 
⊥  if it has value F or ⊥.  

Definition 5:  A generative domain-specific MFrag F must satisfy the following conditions.  
5a. None of the random variable terms in F is a finding random variable term. 
5b. Each resident random variable term in F is a simple open random variable term, i.e., a 

constant symbol, an ordinary variable symbol, or a random variable term that consists of 
a random variable symbol followed by a parenthesized list of ordinary variable symbols.  

5c. The only possible values for the identity random variable ◊(ε) are ε and ⊥. Furthermore, 
◊(T)=T; ◊(F)=F; and ◊(⊥)=⊥.15  

5d. For any resident random variable term ψ other than the identity, the local distribution for 
ψ must assign probability zero to any unique identifier ε for which ◊(ε) ≠ ε. One way to 
ensure this constraint is met is to make ◊(ε) a parent of ψ for any possible value ε for 
which there is non-zero probability that ◊(ε) ≠ ε, and to specify a local distribution that 
assigns probability zero to ε if ◊(ε) ≠ ε.  

In summary, MFrags represent influences among clusters of related random variables.  
Repeated patterns can be represented using ordinary variables as placeholders into which entity 
identifiers can be substituted. Probability information for an MFrag’s resident random variables 
are specified via local distributions, which map influence counts for a random variable’s parents 
to probability distributions over its possible values. When ordinary variables appear in a parent 
but not in a child, the local distribution specifies how to combine influences from multiple copies 
of the parent random variables.  Restricting variable bindings to unique identifiers prevents 
double counting of repeated instances.  Multiple ways of referring to an entity are handled 
through built-in MFrags that enforce logical constraints on function composition. Context 
constraints permit recursive relationships to be specified without circular references.  

4.3 MEBN Theories 

A MEBN theory is a collection of MFrags that satisfies consistency constraints ensuring the 
existence of a unique joint probability distribution over the random variables mentioned in the 
theory.  The built-in MFrags provide logical content and the domain-specific MFrags provide 
empirical content.  This section defines a MEBN theory and states the main existence theorem, 
that a joint distribution exists for the random variable instances of a MEBN theory.  A proof is 
given in the Appendix. 

                                                
15 A finite domain can be represented by specifying an ordering ε1, ε2,… on the unique identifiers, and specifying a 
probability of 1 that ◊(εi+1) = ⊥ if ◊(εi) = ⊥.  In this case, the cardinality of the domain is the last i for which ◊(εi) ≠ ⊥.  
The cardinality may of course be uncertain.  



FIRST-ORDER BAYESIAN LOGIC 

*DRAFT* 21 2/27/06 

A MEBN theory containing only generative domain-specific MFrags is called a generative 
MEBN theory. Generative MEBN theories can be used to express domain-specific ontologies that 
capture statistical regularities in a particular domain of application.  MEBN theories with findings 
can augment statistical information with particular facts germane to a given reasoning problem.  
MEBN uses Bayesian learning to refine domain-specific ontologies to incorporate observed 
evidence.  

The MFrags of Figure 2 specify a generative MEBN theory for the equipment diagnosis 
problem. These MFrags specify local probability distributions for their resident random variables. 
The conditioning constraints in each MFrag specify type restrictions (e.g., the symbol m must be 
replaced by an identifier for an entity of type Machine) and functional relationships an 
influencing configuration must satisfy (e.g., the room identifier r must be equal to the value of 
MachineLocation(m)). Each local distribution provides a rule for calculating the distribution of a 
resident random variable given any instance of the MFrag.  

Reasoning about a particular task proceeds as follows.  First, finding MFrags are added to a 
generative MEBN theory to represent task-specific information.  Next, random variables are 
identified to represent queries of interest.  Finally, Bayesian inference is applied to compute a 
response to the queries. Bayesian inference can also be applied to refine the local distributions 
and/or MFrag structures given the task-specific data.  For example, to assert that the temperature 
light is blinking in the machine denoted by !Machine37, which is located in the room denoted by 
!Room103A, we could add the findings Φ(TempLight(!Machine37)=!Blinking) and Φ(Machine-
Location(Machine37)=!Room103A) to the generative MEBN theory of Figure 2.  To inquire 
about the likelihood that there are any overheated engines, the FOL sentence 
∃m (Isa(Machine,m)∧(EngineStatus(m)=!Overheated)) would be translated into the quantifier 
random variable instance ∃($m, Isa(Machine,$m)∧(EngineStatus($m)=!Overheated)). A Bayesian 
inference algorithm would be applied to evaluate its posterior probability given the evidence.  

As with ordinary Bayesian networks, global consistency conditions are required to ensure that 
the local distributions collectively specify a well-defined probability distribution over 
interpretations. Specifically, the MFrags must combine in such a way that no random variable 
instance can directly or indirectly influence itself, and initial conditions must be specified for 
recursive definitions.  Non-circularity is ensured in ordinary Bayesian networks by defining a 
partial order on random variables and requiring that a random variable’s parents precede it in the 
partial ordering.  In dynamic Bayesian networks, random variables are indexed by time, an 
unconditional distribution is specified at the first time step, and each subsequent distribution may 
depend on the values of the random variables at the previous time step.  Non-circularity is 
ensured by prohibiting links from future to past and by requiring that links within a time step 
respect the random variable partial ordering. Other kinds of recursive relationships, such as 
genetic inheritance, have been discussed in the literature (cf., Pfeffer, 2000). Recursive Bayesian 
networks (Jaeger, 2001) can represent a very general class of recursively specified probability 
distributions for Boolean random variables on finite domains. No previously published 
probabilistic knowledge representation language provides general-purpose rules for defining 
probability distributions that can include both recursive and non-recursive influences for random 
variables Boolean and non-Boolean random variables on finite and/or countably infinite domains. 

Definition 6:  Let T = {F1, F2 … } be a set of MFrags. The sequence φd(εd) → φd-1(εd-1) 
→…→φ0(ε0) is called an ancestor chain for T if there exist B0, …, Bd such that: 

6a. Each Bi is a binding set for one of the MFrags Fji∈T; 
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6b. The random variable instance φi(εi) is obtained by applying the bindings in Bi to a 
resident random variable term φi(θi) of Fji; 

6c. For i<d, either:  
  φi+1(εi+1) is obtained by applying the bindings in Bi to an input random variable term 

φi+1(θi+1) of Fji, and there is an influencing configuration for φi(εi) and Bi that 
contains φi+1(θi+1), or 

  φi+1(εi+1) is obtained by applying the bindings in Bi to a context value assignment 
term φi+1(θi+1) of Fji. 

The integer d is called the depth of the ancestor chain.  The random variable instance φj(εj) is an 
ancestor of φ0(ε0) if there exists an ancestor chain φd(εd) →…→ φj(εj) →…→φ0(ε0) for T.  

Definition 7: Let T = { F1, F2 … } be a set of MFrags. Let VT denote the set of random variable 
terms contained in the Fi, and let NT denote the set of random variable instances T that can be 
formed from VT. T is a simple MEBN theory if the following conditions hold:  

7a. No cycles. No random variable instance is an ancestor of itself;16 
7b. Bounded causal depth.  For any random variable instance φ(ε)∈NT  containing the 

(possibly empty) unique identifier symbols ε, there exists an integer Nφ(ε) such that if 
φd(εd) → φd-1(εd-1) →…→φ(ε) is an ancestor chain for T, then d ≤ Nφ(ε). The smallest such 
Nφ(ε) is called the depth dφ(ε) of φ(ε).  

7c. Unique home MFrags. For each φ(ε)∈NT , there exists exactly one MFrag Fφ(ε)∈T, 
called the home MFrag of φ(ε), such that φ(ε) is an instance of a resident random variable 
φ(θ) of Fφ(ε).17 

7d. Recursive specification. T may contain infinitely many domain-specific MFrags, but if 
so, the MFrag specifications must be recursively enumerable.  That is, there must be an 
algorithm that lists a specification (i.e., an algorithm that generates the input, output, 
context random variables, fragment graph, and local distributions) for each MFrag in 
turn, and eventually lists a specification for each MFrag of T.   

Condition 7c simplifies the theoretical analysis, but there are many circumstances in which it 
would be useful to relax it. For example, in an independence of causal influence model, it might 
be convenient to specify influences due to different clusters of related causes to be specified in 
separate MFrags.  In a polymorphic version of MEBN, it might be convenient to specify local 
distributions for separate subtypes in separate MFrags (Costa, 2005).  Relaxing Condition 7c 
would also allow a more natural treatment of structural learning. It is clear that the main results of 
this paper would remain valid under appropriately weakened conditions.  Costa (2005) defines a 
typed version of MEBN that relaxes Condition 7c. 
Theorem 1:  Let T = { F1, F2 … } be a simple MEBN theory. There exists a joint probability 
distribution 

 
P

T

gen  on the set of instances of the random variables of its MFrags that is consistent 
with the local distributions assigned by the MFrags of T.  

The proof of Theorem 1 is found in the appendix. 

