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A Hole in Goal Trees: Some Guidance from Resolution
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DONALD W. LOVELAND AND MARK E. STICKEL

Abstract-The representation power of goal-subgoal trees
and the adequacy of this form of prohlem reduction is consid-
treel. A number of inadequacies in the classical form are ilIus-
Ilated, and two versions of a syntactic procedure incorporating
extensions are given. Although the form of the corrections are
suggested from resolution theory results, and the value of this
connection emphasized, the paper discusses the goal tree format
and its extensions on an informal level.

In.1ex Terms-AND/OR trees, Geometry Theorem Machine,
(oal trees, model elimination, resolution, theorem proving.

1. INTRODUCTION

AFTER several years when almost all theorem prov-
1"\. ing systems, and many problem solving systems,
were based on resolution, many researchers are return-
ing to natural deduction type logics, often implemented
via some form of goal-subgoal tree notation using a
problem reduction approach. In this paper the goal-
subgoal tree form (or AND/OR tree form) is considered.
Weshow that if one wishes to use this syntactic form for
representation of the deductions and search space as a
full replacement for the resolution approach, one must
make some additions to the classical problem reduction
formulation.

To show that there exist holes in the classical goal-
suhgoal problem reduction method we need only
present some examples, which we supply. To determine
an appropriate correction and measure its power takes
SOmetheory. It turns out that' resolution theory, in par-
ticular, the model elimination procedure results, pro-
vides an adequate theoretical base. In this paper we
only state the consequences for the problem reduction
approach, omitting proofs. However,we want to stress
the value of resolution theory for the insight it gives to
the problem reduction method and remark that more
information than is exploited here can certainly be
Pulled from existing resolution theory.

AND/OR trees, used as goal trees, are components of
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most problem solving systems that are not resolution
based. Weare hereafter concerned only with goal trees
used for logical inference. We show, among other things,
that the usual way of organizing goal-subgoal trees is
incomplete; yet one small change makes the mechanism
complete, assuming equality substitution is not rele-
vant, and if the equality predicate is used, several added
rules gives completeness, in general. By completeness,
we mean that the goal trees and associated syntactic
mechanism are capable of establishing a goal statement
whenever the goal is valid given the assertions present.
The systems we discuss are the search trees such as are
used in the Geometry Theorem Machine (GTM) (Gel-
ernter et at. [2]-[4]) and the logic theorist (Newell et at.
[12]). Indeed, when the equality predicate is not
present, the mechanism of the Plane Geometry Ma-
chine is sufficient in structure and mechanism to be
complete, yet it is not complete.

The subject of completeness is embroiled in contro-
versy these dgys. We feel a developing consensus that
total completeness is pointless to pursue, and for almost
all pro~lems, pursuit of the solution will be done by
methods (particularly search methods) incomplete in
themselves; yet the total reservoir of tools to be drawn
upon should be complete if at all possible. In particular,
one wishes the underlying organization and recording
mechanism (this is what AND/OR goal trees are) to be
capable of handling any situation. The worst possible
situation is to be prevented from establishing a simple
inference, not because one is unable to thread through
the search space, but because the inference chain can-
not even be represented. We claim this is particularly
bad because the problem specific search tools are ex-
pected to be updated frequently while the underlying
recording (proof) mechanism is viewed as far more sta-
ble. In analogy, inability to express concepts due to in-
adequate grammatical structure is worse than inade-
quacy due to a limited vocabulary, for one more readily
adds to his (her) vocabulary. One wishes a grammar
"complete" although 'no one expects a "complete" vo-
cabulary.

Regarding goal trees, one instance of inadequate un-
derstanding of goal trees and the associated mecha-
nisms is reported in Gelernter [3]. This paper docu-
ments an instance where a mechanism mixing use of the
STUCK and ESTABLISHED labels with goal elimination
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due to identical higher goal resulted in the inability to
infer theorems whose known proof complexity suggest-
ed solution should be possible. As search spaces were
relatively small, most runs could be carefully analyzed,
so the flaw was probably discovered on the first theorem
for which the flaw actually prevented the proof. How-
ever, the GTM had been in operation nearly a year at
that time and many "production" runs were made prior
to this discovery. Moral: flaws in infrequently used logi-
cal paths may be particularly bad because simple (and
important?) results may be blocked long after the sys-
tem is believed "debugged" in its basic routines.