                                                
16 This condition can be relaxed as long as it can be demonstrated that the local distributions are specified non-
circularly.  
17 It may be desirable to relax this condition.  For example, in an independence of causal influence model, it might be 
convenient to specify influences due to different clusters of related causes to be specified in separate MFrags.  In a 
polymorphic version of MEBN logic, it might be convenient to specify local distributions for separate subtypes in 
separate MFrags.  It is clear that the main results would remain valid under appropriately weakened conditions. 
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MEBN inference conditions the joint probability distribution implied by Theorem 1 on the 
proposition that all findings have value T.  This conditional distribution clearly exists if there is a 
non-zero probability that all findings have value T. However, when there is an infinite sequence 
of findings or there are findings on quantifier random variables, then any individual sequence of 
findings may have probability zero even though some such sequence is certain to occur. For 
example, each possible realization of an infinite sequence of rolls of a fair die has zero 
probability, yet some such sequence will occur if tossing continues indefinitely. Although any 
individual sequence of tosses has probability zero, the assumption that the die is fair allows us to 
draw conclusions about properties of the sequences of tosses that will actually occur.  In 
particular, it is a practical (although not a logical) certainty that if the die is fair, then the limiting 
frequency of rolling a four will be once in every six trials. That is, although a sequence having 
limiting probability 1/6 and a sequence having limiting probability 1/3 both have probability zero, 
the set of worlds in which the limit is 1/6 is infinitely more probable than the set of worlds in 
which the limit is 1/3. Practical certainties about stochastic phenomena are formalized as 
propositions that are true “almost surely” or “except on a set of measure zero” (Billingsley, 
1995). Almost sure propositions are not true in all possible interpretations of the FOL theory 
corresponding to a MEBN theory, but the set of worlds in which they are true has probability 1 
under the probability distribution represented by the MEBN theory. In the above example, the set 
of worlds in which the limiting frequency is1/6 has probability 1. 

The following results pertain to the existence of conditional distributions in a MEBN theory. 

Definition 8:  The distribution 
 
P

T

gen  is called the generative or prior distribution for T. Let 
Φ={Φ(ψ1=α1), Φ(ψ2=α2), … } be the finding MFrags for T. A finding alternative for T is a set 
{Φ(ψ1=α’1), Φ(ψ2=α’2), … } of values for the finding random variables of T, possibly assigning 
different values to the finding random variables from the values assigned by T. Finding 
alternatives represent counterfactual worlds for T – that is, worlds that were a priori possible but 
are different from the world asserted by the findings to have occurred.  

Corollary 2:  Let T be a MEBN theory with findings {Φ(ψ1=α1), Φ(ψ2=α2), … }.  Then a 
conditional distribution exists for 

 
P

T

gen  given {ψ1, ψ2, …}.  This distribution is unique in the 
sense that any two such distributions differ at most on a set of finding alternatives assigned 
probability zero by 

 
P

T

gen .   

Corollary 2 follows immediately from Theorem 1 and the Radon-Nikodym Theorem 
(Billingsley, 1995). The distribution 
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obtained by conditioning 
 
P

T

gen on all findings having value T is called the posterior distribution 
for T given its findings. The posterior distribution is abbreviated 

 
P

T
! |"(# = $ )( ) .  The 

following corollary states that even when the joint probability of an infinite sequence of findings 
is zero, if the individual findings have positive probability and a limiting posterior distribution 
exists, it is unique.  

Corollary 3: Suppose 
 
P

T

gen  assigns strictly positive probability to the event that the first n 
findings Φ(ψ1=α1), Φ(ψ2=α2), …, Φ(ψn=αn) all have value T. Then there is a unique conditional 
distribution for 

 
P

T

gen  given that the first n findings Φ(ψ1=α1), Φ(ψ2=α2), …, Φ(ψn=αn) all have 
value T. Furthermore, if the positivity condition holds for all n and a limiting distribution 

  
lim
n!"

P
T
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n
)( ) exists, then the limit is unique.  

Corollary 3 is a straightforward consequence of basic identities of conditional probability. 
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MEBN theories represent a conjugate family of probability distributions.  That is, if finding 
random variables are added to a MEBN theory, the result is another MEBN theory. Although 
simple MEBN theories are adequate to express probability distributions over interpretations of 
arbitrary finitely axiomatizable FOL theories, expressing structural uncertainty with simple 
MEBN theories is cumbersome.  Structural uncertainty can be more compactly expressed using 
mixture MEBN theories, which provide the logical basis for a typed version of MEBN (Costa, 
2005). 

Definition 9:  If the posterior distribution for T 
 
P

T
! |"(# = $ )( )  is not unique, T is said to be 

disconfirmed by its findings.  

Definition 10:  A mixture MEBN theory is a set T = { (T1, p1), (T2, p2), … } of MFrags 
satisfying the following conditions: 

10a. Each Ti is a simple MEBN theory; 
10b. None of the Ti is disconfirmed by its findings; 
10c. The pi are positive numbers that sum to 1; 
10d. There must be an effective procedure for computing each pi;  
10e. For each finding Φ(ψ=ε) of one of the Ti, and for each j≠i, the posterior 

distribution of Tj assigns probability 1 to ψ=ε.   
The Ti are called mixture components with mixture weights pi.  A MEBN theory is either a simple 
MEBN theory or a mixture MEBN theory.  

Corollary 4: Let T  be a MEBN theory. Then there exists a joint probability distribution on the 
set of instances of the random variables in its MFrags that is consistent with the local distributions 
assigned by the MFrags of T.  

Corollary 4 is an immediate consequence of Theorem 1. 

5 Semantics, Representation Power, and Inference 
In mathematical statistics, a random variable is defined as a measurable function mapping 
elements of a sample space to a measurable set, where a sample space is a set on which a 
probability measure has been defined.  Section 5.1 relates this definition to the standard model 
theoretic semantics for classical first-order logic, and defines random variable semantics for first-
order Bayesian logic.  Section 5.2 demonstrates that multi-entity Bayesian networks as formalized 
in Section 4 can express a probability distribution over interpretations of any classical first-order 
theory, and constructs a MEBN theory in which every satisfiable sentence has non-zero 
probability. Section 5.3 describes an algorithm for performing inference with MEBN theories. 

5.1 Random Variables and Model Theory 
In the standard model theoretic semantics for first-order logic developed by Tarski (1944), a FOL 
theory is interpreted in a domain by assigning each constant symbol to an element of the domain, 
each function symbol on k arguments to a function mapping k-tuples of domain elements to 
domain elements, and each predicate symbol on k arguments to a subset of k-tuples of domain 
elements corresponding to the entities for which the predicate is true (or, equivalently, to a 
function mapping k-tuples of domain elements to truth-values).  If the axioms are consistent, then 
there exists a domain and an interpretation such that all the axioms of the theory are true 
assertions about the domain, given the correspondences defined by the interpretation.  Such an 
interpretation is called a model for the axioms. 
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MEBN theories define probability distributions over interpretations of an associated FOL 
theory.  Each k-argument random variable in a MEBN theory represents a function mapping k-
tuples of unique identifiers to possible values of the random variable. Any function consistent 
with the logical constraints of the MEBN theory is allowable, and the probability that the function 
takes on given values is specified by the joint probability distribution represented by the MEBN 
theory.  For Boolean random variables, the possible values of the function are T, F, and ⊥; for 
non-Boolean random variables, the possible values are entity identifiers and ⊥. Through the 
correspondence between entity identifiers and entities in the domain, a random variable also 
represents a function mapping k-tuples of domain entities either to domain entities (for non-
Boolean random variables) or to truth-values of assertions about the domain (for Boolean random 
variables).  

Interpreting random variable symbols as functions on the unique identifiers is consistent with 
the way random variables are formalized in mathematical statistics.  A random variable is defined 
as a function that maps a sample space endowed with a probability measure to a set of possible 
outcomes (e.g., Billingsley, 1995; DeGroot and Schervish, 2002).  In the standard definition, the 
global joint distribution is taken as given, and distributions for subsets of random variables are 
obtained by marginalizing the global joint probability measure. MEBN provides a logically 
coherent means of specifying a global joint distribution by composing local conditional 
distributions involving small sets of random variables. Formerly, this could be achieved only for 
restricted kinds of distributions.  Standard Bayesian networks allow joint distributions on a finite 
number of random variables to be composed from locally defined conditional distributions.  
There are well-known special cases, such as independent and identically distributed sequences or 
Markov chains, for which joint distributions on infinite sets of random variables can be composed 
from locally defined conditional distributions. MEBN provides the ability to construct joint 
distributions from local elements for a much wider class of distributions on infinite collections of 
random variables. As shown in Corollary 5 below, MEBN can represent a joint distribution over 
sentences in first-order logic having the property that any satisfiable sentence has non-zero 
probability.  Thus, through Bayesian conditioning, a probability distribution can be expressed on 
interpretations of any consistent, finitely axiomatizable first-order theory. This distribution can be 
updated through Bayesian conditioning when new axioms are added, thus providing a theoretical 
framework for analyzing limiting distributions over interpretations of infinite sequences of first-
order sentences. 

Consider a MEBN theory TM in a language LM having domain-specific non-Boolean random 
variable symbols X={ξi}, domain-specific constant symbols A={αi}, domain-specific Boolean 
random variable symbols B={βi}, exemplar symbols S={σφi} and entity identifier symbols 
E={εi}. It is assumed that the sets X, A, B, and E are pairwise disjoint, are either finite or 
countably infinite, and do not contain the symbols T, F, or ⊥. It is assumed that S contains a 
distinct exemplar symbol σφi∉ X∪A∪B∪E∪{T,F,⊥} for each pair consisting of an open 
Boolean random variable term φ(γ1,…, γn) of LM and index i of an ordinary variable γi occurring in 
φ(γ1,…, γn). 

To facilitate the comparison with model theoretic semantics, suppose TM satisfies the 
following conditions: 

FOL1: There are no quantifier random variable terms among the context terms in any of 
the MFrags of TM, and no simple random variable term of TM has a quantifier 
random variable term as a parent. 
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FOL2: Random variables ξ∈X or β∈B have value ⊥ if any of their arguments belong to 
{T, F, ⊥};  

FOL3: If the values of all arguments to a non-Boolean random variable ξ belong to E, 
then the value of ξ belongs to E with probability 1;  

FOL4: Any constant symbol α∈A has value in E with probability 1; 
FOL5: If the values of all arguments to a Boolean random variable β belong to E, then 

the value of β belongs to {T, F} with probability 1.  