We do not consider completeness proofs here but rely
on examples to suggest the need and degree of applica-
bility of extensions to the classical form for goal trees.
Those familar with resolution theory (in particular,
model elimination as given in Loveland [10] and in
Kowalski and Kuehner [8]) will be able to verify some
claims. Other assertions are based on results to appear
in a forthcoming book on theorem proving by Loveland
[11].

At this stage of development of the artificial intelli-
gence field, we feel it is unnecessary to justify interest in
theorem proving techniques themselves. The reference
section lists a small sample of papers that investigate
theorem proving techniques or apply such techniques to
robot guidance, question-answer systems, automatic
programming, etc.

II. GOALTREES

By a goal tree we mean an AND/OR tree developed by
a problem reduction mechanism. A "classical" treat-
ment of goal trees occurs in Nilsson [13] and Slagle [19],
for example. We review this notion briefly by outline
and example.

Let us represent our syntactic, or semantic, atoms by
capital Latin letters: .4., B, C, . . .,with subscripts if nec-
essary. Of course, A may be a complex formula, e.g.,
(Vy)(v-x)P(x,y) :) Q(y), but we agree not to consider
its interior structure relevant to the particular problem
so it is "packaged" as A. We consider our primary, or
top, goal G to be the atom to be established. Assertions
(facts) are of the form AlA.. .AAn -+ C (implications)
or P (premises). The Ai are antecedents and C is the
consequent of the implication. For notational conve-
nience, we define the consequent of a premise to be the
premise itself and the set of antecedents of a premise to
be the empty set. For a particular problem we begin
with a goal to be established and a set of assertions. We
consider the expression format more closely later.

A goal tree records the development of the search to
establish G by linking it to the premises via the implica-
tions. G is the top goal; if it is also a premise, G is estab-
lished. Otherwise all implications with consequent G
are located and the antecedents of each such implica-
tion become new goals, subgoals of G. G is the parent of
each new goal and each new goal is the successor of G. If
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each new goal for one of the implications can be
lished, G is then established (by asserting the i

tion). The antecedents of one implication form :PU

goals. We also refer to a conjunction of goals ma:i
the set of antecedents from one implication. An"e .

f I ( I . . .
)

J Sir

set 0 partner goa s goa s In cOnjUnctIOn at thi I
that can be established establishes G. This Yi:l~
disjunction of partner goal sets. If no partner goal
corresponds to a set of premises, some partner goal
is selected and each of the partners not a premise
again matched against implication conclusions to Cr
(possibly) new subgoal sets (not necessarily as a sit
parallel action). This proceeds in iteration until a s~
cient set of premise matches are found, or the s"""""\

stops. The conjunction/disjunction relationship ~:leads to the name AND/OR tree. ,&

A go~l A is an ancestor of goal B if A is the parent:~
B or A IS an ancestor of the parent of B. A partner or'

ancestor of the goal A is called an ancestor partner:~
A.::

We give an elementary example from plane geometzy~

in the spirit of the GTM; see Fig. 1. Immediate subgoak~
lie below their goal and are connected by a slanted line..~
Partner goals are connected by a horizontal line. In Fie.'
1 the bottom leftmost conjunction of goals is rejected .
even though two goals are premises because the third
goal also occurs at the top goal, thus it is an ancestor rI
itself. Any goal that occurred as an ancestor goal of it.
self was rejected at the lower level in the GTM structur.
because if it could be established at all, it could be es-
tablished from the higher level. Also in the GTM struc.
ture was a way of discarding a conjunction of goals if.
higher conjunction containing an ancestor was easier to
prove. We do not elaborate for we handle this somewhat
differently. The key point is that interaction with an-
cestor goals existed and was very important due to the
"depth first" search which meant not leaving a branch
until you could go no further.

We now enlarge our format for expressions. This is
done by allowing our atoms to be literals, atoms possi-
bly preceded by a negation sign. Thus if A is a complex
expression, we look inside only to check if the leftmost
symbol is a "not" operator of propositional logic. If so, it
is displayed. We let A, B, C, '.., (possibly with sub-
scripts) represent literals. To emphasize that B is A
proceeded by a "not" we will sometimes write B as -A.
A and ~A are complement literals. Otherwise, our ex-
pression format is as before. . .

The use of negated goals has not appeared in the clas.
sical inference programs using goal-subgoal systems.
The GTM avoided the need to recognize complementa-
ry goals almost by accident, for concepts like "XYZ is
collinear" and "XYZ is not collinear" both appeared
but did not interact. However, in general situations,
particularly in robot systems, question-answerer sys.
terns, etc., interaction between complementary literals
is to be expected. Certain recent systems of a goal-
subgoal format have been designed to handle negated
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LOVELAND AND STICKEL: HOLE IN GOAL TREES

C

Prob lem Statement

Prove the base angles of an isosceles triangle are equal.
Prove: ~BAC Q «ABC
Given: J AC s JCB

/\ABC
'Theorems: 1.

2.
tJXYZ ~ t;UVW -.:XYZ Q -'UVW

"" XYZ s ¥RST 1\ 'l'UVW = oj:RST
-"XYZ =""UVW

3. .JXY Q ,JUV 1\ ..!YZ = .5VW

1\.0::XYZ = .: UVW - t;XYZ ;' t.UVW
4. .JXY= JUv "JYZ - ..!VW

1\ .!XZ Q.bUW - i,xyz ;' t.UVW

A

..ISA'= .JAB .JAC -..!BC "'BAC = ,..ABCJBA-,JAB
identity premise highergoal identity

.JAC-..!BC
premise

..!I\C Q.JAC
premise

Fig. I.
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formulas so that complemented literals interact; see
Bledsoe et ai. [1] and Reiter [15]. These systems are less
in the classical goal-subgoal format than the system
considered here and also appear to be incomplete.

We consider in Fig. 2 a simple example in which the
goal follows from the assertions, but the goal-subgoal
mechanism so far illustrated will not establish the goal.
One reason is that the contra positive of one of the asser-
tions is needed. We add the contra positive as an explicit
assertion. We note, however, that there still is no way of
proceeding to a premise! Yet the problem is simple
enough so that one can read the intended meaning of
the assertions and see that the goal follows. We claim
that because -C occurs as an (indirect) subgoal of C, we
can treat -C as if it were a premise and terminate that
branch. That is, -C is now marked contradicted and
considered established. As A is a premise, B is estab-
lished, so C is established, as desired.

The rationale for the mechanism above is not hard to
find. Either C is true or -C is true. If -C is true, then
Wecan establish C (after establishing other pertinent
sUbgoals), which is impossible. Thus C is' true. This is an

" argument by contradiction. We observe that the check
~orthis is trivial if possible identity with ancestor goals
is checked as in the GTM. One simply checks for identi-
ty and then complementation.

t. The not-so-immediate fact is that we now have a pro-
',' ~Ositionally complete system. That is, if no substitution

Inside literals is allowed so as to make distinct literals
alike (or complementary), no further gimmicks will be
necessary. In Fig. 2 we note a possible alternate argu-
?1ent to produce establishment is that one of D and -D

~true so one of the two ways of establishing C should
Permitted. Is this sufficient also? Probably so; we are

!lot SUre.In any event, it is generally a much more diffi-

"~lt check as the occurrences of D and -D are on differ-
nt disjunctive branches and can be made to appear at

~- ~---
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Problem Statement

I have a ",iaming pool.
If I have a .viaming pool and it
doe.n't rain, I vill go sv-ing.
If I go .viaming, I "ill get "et.
If it rain., I "ill get "et. .
Prove I "ill get "et.

Goal: O. G
A..orcion.: 1. A

2. A "...0 - 8
J. 8- G
4. 0 - G

(5. -<:- ...0
(general connapositive of 4)

A: I have a ."imming pool.
8: I go ."iaming.
G: I get vet.
0: It rai...