Given these conditions, 
 
P

T
M

gen  generates random interpretations of the domain-specific random 
variable symbols of LM in the domain {ε∈E : ◊(ε)≠⊥)} of meaningful entity identifiers.  That is, 
for each constant symbol, 

 
P

T
M

gen  generates a meaningful entity identifier. For each non-Boolean 
random variable symbol, 

 
P

T
M

gen  generates a random function mapping k-tuples of meaningful entity 
identifiers to meaningful entity identifiers. For each Boolean random variable symbol, 

 
P

T
M

gen  
generates a random function mapping k-tuples of meaningful entity identifiers to {T, F} (or 
equivalently, the subset of k-tuples for which the randomly generated function has value T).  

 A classical first-order theory TF that represents the logical content of TM is defined as 
follows: 

1. The language LF for TF has function symbols X, constant symbols A∪E∪{⊥}, and 
predicate symbols B, where the number of arguments for functions and predicates in LF 
is the same as the number of arguments for the corresponding random variables in TM. 

2. For each pair ε1 and ε2 of distinct entity identifiers, TF contains an axiom (ε1=ε2)⇒ 
(ε1=⊥) ∧ (ε2=⊥). 

3. For each non-Boolean random variable symbol ξ, TF contains axioms asserting that no 
instance of ξ may take on values outside the set of possible values as defined in the home 
MFrag for ξ.   

4. If a local distribution in a domain-specific MFrag of TM assigns probability zero to 
possible value ε of a non-Boolean resident random variable ξ(x) for some set #SWξ(x) of 
influence counts, there is an axiom of TF specifying that the function corresponding to 
ξ(x) is not equal to ε when the context constraints hold and the parents of ξ(x) satisfy 
#SWξ(x). Each such axiom is universally quantified over any ordinary variables appearing 
in ξ and/or its parents and/or the context random variables in the home MFrag of ξ. 
Formally, TF contains an axiom ∀x ((κ(x)∧#SWξ(x)) ⇒ ¬(ξ(x)= ε)). Here, κ(x) and #SWξ(x) 
denote formulae in LF asserting that the context constraints hold and that the influence 
counts for the parents of ξ(x) are equal to ξ(x); and x denotes any ordinary variables on 
which ξ, κ, and/or the parents of ξ depend. 

5. If a local distribution in a domain-specific MFrag of TM assigns probability one to T for a 
Boolean random variable β(x) for some set #SWβ(x) of influence counts, there is an axiom 
of TF specifying that the predicate β(x) is true under these conditions. That is, TF 
contains an axiom ∀x ((κ(x)∧#SWβ(x)) ⇒ β(x)).  Here, κ(x) and #SWβ(x) denote formulae in 
LF asserting that the context constraints hold and that the influence counts for the parents 
of β(x) are equal to β(x), respectively; and x denotes any ordinary variables on which β, 
κ, and/or the parents of β depend.  

6. If a local distribution in a domain-specific MFrag of TM assigns probability one to F for a 
Boolean random variable β(x) for some set #SWβ(x) of influence counts, there is an axiom 
of TF specifying that the predicate β(x) is false under these conditions. That is, TF 
contains an axiom ∀x ((κ(x)∧#SWβ(x)) ⇒ ¬β(x)). Here, κ(x) and #SWβ(x) denote formulae in 
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LF asserting that the context constraints hold and that the influence counts for the parents 
of β(x) are equal to β(x), respectively; and x denotes any ordinary variables on which β, 
κ, and/or the parents of β depend. 

The logical combination MFrags (see Figure 8) ensure that any interpretation generated by 

 
P

T
M

gen , specifies a well-defined truth-value for any sentence of TF. The assumptions FOL1-FOL5 
ensure that these truth-values satisfy the axioms defining TF.  That is, 

 
P

T
M

gen  generates random 
models of the axioms of TF. However, there may be sentences satisfiable under the axioms of TF 
to which 

 
P

T
M

gen  assigns probability zero.  When a satisfiable sentence of TF is assigned probability 
zero by

 
P

T
M

gen , there is no assurance that a well-defined conditional distribution exists given that the 
corresponding Boolean random variable has value T.  The following additional condition ensures 
that a well-defined conditional distribution exists given any finite set of logically possible 
findings on random variables of TM. 

FOL6: If φ(γ1,…, γn) is a Boolean random variable of TM that corresponds to a satisfiable 
formula of TF, and σφi is the exemplar symbol for ordinary variable γi in 
φ(γ1,…, γn), then  

 
P

T
M

gen assigns strictly positive probability to the value T for the 
quantifier random variables θ(σφ1, θ(σφ2, …, θ(σφn, φ(σφ1, σφ2, …, σφn)))), where θ 
is one of the quantifier symbols ∃ or ∀. 

Corollary 5: Suppose TM satisfies FOL1-FOL6, and suppose that TF is the first-order theory, 
constructed as above, expressing the logical content of TM. Let {Φ(ψ1=α1), Φ(ψ2=α2), …, 
Φ(ψn=αn)} be a finite set of findings such that the conjunction of the (ψi=αi) is satisfiable as a 
sentence of TF.  Then the posterior distribution 

 
P

T
M

! |"(# = $ )( )  exists and is unique.  

Corollary 5 is a straightforward consequence of Corollary 3. Specifying a generative 
distribution that satisfies FOL1-FOL5 is relatively straightforward. A construction is provided in 
Section 5.2 of a MEBN theory TM* for which 

 
P

T
M*

gen  satisfies FOL6. 
A MEBN theory is interpreted in a domain of application by associating each entity identifier 

symbol with an entity in the domain.  Through this correspondence between identifiers and the 
entities they represent, the probability distribution on entity identifiers induces a probability 
distribution on attributes of and relationships among entities in the domain of application. In 

 
Figure 8:  Logical MFrags 
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particular, although the generative distribution for a MEBN theory constructs interpretations in 
the countable domain of entity identifiers, a MEBN theory can be applied to reason about 
domains of any cardinality.  Under the assumption that the entities associated with the entity 
identifiers constitute a representative sample of entities in the domain, statistical conclusions 
drawn about the domain are valid for domains of any cardinality. 

Important advantages of MEBN random variable semantics are clarity and modularity. For 
example, we could add a new collection of MFrags to our equipment diagnosis MEBN theory, 
say for reasoning about the vacation and holiday schedule of maintenance technicians, without 
affecting the probabilities of any assertions unrelated to the change. Furthermore, the probability 
distribution represented by a MEBN theory is a well-defined mathematical object independent of 
its correspondence with actual objects in the world, having a clearly specified semantics as a 
probability distribution on E∪{⊥}.  Its adequacy for reasoning about the actual world rests in 
how well the relationships in the model reflect the empirical relationships among the entities to 
which the symbols refer in a given domain of application. Our approach thus enforces a 
distinction between logical and empirical aspects of a representation and provides a clearly 
defined interface between the two. This supports a principled approach to empirical evaluation 
and refinement of domain ontologies. 

5.2 A Generative Distribution for First-Order Logic 
This section demonstrates how to construct a generative MEBN theory TM* such that 

 
P

T
M*

gen places positive probability on value T for any Boolean random variable φ that corresponds to 
a satisfiable sentence in first-order logic. 

Consider a MEBN language LM* and classical FOL language LF* related to each other as 
described in Section 5.1. We assume there is a total ordering ϕ1, ϕ2, … of the domain-specific 
constant, non-Boolean and Boolean random variable terms ϕi∈A∪X∪B, and a total ordering ε1, 
ε2, …∈E of entity identifiers. The domain-specific MFrags of a generative MEBN theory must 
define a distribution for each simple open random variable term 

 
!
i
(u
1
,…,u

n
i

) , where the uj are 
ordinary variables and ni is the number of arguments taken by ϕi. A distribution is also defined 
for the exemplar constants.  The remaining random variables are defined via the logical MFrags 
of Figure 8.  

The joint distribution for simple open random variables and exemplar constants is defined as 
follows. Let ψ1, ψ2, … be a total ordering of the quantifier random variables; let π1, π2, … be a 
strictly positive probability distribution on the entity identifiers, and let 0 < θ, ρ < 1 be real 
numbers. We use the notation ψk to refer a quantifier random variable and !" k

 to refer to the 
exemplar constant for ψk.  That is, ψk denotes a Boolean random variable of the form 
!("# k

,$("# k

))  or !("# k

,$("# k

)) , where !(u)  is an open Boolean random variable called the 
body of ψk.  We can think of the exemplar constant !" k

 as denoting a generic filler entity for its 
place in the quantifier random variable.  

Exemplar constant distributions: The distributions for exemplar constants are defined 
inductively such that the exemplar term ◊(!" k

) has value ⊥ in models in which ψk is constrained 
to have value F, and otherwise is sampled randomly from the entity identifiers that are logically 
possible values for !" k

.  Specifically: 
• The parents of ◊(!" k

) are ◊(!"
1

), ◊(!"
2

), …, and ◊(!" k#1
).    

• By the inductive hypothesis, it is assumed that if ◊(!"
i

)=⊥ for i < k, then ψk has 
value F. (It will be verified below that the inductive hypothesis is true for k, then it is 
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true for k + 1.) Conditional on ◊(!"
1

), ◊(!"
2

), …, and ◊(!" k#1
), the distribution of 

◊(!" k

) is defined as follows: 
o If ψk is unsatisfiable as a formula of LF* given the constraints on ψ1, …, ψk-1 

implied by the values of its parents, then ◊(!" k

)  has value ⊥ with probability 
1. 

o If ¬ψk is unsatisfiable as a formula of LF* given the constraints on ψ1, …, 
ψk-1 implied by the values of its parents, then ◊(!"

i

)  has value εj with 
probability πj.  

o Otherwise, ◊(!"
i

)  has value ⊥ with probability θ and εj with probability 
(1- θ)πj. 

This construction requires checking for satisfiability of ψk  and ¬ψk, which is in 
general undecidable.  We can construct a process that satisfies Definition 3 as 
follows. First, we assign probability θ to ⊥ and (1- θ)πj to εj.  Then we execute the 
satisfiability checker.  If at any point ψk is proven unsatisfiable, we change the 
distribution to assign probability 1 to ⊥.  If ¬ψk is proven unsatisfiable, we assign 
probability zero to ⊥ and πj to εj.  If either ψk  or ¬ψk is unsatisfiable, this algorithm 
will eventually halt with the correct result.  Otherwise, it was initialized with the 
correct distribution and this distribution never changes, so if the algorithm is 
interrupted it will give the correct result.  

Domain-specific random variable distributions:  The distribution of 
 
!
k
(u
1
,…,u

nk
)  is defined 

as follows.  
• The parents of 

 
!
k
(u
1
,…,u

nk
)  are:  

o 
 
!
i
(v
1
,…,v

n
i

)  for all i<k, where vj is a different ordinary variable than uj, 
implying that all instances of  

 
!
i
(v
1
,…,v

n
i

)  are parents of each instance of 

 
!
k
(u
1
,…,u

nk
) ; 

o Instances of 
 
!
k
(v
1
,…,v

nk
)  such that the entity identifier bound to each uj is 

equal to or precedes the entity identifier bound to vj, and strictly precedes it 
for at least one j.  (This can be specified by a recursive definition with 
appropriate context constraints); 

o The identity random variables ◊(e).  
• If 

 
!
k
(u
1
,…,u

nk
)  is a non-Boolean random variable, its probability distribution is 

calculated as follows.  For any binding 
 
!
1
,…,!

nk
 of entity identifiers to the variables 

 
u
1
,…,u

nk
, the value 

 
!
k
("
1
,…,"

nk
) =εj is assigned randomly, with probability πj, from 

among the entity identifiers whose value is consistent with the satisfiability 
constraints implied by the assignment of values to the parents of 

 
!
k
("
1
,…,"

nk
) .  

Again, this step requires satisfiability checks. Definition 3 is satisfied if it is 
implemented by initially assigning probability πj to εj, and if 

 
!
k
("
1
,…,"

nk
) =εj is 

proven unsatisfiable, setting the probability of εj to zero. The probability assigned to 
⊥ converges to the correct value, but may never stop changing.  This is allowed by 
Definition 3. 

• If 
 
!
k
(u
1
,…,u

nk
)  is a Boolean random variable, its probability distribution is 

calculated as follows. For any binding 
 
!
1
,…,!

nk
 of entity identifiers to the variables 

 
u
1
,…,u

nk
:  

o 
 
!
k
("
1
,…,"

nk
)  has value T if 

 
¬!

k
("
1
,…,"

nk
)  is inconsistent with the 

satisfiability constraints implied by the assignment of values to the parents of 

 
!
k
("
1
,…,"

nk
) ; 
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o 
 
!
k
("
1
,…,"

nk
)  has value F if 

 
!
k
("
1
,…,"

nk
)  is inconsistent with the 

satisfiability constraints implied by the assignment of values to the parents of 

 
!
k
("
1
,…,"

nk
) ; 

o Otherwise, 
 
!
k
(u
1
,…,u

nk
)  has value T with probability ρ and F with 

probability (1-ρ). 
As before, this calculation is implemented by initially assigning probability ρ to T 
and probability (1-ρ) to F, and revising the distribution if one of the satisfiability 
checks fails. 

Theorem 6: If ψ is a closed Boolean random variable corresponding to a sentence of LF* that 
does not contradict the axioms of TF* then 

 
P

T
M*

gen places non-zero probability on the value T for ψ.  

Proof: The above construction ensures that if ψ corresponds to a satisfiable sentence of TF*, then 
there is a non-zero probability that ◊(!

¬" )  has value ⊥. When ◊(!
¬" )  has value ⊥, the local 

distributions for the domain-specific random variables are assigned in a way that constrains ψ to 
have value T. Therefore, there is a non-zero probability that ψ has value T.  

Theorem 6 shows that 
 
P

T
M*

gen  places non-zero probability on the value T for sentences of LF* 
that are consistent with the axioms of TF*, which is a first-order theory constructed from 

 
P

T
M*

gen  by 
following the rules of Section 5.1. The final step in our argument is to show how to use Theorem 
6 to define a probability distribution that places non-zero probability on the models of any 
satisfiable sentence in first-order logic. 

Let L be a first-order language with function symbols X, constant symbols A, and predicate 
symbols B, and let ψ be a sentence of L.  The correspondences defined in the logical MFrags of 
Figure 8 provide a recipe for constructing a language LM* that augments L with the special logical 
constants and random variables common to all MEBN theories. Following the above definitions, 
we can construct a MEBN theory TM* that has the same domain-specific random variable 
symbols as L. This MEBN theory has a Boolean random variable ψM* that makes the same 
assertion as ψ. The construction of Section 5.1 defines a corresponding sentence ψF* of TF*. By 
examining how ψM* is constructed from ψ and how TF* is constructed from TM*, it is clear that 
ψF* is satisfiable as a sentence of LF* if and only if ψ is satisfiable as a sentence of L. Thus, given 
a satisfiable sentence in a first-order language with countably many symbols, we can construct a 
MEBN theory in which there is a non-zero probability that a sentence with the same logical 
content has value T. Furthermore, the same holds for any finite set of jointly satisfiable sentences, 
because their conjunction is a satisfiable sentence.  It is also clear that this approach fails for 
infinite sequences of sentences.  

5.3 MEBN Inference:  Situation-Specific Bayesian Networks 
As noted above, MEBN inference conditions the prior distribution represented by a MEBN theory 
on its findings.  Figure 9 sketches an inference algorithm that uses knowledge-based model 
construction (Wellman, et al., 1992) to produce a sequence of approximate situation-specific 
Bayesian networks. Mahoney and Laskey (1998) define a situation-specific Bayesian network 
(SSBN) as a minimal Bayesian network sufficient to compute the response to a query, where a 
query consists of obtaining the posterior distribution for a set of target random variable instances 
given a set of finding random variable instances. This algorithm is a version of the simple bottom-
up construction algorithm given in Mahoney and Laskey (1998), adapted to the case in which the 
true SSBN may be infinite.  The algorithm begins with a query set consisting of a finite set of 
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target random variable instances and a finite set of finding random variable instances. These are 
combined to construct an approximate SSBN.  The approximate SSBN has an arc between a pair 
of random variables when one is an instance of an influencing configuration for the other in its 
home MFrag.  At each step, the algorithm obtains a new approximate SSBN by adding findings, 
instantiating the home MFrags of the random variables in the query set and their ancestors, 
adding the resulting random variable instances to the query set, removing any that are not relevant 
to the query, and combining the resulting set of random variable instances into a new approximate 
SSBN.  This process continues until either there are no changes to the approximate SSBN, or a 
stopping criterion is met. If the algorithm is run without a stopping criterion, then if SSBN 
construction terminates, the resulting SSBN provides an exact response to the query or an 
indication that the findings are inconsistent. When the algorithm does not terminate, it defines an 
anytime process that yields a sequence of approximate SSBNs converging to the correct query 
response if one exists. In general, there may be no finite-length proof that a set of findings is 
consistent, but inconsistent findings can be detected in a finite number of steps of SSBN 
construction. 

Figure 10 shows two SSBNs constructed from the MEBN theory of Figure 2 for a query on 
the engine status of two machines, the first for the case in which the two machines are known to 
be in the same room, and the second for the case in which the two machines are known to be in 
different rooms.  In the first case, learning that the engine in one machine is overheated results in 
an increase in the probability that the other engine is overheated; in the second case, the same 
information has almost no effect on the probability distribution for the other machine (there is a 
small impact because of the influence of the evidence on beliefs about the maintenance practices 
of the owner). 

As noted above, when an ordinary variable appears in a parent but not in its child, the random 
variable can have an unbounded number of parent instances in the constructed approximate 

1. Initialization: Set the query set Q to the union of the target nodes and the finding 
nodes. Initialize the RV instances R0 = Q.  Set the maximum number of states per 
random variable N0 equal to a finite integer. Set i = 0. 

2. SSBN Structure Construction. Set the current SSBN Bi to contain the nodes in Ri 
and all arcs corresponding to influencing configurations. Remove from Bi any 
barren nodes, nodes d-separated from target nodes by finding nodes, and nuisance 
nodes for which marginal distributions do not need to be updated. 

3. Local Distribution Construction. Set the local distributions in Bi, modifying the 
local distributions to restrict random variables to no more than Ni possible values 
and, to approximate the effect of random variables that have not been enumerated, 
and compute for no more than Ki steps. 

4. Inference. Apply standard Bayesian network inference to compute conditional 
distributions for the target random variables given the finding random variables. If 
findings have probability zero, report that the findings are inconsistent. 

5. Instance Enumeration and Approximation Parameter Updating. If a stopping 
criterion is met, output Bi. Else add to Ri additional parents of random variables for 
which adding additional parents might change the distribution, increase Ni and Ki 
and return to Step 2. 

Figure 9:  SSBN Construction Algorithm Sketch 
(See Appendix for details) 
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SSBN. Each step of SSBN construction instantiates finitely many parents of any random variable.  
When there are infinitely many computationally relevant parent instances, additional instances are 
added at each step until a termination condition is reached. Even when a finite-size SSBN exists, 
constructing it and computing a query response is often intractable.  It is typically necessary to 
approximate the SSBN by pruning arcs and random variables that have little influence on a query, 
and/or compiling parts of the SSBN to send to inference engines optimized for special problem 
types. The process of controlling the addition and pruning of random variable instances and arcs 
is called hypothesis management. More generally, execution management controls the inference 
process to balance accuracy against computational resources. Often, portions of an inference task 
can be solved exactly or approximately using efficient special-purpose reasoners. Such reasoners 
include constraint satisfaction systems, deductive theorem provers, differential equation solvers, 
heuristic search and optimization algorithms, Markov chain Monte Carlo algorithms, particle 
filters, etc. Online reasoning systems may interleave addition of new findings, refinement of the 
current approximate SSBN, computation of query responses given the current approximate 
SSBN, and learning. 