G

(applying 3) /\(;ppIYing

as.ertion / \ssertion 4)
8 0

~ing a..ertion 2)
...0 A

premise

!PPIYing assertion 5)
-<:

contradicted

B

Fig. 2.

an arbitrary depth by making the inference connecting
C and D more complex. Thus instead of a nearly free
check one has a relatively complex tree search. But
might such a tree search be necessary anyway, for some
case where ancestor complements do not occur? No.
That is the meaning of our statement that the system is
now propositionally complete. The proof is a conse-
quence of the completeness of model elimination (ME).

In general, problem solvers will not be constrained to
work propositionally. The expressions we have consid-
ered, goal and assertions, will in general have free vari-
ables and functions, including Skolem functions which
build in universal quantifiers. We do not consider in de-
tail the process of general conversion to our chosen for-
mat (generalized somewhat below). It is basically the
conversion to disjunctive normal form with Skolem
functions, the dual to the "conversion" in Nilsson [13J,
for example. The general structure of the goal-subgoal
mechanism when operating in the presence of free (indi-
vidual) variables and substitution is the same but with
direct comparison replaced by the notion of unification
from resolution (see Robinson [17], Nilsson [13], or Sla-
gle [19]).

One of the common substitution situations involves
equality. If we have goal P(a) and assertion a = b we
certainly consider P(b) a subgoal whose establishment
would yield P(a). Indeed, some readers may wonder
why we need to write P( b) explicitly. P(a) might be in-
terpreted as all statements equivalent to P(a) under
equality substitution. This has disadvantages when sub-
stitutions use numerous derived equations, so we reject
this here although a use of such identification might be
satisfactory. Such a treatment is compatible with our
main points but requires a modified organization to that
given below.

In Figs. 3, 4, and 5 we give examples where the goal
should be inferred from the assertions presented but
cannot be inferred under the simple format of the pre-
ceding paragraph. These figures suggest the format in
which we propose to handle such problems. That is, in
our general description below the problems stated

--,--
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Goal: O. b:. 0
Assertions: 1. a" b 1\b " a ..a - b

2. a:' 0
3. a" b
4. b".

,
. :.0

premise

b :.0

;",I"~ """'00 II
a "b
premise

b " .
premise

Fig. 3.

Goal: O. a ~b
Assertions: 1. . + b - 2c 1\. - b ..b - c

2. . + b - 2c
3. . ~c
[4. a + b - 2c 1\b ~ c .. . ~b general contrapositive of 1J

. ~b

~"" """'00"
. + b - 2c b ~c
premise

;,., "", <- ""u -,~."
. ~c
premise

Fig. 4.

Goal: O. a ~b
Assertions: 1. . > 0 .. a " 0

2. a > 0
3. b < 0 i.e., (b:.0)

. ~b

1"""", ".....u"~ "
. > 0 (b:.0)
premise premise

Fig.5.

would generate the goal tree presented. Note that in

Fig. 4 an alternate form of implication 1 is needed. We

supply ithere as assertion 4. We call 4 a general contra-

positive of 1. We remark that we would expect the sit-
uation inFig.4toarise very infrequently, so such an in-
ference route should be investigated only when desper-
ate.

Again, if we adopt the few rules for handling equality
given below, of which three instances have been dis-
played, we have completeness of the goal tree procedure
when equality substitution is included. The complete-
ness proof comes from the appropriate form of ME with
paramodulation (an equality handling mechanism)
whose proof appears in Loveland [11].

A number of other features for goal tree analysis can
be gleaned from results concerning ME. Most are natu-
ral in this setting, such as the removal of a conjunction
of goals when one goal matches an ancestor goal. We
noted this was incorporated in the GTM. A nonintuitive
situation is that a conjunction of goals can be eliminat-
ed if one of the component goals is complementary to an

IEEE TRANSACTIONS ON COMPUTERS, APRIL 1971

unexpanded ancestor partner goal, i.e., a goal with n

subgoals yet ~ecorded; b~t completeness is not assur~'::~
unless a goal ISmarked dLsplaced, and treated as estab."'~"
lished, whenever it matches an unexpanded partner Or "

an unexpanded ancestor partner goal. Displacement is'~
illustrated in Fig. 6. Displacement avoids expanding the;
same subgoal twice. One has no need for the displace-
ment device if the coincident ancestor partner has been
expanded and established. The matching subgoal Can .
directly be marked "established."