Laskey, et al. (2000, 2001) treat hypothesis management as a problem of balancing the 
computational overhead of representing additional random variable instances against accuracy in 
responding to queries. Charniak and Goldman (1993) and Levitt et al. (1995; Binford and Levitt, 
2003) also consider hypothesis management in open-world computational probabilistic reasoning 
systems. Hypothesis management is discussed extensively in the literature on tracking and multi-
source fusion (e.g., Stone, et al., 2000). 

6 Probabilistic Logics and Languages  
There is a growing literature on languages for representing probabilistic knowledge, the 
semantics of probabilistic representations, and well-foundedness, tractability and decidability of 
inference in probabilistic theories.  The success of graphical models for parsimonious 
representation and tractable inference has generated strong interest in more expressive languages 
for reasoning with probability.  Work in knowledge-based model construction (e.g., Wellman, et 
al., 1992) focused on constructing Bayesian networks from knowledge bases consisting of 
modular elements representing knowledge about small clusters of variables.  Early KBMC 
systems were not built on decision theoretically coherent declarative domain theories, and relied 
on heuristic knowledge, typically encoded as procedural rules, for constructing complex models 

EngineStatus(M1) TempSensor(M1)

TempLight(M1)

EngineStatus(M2) TempSensor(M2)

TempLight(M2)

ACStatus(R)

BeltStatus(M1)

RoomTemp(R)

BeltStatus(M)

MaintenancePractice(O)

EngineStatus(M1) TempSensor(M1)

TempLight(M1)

EngineStatus(M2) TempSensor(M2)

TempLight(M2)

MaintenancePractice(O)

ACStatus(R2)

RoomTemp(R2)

BeltStatus(M2)

ACStatus(R1)

RoomTemp(R1)BeltStatus(M1)

MachineLocation(M1) MachineLocation(M2)

a. Two machines in the same room b. Two machines that might or might

not be in the same room  
Figure 10: Situation-Specific Bayesian Networks 
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from simpler components.  As work in knowledge-based model construction progressed, interest 
grew in the theoretical foundations of probabilistic representation languages, and in their 
relationship to classical first-order logic. A number of authors have investigated approaches to 
integrating classical logic with probability.  A common approach has been to provide language 
constructs that allow one to express first-order theories not just about objects in a domain of 
discourse, but also about proportions and/or degrees of belief for statements about these objects. 
Bacchus et al. (1997; Bacchus, 1990) augment first-order logic with proportion expressions that 
represent the knowledge that a given proportion of objects in a domain have a certain property. A 
principle of indifference is applied to assign degrees of belief to interpretations satisfying the 
constraints imposed by ordinary first-order quantification and the proportion expressions. 
Halpern’s (1991) logic can express both proportion expressions and degrees of belief, and 
provides a semantics relating proportions to degrees of belief. Neither of these logical systems 
provides a natural way to express theories in terms of modular and composable elements. Unlike 
Bayesian networks, which have easy to verify conditions ensuring the existence of a coherent 
domain theory, it is in general quite difficult in these logical systems to specify complete and 
consistent probabilistic domain theories, or to verify that a set of axioms is coherent. 

A number of languages have been developed that represent probabilistic knowledge as 
modular units that with repeated substructures that can be composed into complex domain 
models. These include pattern theory (Grenander, 1996), hidden Markov models (Elliott, et al., 
1995), the plates language implemented in BUGS (Gilks, et al., 1994; Buntine, 1994; 
Spiegelhalter, et all, 1996), object-oriented Bayesian networks (Koller and Pfeffer, 1997; Bangsø 
and Wuillemin, 2000; Langseth and Nielsen, 2003), and probabilistic relational models (Getoor, 
et al., 2000, 2001; Pfeffer, 2000). There is a great deal of commonality among languages for 
compactly expressing complex probabilistic domain theories (cf., Heckerman, et al., 2004). Plates 
in BUGS, object classes in object-oriented Bayesian networks, and PRM structures in 
probabilistic relational models all correspond to MFrag classes.  

Figure 11 compares MEBN, PRM and plate representations for a theory fragment in the 
equipment diagnosis domain. Like Bayesian networks, plates represent a joint distribution as an 
acyclic directed graph in which nodes represent random variables, arcs represent direct 
dependence relationships, and each node is annotated with a specification of a conditional 
distribution of the random variable given its parents. Repeated structure in a plates model is 
represented by indexing repeated random variables with subscripts, and enclosing the set of 
random variables indexed by a given subscript in a rectangle called a “plate.” These indices play 
the role of the ordinary variables in an MFrag. As in MEBN, a random variable’s parents may 
contain indices not mentioned in the random variable, in which case the local distribution for the 
child random variable must specify how to aggregate influences from multiple instances of the 
parent random variable.  Plate models are restricted to a finite number of instances of each 
random variable. The number of instances of each random variable is a fixed attribute of the plate 
model.  BUGS has sophisticated capability for parameter learning, and although there is no built-
in mechanism for structure learning, plate models can be constructed to represent the problem of 
reasoning about the presence or absence of conditional dependency relationships between random 
variables. 

A PRM contains the following elements (Heckerman, et al., 2004; see Figure 11b):  
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 A relational schema that specifies the types of objects and relationships that can exist 
in the domain; 

 A PRM structure that represents probabilistic dependencies and numerical 
probability information; 

 A skeleton that specifies a unique identifier and a blank template for each individual 
entity instance; 

 The data to fill the entries in the blank template. 

Condition(m)

Machine(m)

Theta(1)

Experience(i)

Inspector(i)

Theta(2)

InspectedBy(m,i)

Inspector(i)Machine(m)

Theta(n)

Natnum(n)

Inspector(i)

WatchStatus(m)

Report(m,i)

Condition(m)

InspectedBy(m,i) Machine(m)

Experience(i)
!(Theta(3))

Machine(e)

Inspector(e)

Natnum(e)

!(e)

 
a. MEBN Fragments 
(findings are not shown) 

 
a. Probabilistic Relational Model – Relational Schema & PRM Structure 

(skeleton and instances are not shown) 

Condition[m]

Report[m,i] Experience[i]

WatchStatus[m]

 Machine  m  1 : M 

Alpha

 Inspector  i  1 : I 

Beta

Gamma

 
c. Plates 

Figure 11: MFrags, PRM and Plates for Equipment Diagnosis Domain 
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Like a MEBN theory, a PRM represents a probability distribution over possible worlds. Any 
given PRM can be expanded into a finite Bayesian network over attributes of and relationships 
between the individuals explicitly represented in the skeleton. PRMs use aggregation rules to 
combine influences when multiple instances of a parent random variable influence a child random 
variable (as when multiple reports influence the WatchStatus random variable in Figure 11).  In 
addition to attribute value uncertainty, PRMs have been extended to handle type uncertainty, 
reference uncertainty, and identity uncertainty.  PRM learning theory provides a formal basis for 
both parameter and structure learning. Learning methods have been published (e.g., Getoor, et al., 
2001) for learning both the structure and parameters of PRMs from instances in the skeleton. If 
the probability distribution represented by a PRM is assumed to apply to similar entities not 
explicitly represented in the skeleton, then PRM learning methods can be extended to allow 
sequential learning as new individuals are added to the skeleton over time, thus providing the 
logical basis for a form of open-world reasoning.  One can also extend the relational schema and 
PRM structure “by hand” to add new entity types. 

Heckerman, et al. (2004) introduce a new language, DAPER, for expressing probabilistic 
knowledge about structured entities and their relationships.  DAPER combines the entity-relation 
model from database theory with directed graphical models for expressing probabilistic 
relationships.  DAPER is capable of expressing both PRMs and plates, thus providing a unified 
syntax and semantics for expressing probabilistic knowledge about structured entities and their 
relationships.  As presented in Heckerman, et al. (2004), DAPER expresses probabilistic models 
over finite databases, and cannot express arbitrary first-order formulas involving quantifiers. That 
is, DAPER is a macro language for compactly expressing finite Bayesian networks with repeated 
structure, and not a true first-order probabilistic logic. Because DAPER can represent PRMs and 
plates, this conclusion applies to these formalisms as well. On the other hand, the random variable 
semantics described in Section 5.1 could provide a theoretical basis for extending DAPER, and 
thus PRMs and plates, into a true first-order logic. Conditions could be identified under which 
DAPER models of unbounded cardinality express well-defined probability distributions over 
models. If developed more fully, the relationship sketched here between MEBN theories, PRMs 
and plates would facilitate construction of such an extension. 

Object-oriented Bayesian networks represent entities as instances of object classes with class-
specific attributes and probability distributions. Reference attributes allow representation of 
function composition.  Although OOBNs do not have multi-place relations, these can be handled 
by defining new object types to represent multi-place relations.  Structure and parameter learning 
methods for OOBNs have been developed (e.g., Langseth and Nielsen, 2003; Langseth and 
Bangsø, 2001).  The current literature on OOBNs does not treat type and reference uncertainty, 
although clearly it would be possible to extend OOBNs to handle these kinds of uncertainty.  An 
advantage of OOBNs is the ability to represent encapsulated information, or random variables 
defined internally to an object that are independent of external random variables given the 
interface random variables that shield an object from its environment.  The semantics of 
encapsulation is based on conditional independence relationships.  Thus, the concept of 
encapsulation could be extended to other languages based on graphical models, including MEBN 
theories and DAPER models with encapsulated random variables. As with plates and PRMs, the 
random variable semantics described in Section 5.1 could provide a theoretical basis for 
extending OOBNs to achieve full first-order expressive power. 

A feature of MEBN not present in PRMs, plates or OOBNs is the use of context constraints 
to specify logical conditions that determine whether one random variable influences another.  A 
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similar effect can be achieved by using aggregation functions that ignore influences ruled out by 
the context, but this is more cumbersome.  PRMs and OOBNs are founded on a type system. 
Sophisticated implementations (e.g., IET 2004) have subtyping, inheritance, and the ability to 
represent type uncertainty (e.g., IET, 2004).  MEBN can be extended to a typed logic that has 
many of the advantages of typed relational languages (Costa and Laskey 2005).  Because there 
presently is no direct MEBN implementation, several published applications have translated 
MEBN theories into relational models and used the Quiddity*Suite probabilistic relational 
modeling and KBMC toolkit (IET, 2004) to construct situation-specific Bayesian networks (e.g., 
Costa, et al., 2005; AlGhamdi, et al., 2005).  There are some features of MEBN (most notably 
context constraints) that cannot be represented declaratively in standard relational languages, but 
the ability of Quiddity*Suite to combine Prolog-style rules with a frame-based relational 
modeling language provides the ability to specify much more powerful declarative 
representations (e.g., Fung, et al., 2005). 

Like MEBN, relational Bayesian networks (Jaeger 1998; 2001) provide formal semantics for 
probability languages that extend Bayesian networks to achieve first-order expressiveness. 
Random variables in a relational Bayesian network are all Boolean.  A RBN has a set of pre-
defined relations used in defining the local distributions and a set of probabilistic relational 
symbols, which represent uncertain relations on the domain. A RBN defines a joint probability 
distribution on models of the uncertain relations.  Probability formulas specify how to combine 
influences from multiple instances of the parents of a random variable to obtain a conditional 
distribution for the random variable given finite sets of instances of its parents. General relational 
Bayesian networks can represent probability distributions only over finite domains, although non-
recursive RBNs have been extended to represent probability distributions over countably infinite 
domains (Jaeger, 1998).  

 Bayesian logic programs (e.g., Kersting and De Raedt, 2001; De Raedt and Kersting, 2003) 
also express uncertainty over interpretations of first-order theories. To ensure decidability, BLPs 
have typically been restricted to Horn clause theories. Bayesian logic programs and MEBN 
theories represent complementary approaches to specifying first-order probabilistic theories.  
BLPs represent fragments of Bayesian networks in first-order logic; MEBN theories represent 
first-order logic sentences as MFrags. Although the restriction to Horn clause logic limits the 
expressiveness of BLP languages, this limitation is balanced by the efficiency of algorithms 
specialized to Horn clause theories.  Research in Bayesian logic programming is applicable to the 
problem of execution management in SSBN construction.  That is, an execution manager can 
identify portions of an inference task that involve only Horn clauses, and send these to an 
inference engine specialized for efficient reasoning with Horn clauses. MEBN semantics could be 
used to develop extensions to BLP languages that could handle knowledge bases not limited to 
Horn clauses.  

Other research on integrating logic and probability includes Poole’s (2003) parameterized 
Bayesian networks, Ngo and Haddawy’s (1997) work on context-specific probabilistic 
knowledge bases, PRISM (Sato, 1998), IBAL (Pfeffer, 2001), and BLOG (Milch, et al., 2005). 
Parameterized Bayesian networks are designed to provide the ability to reason about individuals 
not explicitly named, an important capability lacking in most probabilistic languages. Poole 
presents an algorithm for performing inference without grounding out the theory.  Like MEBN, 
random variables in a parameterized Bayesian network can take arguments; individuals in a 
population can be substituted for the parameters to form instances of the random variables. Like 
MEBN, the population over which the parameters range can be finite or infinite.  Poole considers 
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only models without recursion.  Thus, a parameterized Bayesian network corresponds to a MEBN 
theory with no recursive links. Ngo and Haddawy represent probabilistic knowledge as 
universally quantified sentences that depend on context.  Like MEBN, Ngo and Haddawy exploit 
context constraints to focus inference on relevant portions of the knowledge base. Unlike MEBN, 
Ngo and Haddawy separate context, which is non-probabilistic, from uncertain hypotheses, for 
which context-specific probability distributions are defined. A context-sensitive knowledge base 
corresponds to a partially specified MEBN theory in which there is a reserved subset of Boolean 
random variables that may appear as context random variables in MFrags, but that have no home 
MFrags and whose truth-values are assumed to be known at problem solving time. PRISM is a 
logic programming language in which facts can have parameterized probability distributions. 
Like a MEBN theory, a PRISM program defines a probability distribution over interpretations.  A 
PRISM program can be used as a random sampler from the distribution it defines. PRISM also 
supports abductive reasoning and EM learning. IBAL is a probabilistic programming language 
that allows users to write functional programs with stochastic branches. Given such a program, 
IBAL uses a variety of inference methods to provide a probability distribution over outputs of the 
program.  Results may be conditioned on user-specified evidence.  IBAL supports parameter 
learning and utility maximization.  BLOG (Milch, et al., 2005) is a new language that enables 
probabilistic reasoning about unknown entities, and about domains that can contain unknown 
numbers of entities.  Under appropriate conditions such as the ones defined in 4.3, BLOG could 
also express probability distributions over interpretations of a broad class of first-order theories. 

Hidden Markov models are applied extensively in pattern recognition tasks such as speech 
and handwriting recognition.  Formally, a hidden Markov model can be represented as a dynamic 
Bayesian network in which an observable random variable depends on a latent or hidden variable 
that follows a Markov transition.  Dynamic Bayesian networks and partially dynamic Bayesian 
networks (Bayesian networks containing both static and dynamic nodes) allow a richer range of 
representation possibilities, in that complex dependency structures for hidden and observable 
random variables can be compactly represented. There is a large literature on efficient estimation 
and inference methods for hidden Markov models. HMMs and DBNs represent temporal 
recursion.  Pfeffer (2000) also considers recursive probabilistic models, which can express non-
temporal recursive relationships. It is straightforward to express HMMs, DBNs, and recursive 
probabilistic models as MEBN theories (e.g., Figure 3).   

Pattern theory (Grenander, 1996) is a graphical modeling language based on undirected 
graphs. There is an extensive literature on applications of undirected graphical models to image 
understanding, geospatial data, and other problems in which there is no natural direction of 
influence. A hybrid language could be defined that extends MEBN to permit both directed and 
undirected arcs. Such an extension is not considered here. 

A common problem for first-order graphical probabilistic languages is how to specify local 
distributions when a random variable has different numbers of parents in different ground 
Bayesian networks corresponding to a given first-order probabilistic theory. Probabilistic 
relational models use aggregation functions, in which a summary statistic is computed from the 
instances of a given parent, and the local distribution depends on the summary statistic.  For 
example, the distribution for WatchStatus in Figure 11 depends on a summary statistic that 
aggregates the total number of problematic reports received about an item. Many knowledge-
based Bayesian network construction approaches use combination rules (e.g., Natarajan, 2005; 
Ngo and Haddawy, 1997).  With combination rules, the modeler defines a probability distribution 
for a single instance of each of the parents of a random variable, and a combination rule that 



FIRST-ORDER BAYESIAN LOGIC 

*DRAFT* 38 2/27/06 

specifies how to combine these distributions when the ground model contains multiple instances 
of some or all of the parents. Influence counts can represent both combining rules and 
aggregation functions. To define influence counts for a random variable, all possible substitutions 
are formed for the variables in the parents of a random variable and the context random variables 
in its home MFrag. Each substitution defines a parent set, and each parent set has a configuration 
of states. Configurations in which a context random variable has a value other than T are 
discarded. The number of times each configuration of the parents occurs among the remaining 
parent sets is the influence count for that configuration.   

It is clear that influence counts can represent combining rules. Consider an extension of our 
diagnosis example in which EngineStatus(m) depends on BeltStatus(b) and GasketStatus(g), and 
in which the context constraints specify Isa(Belt,b) and Isa(Gasket,g). To specify a combining 
rule, the modeler would specify a probability distribution for EngineStatus(m) given each 
belt/gasket configuration and each room temperature, and a combining function to combine these 
distributions. Suppose a particular machine has two belts and three gaskets, and is located in one 
of two rooms. Making all legal substitutions would yield twelve probability distributions: one for 
each of the six belt/gasket combinations in each of the two rooms. The combining function would 
specify how to obtain a single distribution from these twelve distributions.  To use influence 
counts to define a combining rule, we would simply specify a probability distribution for each 
parent configuration, and then combine use each configuration’s influence count to specify the 
number of copies of the corresponding distribution to combine. 

To represent aggregation rules with influence counts is a little less straightforward. Suppose 
we want to define an aggregation function that depends on the total number of broken belts and 
the total number of broken gaskets. In our machine with two belts and three gaskets, each belt 
contributes to three of the six influencing configurations, and each gasket contributes to two of 
the six influencing combinations.  Thus, we would need to divide the total influence counts for 
broken belt configurations by 3 and the total influence counts for broken gaskets by two, in order 
to obtain the needed aggregation function. 

Many languages designed for implementation have taken the strategy of restricting 
expressiveness to ensure that answers to probabilistic queries are decidable.  In an open world, 
the answer to many queries of interest will be undecidable, and the best that can be expected is an 
approximate answer.  Languages that provide decidable, closed-form responses to limited classes 
of queries have an important place both theoretically and practically. Nevertheless, intelligent 
reasoning in a complex world requires principled methods of coping with undecidable or 
intractable problems. MEBN exploits the language of graphical models to compose consistent 
domain theories out of modular components connected via clearly defined interfaces, and thus 
can support efficient implementations of tractable domain theories.  Yet, MEBN can represent 
highly complex, intractable, and even undecidable domain theories. Although the answer to a 
probabilistic query may be undecidable, and may be intractable even when it is decidable, 
Bayesian decision theory provides a sound mathematical basis for designing and analyzing the 
properties of processes that converge to the correct response to undecidable queries, and resource-
bounded processes that balance efficiency against accuracy. Bayesian theory also provides 
semantics for the relationship between empirical proportions and probabilities, as well as a 
logically justified and theoretically principled way to combine empirical frequencies with prior 
knowledge to refine theories in the light of observed evidence.  
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7 Summary and Discussion  
Graphical models were initially limited to problems in which the relevant random variables 

and relationships could be specified in advance. Languages based on graphical models are rapidly 
reaching the expressive power required for general computing applications. It is becoming 
possible to base computational inference and learning systems on rationally coherent domain 
models implicitly encoded as sets of graphical model fragments, and to use such coherent deep 
structure models to guide reasoning and knowledge discovery.  Probability theory provides a 
logically coherent calculus for combining prior knowledge with data to evolve an agent’s 
knowledge as observations accrue.  Probability theory also provides a principled approach to 
knowledge interchange among different reasoners.  This paper presents a logical system that 
unifies Bayesian probability and statistics with classical first-order logic.  An instance of a first-
order Bayesian language called Multi-Entity Bayesian Networks (MEBN) is presented. The 
syntactic similarity of MEBN to standard first-order logic notation clarifies the relationship 
between first-order logic and probabilistic logic.  A MEBN theory (MEBN theory) assigns 
probabilities to models of an associated FOL theory.  MEBN theories partition FOL theories into 
equivalence classes of theories with the same logical content but different probabilities assigned 
to models. Provable statements in FOL correspond to statements in the associated MEBN theory 
for which SSBN construction terminates with a probability of 1 assigned to the value T. A MEBN 
theory corresponding to an inconsistent FOL theory has at least one finding equal to ⊥ with 
probability 1.  If the associated MEBN theory is inconsistent, SSBN can determine in finitely 
many steps that it is inconsistent. When SSBN construction does not terminate but the MEBN 
theory represents a globally consistent joint distribution, the construction process gives rise to an 
anytime sequence of approximations that converges in the infinite limit to the correct response to 
the query. MEBN is inherently open.  Bayesian learning theory provides an inbuilt capability for 
MEBN-based systems to learn better representations as observations accrue.  Parameter learning 
can be expressed as inference in MEBN theories that contain parameter random variables.  
Structure learning can also be handled by introducing multiple versions of random variables 
having home MFrags with different structures.  A more natural approach to structure learning, as 
well as a more flexible type system, requires a polymorphic extension of MEBN. Clearly, a typed 
MEBN with polymorphism would be desirable for many applications.  We chose in this paper to 
focus on the basic version of the logic to highlight its relationship to classical first-order logic and 
demonstrate that the logic is sufficiently powerful to represent general first-order theories.  
Extensions of MEBN are planned to incorporate additional expressivity. 

Appendix A: Proofs and Algorithms 
This appendix proves that a MEBN theory represents a globally consistent joint distribution over 
random variable instances, proves that a MEBN theory constructed as described in Section 5.2 
places non-zero probability of value T on Boolean random variables corresponding to satisfiable 
first-order sentences, presents the SSBN construction algorithm, shows that SSBN construction 
identifies an unsatisfiable set of findings in finitely many steps, and proves that when findings are 
consistent, SSBN construction converges with probability 1 to the posterior distribution over a 
MEBN theory’s random variables given that all finding random variables have value T. 
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A.1. Proof of Existence Theorem 
Theorem 1:  Let T = { F1, F2 … } be a simple MEBN theory. Then there exists a joint 
probability distribution 
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in which the φi(αi) are independent and distributed as assigned by the local distributions in their 
home MFrags conditional on the value assignments in S.  Existence of both a joint conditional 
distribution for the φi(αi) and a marginal distribution for S implies that the marginal joint 
distribution  
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exists and is consistent with the local distributions of T.  The marginal distribution (1) is 
expressed as an integral rather than a sum because there may be uncountably many different ways 
to choose the value assignments S={ϕ(β)=γ : ϕ(β)∈A}.  

This construction can be carried out for any finite set of depth D instances, and it is clear that 
all the distributions thus defined are consistent with each other and with the local distributions of 

                                                
18 Kolmogorov’s existence theorem (c.f., Billingsley, 1995) states that if joint distributions exist for all finite subsets of 
a collection of random variables, and if all these finite-dimensional distributions are consistent with each other, then a 
joint distribution exists for the infinite collection of random variables. 
19 Theorem 1 holds under weaker conditions on the local distributions, but condition 3e suffices to show that MEBN 
can represent classical first-order logic. 
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T.  This implies that T represents a joint distribution over arbitrary finite subsets of NT, and that 
the distributions constructed in this way are consistent with each other and with the local 
distributions of T. A second application of Kolmogorov’s existence theorem implies that T 
represents a joint distribution over all instances of random variables in VT.  It is clear that this 
distribution is consistent with the local distributions of T.    

A.2. SSBN Construction Algorithm 
The situation-specific Bayesian network construction algorithm takes a MEBN theory T, a 

finite (possibly empty) set of target random variable instances, and a finite (possibly empty) set 
of finding random variable instances, and computes a sequence of Bayesian networks containing 
the target and finding random variable instances.  The algorithm may be interrupted at any time to 
obtain an approximate SSBN.  If the findings are inconsistent and the algorithm is not interrupted, 
it will discover the inconsistency in finitely many steps.  If the algorithm terminates without 
interruption and the findings are consistent, the last Bayesian network in the sequence can be used 
to compute the joint distribution of the target random variable instances given that all finding 
random variable instances have value T.  That is, additional model construction would not change 
the result of the query.  For some problems, the algorithm will not terminate unless it is 
interrupted, but it produces a sequence of approximate SSBNs that converge to the correct query 
response. 

We give the SSBN construction for simple MEBN theories only.  The modification for 
mixture MEBN theories is straightforward. SSBN construction proceeds as follows: 

SSBNConstruct: The inputs to SSBNConstruct are: 
 A simple MEBN theory T with partial ordering  and modeler-defined MFrags F 

defined on a set X of random variable symbols and a set A of constant symbols;  
 A finite (possibly empty) set {τi}i≤T of non-finding random variable instances called 

the  target random variable instances;  
 A finite (possibly empty) set {φi}i≤F of finding random variable instances. 

The steps in SSBNConstruct are: 
1. Initialization. Set Q = {τi}i≤T∪{φi}i≤F, and set R0=Q. Let N0 and K0 be  

positive integers. Set the iteration number i equal to 0. 
2. SSBN structure construction. Set the structure of the approximate SSBN Bi 

as follows: 
 Set Bi equal to a Bayesian network in which the nodes are the 

random variables in Ri. Add an arc from random variable α to β if α 
is an instance of a parent of β or is a context random variable in the 
home MFrag of β. Remove any arcs to β if there are no influencing 
configurations for β (i.e., there are no configurations of its parents 
and context random variables that match the context constraints). 
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 Do until no more changes to Bi occur: 
• Remove from Bi all barren nodes, that is, nodes having no 

descendants in Q; 
• Remove from Bi all nodes that are d-separated by finding 

nodes from any target nodes; 
• Remove from Bi the parents of any nuisance node for which 

there is a current cached marginal distribution.  A nuisance 
node (Lin and Druzdzel, 1997) is a node that is 
computationally relevant given the query, but is on no 
evidential trail20 between an evidence and a target node. 

3. Local distribution construction. Calculate the local distributions in Bi from 
the local distributions in the MFrags of T, with modifications to restrict 
random variables to have no more than Ni possible values, to approximate the 
effects of random variables that have not been enumerated, and to ensure that 
computation of local distributions halts. Specifically:  
• If ψ is a nuisance node with a current cached marginal distribution (in 

this case, Step 2 above ensures that ψ will be a root node in Bi), assign it 
the cached marginal distribution. 

• For any other node ψ in Bi, let Sψ be a configuration of states of the 
parents of ψ in Bi (by convention, Sψ=∅ if ψ has no parents in Bi). 

o  If Sψ assigns each parent ψ in Bi to its 1st, 2nd, …, or Ni-1st state, 
then run the algorithm for computing the probabilities of the first 
Ni possible values for ψ given Sψ, terminating the computation 
after Ki steps.  Assign the first Ni – 1 states of ψ to the 
probabilities returned by this algorithm, and assign the Ni

th 
possible value equal to 1 minus the sum of the probabilities for 
the other values. 

o If Sψ assigns any parent ψ in Bi to its Ni
th state, then assign ψ a 

default distribution that gives non-zero probability to all states of 

                                                
20 A node is computationally relevant if it remains after iteratively removing all barren and d-separated nodes.  An 
evidential trail between two sets of nodes is a minimal active undirected path from a node in one set to a node in the 
other.  If a global joint distribution exists, then nuisance nodes can be marginalized out without affecting the result of 
the query. 
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ψ (i.e., to all states if there are fewer than Ni or to the first Ni 
states otherwise). 

4. Inference. Apply a standard Bayesian network inference algorithm to 
compute the conditional distribution for the non-finding random variables in 
Bi given the finding random variables in Bi. For each node β in Bi, cache its 
marginal distribution and mark it current. 

 If the inference algorithm indicates that the findings are inconsistent, 
then set the SSBN S equal to Bi, output S, and stop with an 
indication that SSBN construction terminated and T is inconsistent. 

 Else, if all computationally relevant random variables have been 
added, no random variable in Bi has more than Ni possible values, 
and no local distribution computation terminated prior to completion, 
then set the SSBN S equal to Bi; return Bi and the joint distribution 
of the target random variables; and  stop with a flag indicating that 
SSBN construction terminated and T is consistent. 

 Else, go to Step 3. 
5. Instance enumeration and approximation parameter updating. This step 

enumerates additional instances of random variables and increases the limits 
on the number of allowable states per random variable and computational 
steps for local distributions. 

 If the stopping criterion is met, output Bi and the joint distribution 
computed in Step 4, and stop with an indication that SSBN 
construction did not terminate. 

 Else, set Ri+1 = Ri. For each random variable instance β∈Bi for 
which a change in the local distribution may occur if additional 
parents are added, add a finite number of instances of parents of β to 
Ri+1, using a process that ensures eventual addition of all instances of 
parents of β. (Here, a context random variable in a random variable’s 
home MFrag counts as a parent.) 

 Set Ni+1 and Ki+1 to positive integers strictly greater than Ni and Ki, 
respectively.  

 For any node in which (i) new parents have been added, or (ii) new 
states of an ancestor have been added, or (iii) the computation did 
not halt in computing the local distribution of the node or one of its 
ancestors, mark its marginal distribution as not current. 

 Increment i, and go to Step 4. 

It is well known that if a set of sentences in FOL is unsatisfiable, then there exists a finite set 
of ground instances of a set of logically equivalent sentences that is also unsatisfiable (see, for 
example, Russell and Norvig, 2002).  The SSBN construction algorithm produces a sequence of 
Bayesian networks, each of which can be translated into a set of constraints on truth-values of a 
finite set of ground instances of FOL sentences implied by the MEBN theory T.  Each of these 
Bayesian networks encodes a probability distribution that assigns non-zero probability to any 
assignment of truth-values consistent with the constraints it encodes.  Each approximate SSBN 
includes all constraints represented in the preceding approximate SSBNs, together with additional 
constraints.   If the query set contains only the findings, then eventually all logical constraints 
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implied by the findings and their predecessors in the random variable instance partial order are 
enumerated.  If the set of all logical constraints is unsatisfiable, then so is a finite subset, and 
eventually the constraints encoded in the SSBN will include a finite unsatisfiable subset.   

The following theorem states that an inconsistent theory can be discovered in a finite number 
of steps of SSBN construction by specifying a query set consisting of only the findings, and 
setting SSBN construction never to stop unless . 

Theorem 7:  If the logical constraints represented by T are unsatisfiable and Step 5 of 
SSBNConstruct is set never to stop, then SSBN construction on a query set consisting only of the 
findings of T terminates in finitely many steps with an indication that T is inconsistent.  

Proof: Each approximate SSBN Bi represents a probability distribution over interpretations 
of a theory for which the logical axioms form a subset of the logical axioms of T.  The domain of 
this interpretation is a finite set consisting of all possible assignments of values to the random 
variables of Bi such that all finding random variables have value T. The approximate SSBN Bi 
assigns non-zero probability to the hypothesis that all finding random variables have value T if 
and only if there is at least one interpretation on this finite domain that satisfies all the logical 
axioms represented in Bi, which in turn is the case if and only if the logical axioms represented in 
Bi are simultaneously satisfiable. For k>i, the approximate SSBN Bk includes all logical 
constraints included in Bi, along with any additional constraints implied by the local distributions 
of random variables appearing in Bi+1 but not in Bi.  The SSBN construction process eventually 
adds all computationally relevant random variables, and therefore eventually includes all logical 
constraints represented by the local distributions of any random variable instances that are either 
findings or ancestors of findings in the random variable partial ordering  .  Thus, if the findings 
are unsatisfiable, eventually there will be an approximate SSBN in the sequence that represents 
an unsatisfiable set of constraints.  

Note that SSBN construction will never add random variables d-separated from the target 
random variables by findings.  Therefore, if the query set contains non-finding target random 
variables, then inconsistencies that would be introduced only by adding d-separated random 
variables will not be discovered.  It is often asserted in logic texts that an inconsistent theory is 
“useless” because anything can be proven from a contradiction. In practice, though, inconsistent 
theories can be quite useful. MEBN can be used to reason with inconsistent theories, as long as 
queries are structured so that the target of any given query is d-separated by a subset of the 
findings from any findings that contradict this subset.  Thus, MEBN may turn out to be a useful 
tool for studying conditions under which inconsistent theories can provide accurate results to 
probabilistic queries. 

Condition 3e of Definition 3 implies that in any possible world, each local distribution can be 
computed from finitely many instances of the random variable’s parents and context random 
variables.  However, which instances are needed can vary from possible world to possible world, 
and there may be no upper bound on how many instances are needed.  To show that SSBN 
construction converges to the correct result, it is necessary to show that the correct response to a 
query can be approximated to arbitrary accuracy by explicitly representing only a finite number 
of random variable instances.   

Lemma 8:  Let Q = {θi}i≤M be a finite set of random variable instances from a MEBN theory T. 
Let R denote the set of all random variable instances that are elements of Q or ancestors of 
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elements of Q.  Let Q = R0⊂R1⊂ R2⊂… be finite sets of random variable instances such that R = 
∪i Ri.  Let Bi be the Bayesian network constructed from the random variables in Ri.  That is: (i) 
the nodes of Bi are the random variable instances in Ri; (ii) there is an arc from θi to θj if θi is 
either a parent of θj or a context random variable in its home MFrag, and if there is at least one 
influencing configuration containing a value assignment for θj; and (iii) the local distribution for 
each θi is given by its local distribution !

"
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By the induction hypothesis, 

 
P

B
i

0 (S
0
)!P

T

gen
(S0 )  as i→∞.  

Let Ui = Ri\Q. That is, Ui consists of random variables in Bi that are not in Q, and let U∞ = 
∪i Ui. Let X∞ denote an assignment of values to the random variable instances in U∞, and let Xi 
denote the subset of value assignments corresponding to random variables in Ui. Suppose none of 
the depth D random variables in Ri has value ⊥. By condition 3e of Definition 3, there is an 
integer N such that: 

πθ(α|XN∪S0) = πθ(α|XN+1∪S0) = … = πθ(α|X∞∪S0) . (2) 

Let N* denote the smallest N for which (2) holds.  The number N* is a function of X∞∪S0. 
Marginalized over X∞, N* has a probability distribution 

 
P

T

gen (N* | S0 ) .   
We can write: 

 

P
T

gen (S) = !" (" =# |X
n
$S0 )

("=# )%S
depth(" )=D

& P
T

gen (X
n
$S0 | N* = n)

'

(

)
)

*

+

,
,

X
n

- P
T

gen (N* = n | S0 )
n

- . (3) 

Let 
 
P

T

n*
(S)  be an approximation of 

 
P

T

gen
(S)  obtained by enumerating only the finite set 

Un*∪Q of random variables: 

 
P

T

n*
(S)  = 

 

!" (" =# |X
n* $S0 )

("=# )%S
depth(" )=D

& P
T

gen (X
n* $S0 )

X
n*

'  (4)  

Combining (3) and (4), and noting that 
 
!

"
(" =# |X

N*
$S

0
)  = 

 
!

"
(" =# |X

n*
$S

0
)  when N* ≤ 

n*, we have: 

 
P

T

n*
(S)!P

T

gen
(S)   

 = 

 

!" (" =# |X
n
$S0 )

("=# )%S
depth(" )=D

& P
T

gen (X
n
$S0 | N* = n)

'

(

)
)

*

+

,
,

X
n

- P
T

gen (N* = n | S0 )
n>n*

-  

≤  
 
P

T

gen (N* ! n | S0 ) . (5) 
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Let u be a positive real number, and let n* be an integer such that 
 

P
T

gen
(N* = n)

n>n*!  < u/2. Then 

 
P

T

n*
(S)!P

T

gen
(S)  < u/2.  By the induction hypothesis, the distributions 

 
P

B
i

0 (Xn*
!S

0
)  converge 

to 
 
P

T

gen
(X

n* !S0 )  as i→∞.  We can therefore choose k sufficiently large that: 
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i

(S)!P
T

n*
(S)  = 
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depth(" )=D

& P
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i
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T
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X
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(  < u/2. 

 
Then for i > k: 

 
PB

i

(S)!P
T

gen
(S) ≤ 

 
PB

i

(S)!P
T

n*
(S)  + 

 
P

T

n*
(S)!P

T

gen
(S)   <  u. (6) 

Therefore, 
 
P

B
i

(S)  converges to 
 
P

T

gen
(S) .   

Now consider the case in which one or more of the depth D random variables has value ⊥. It 
is clear that if 

 
P

B
i

(S)  converges to 
 
P

T

gen
(S)  for all S in which k or fewer of the depth D random 

variables has value ⊥, then it must also converge when k+1 of the depth D random variables has 
value ⊥. This establishes the result for sets Q of depth no greater than D, and thus concludes the 
proof.  

Theorem 9:  Suppose the logical constraints represented by T are satisfiable. Furthermore, 
suppose that the algorithm described in Definition 3c for computing values of πψ(ε)(A|S) returns a 
zero value only if the exact value πψ(ε)(A|S) is equal to zero.  If Step 7 of SSBNConstruct is set 
never to stop, then SSBN construction on query set Q either terminates with the distribution 

 
P

T

gen (Q0 | {φi}i= i≤F), or produces a sequence B1, B2, …, in which the probability distribution for Q0 
given the findings in Bi converges to the distribution represented by T. 

Proof: Lemma 8 establishes that the distribution on Q can be approximated to arbitrary 
accuracy by enumerating only finitely many of the random variable instances enumerated during 
SSBN construction.  However, unlike in Lemma 8, SSBN construction also approximates the 
local distributions by enumerating only finitely many possible values and terminating 
computation after a finite of steps.  Because the maximum number of possible values and the 
maximum length of computation increase with the number of SSBN steps, and do not have an 
upper bound, these additional approximations can be added without affecting convergence.   
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