Fig. 7 is an example of another situation We mUst
handle. If S is an unsatisfiableformula,S - C is valid .~

for any formula C. We use the device of the contradicto. .

ry formula t, which may be considered a shorthand for
formula P 1\ -Po This device allows a natural extension
of our notion of assertion and goal and suffices to han-

dle cases where the goal, or subgoal, cannot be directly
derived although it is a valid consequence of the as;,er- ~

tions. ~

We write the general format for our goal tree system ~:
as if a propositional system is our concern. That is, all
comparisons of literals are by identity or complemen-
tarity. However, the word matches is used for this iden-
tity check. By interpreting matches as using a most gen-
eral unifying substitution, the general form is realized
when substitution for (individual) free variables is per- .

mitted. We include in our format the substitution of
equality but, again, with the ambiguity which mayor
may not allow free variables in those terms.

For convenience we label the problem reduction pro-
cedure below the MESON (Model Elimination Subgoal
OrieNted) procedure.

We consider again the expression format. An arbi-
trary first order formula can be converted to the appro-
priate expression format, preserving validity. A formula,
or (finite) set of formulas, not already suitably ex-
pressed should be converted to the following form:

BI/\.../\Bn-G .,
whereBi is of the form AIJ'\...,!\Am- C or C, and G is
of the form Ltl\...I\Lk, where the Ai, Li,' and C are liter-
als. This is readily obtained from the disjunctive normal
form of the original formula. G then defines the goal: if
K = 1, L1 is the single goal, otherwise Lv..,Lk are top
level partner goals all of which must be eventually es-

tablished. We can tackle one at a time (though they may
be linked by common variables), so hereafter we consid-
er a singlegoalG.A1/\.../\Am - C is an assertionimpli-
cation, and C a premise. An important equivalence for
format preparation is (A - B V C) = (A /\ -B- C).
This is used to form the various general contrapositives
needed for completeness. We extend this to generate
-A -t from A, for example:

If the goal is believed to follow directly from the as-
sertions (as is usually the case) the use of t may be
avoided. Otherwise, add t -G, the assertion generated
from the goal, to the assertions and for each assertion
AII\...I\Am -C add the general contra positive AI/""

- - - - --- - -
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O. A
1. B" C- A
2. D- B
3. B- C
4. D

r
C

A

c~ """B

I""'~ ...m". ,;..",~ ...m",', ~~~ "n,
B D

dlsplaced premlse

Fig. 6.

Goal: O. C
Assertlons: 1. A

2. ~
(3. ~ -C assertiongenerated from 0]
(4. .~ -~ general contrapositive of 1]

C

!PPIYing assertion 3)
~

fpPIYing assertion 4)
~

premise

Fig. 7.

. J\Am/\ ",C - It, and for each premise add ",C -- It.
Only one such formula need be added to the assertion
list if some version of that assertion is believed neces-
sary to establish the result.

It is necessary to consider, for each assertion implica-
tion Aj/\.../\Am -- C,m general contrapositives plus the
original assertion if completeness is to be preserved.
There should be one general contrapositive Aj/\...Ai-j
1\ "'C /\ Ai+j"'/\ Am -- "'A for each i. The order of an-
tecedents in any assertion is immaterial.

III. MESON PROCEDURES

-- The procedures presented here are for propositional
(variable free) problems. We' will make occasional refer-
ence to the requirements of the procedures utilizing
Variables.

, The procedures represent syntactic systems for add-
. I~g to a goal tree information about goal-subgoal rela-

tionships and establishment of goals. The procedures
return "success" or "failure" according' to whether the

~. top goal can be established or not, respectively. Of
'it Course, the ability to return "failure" disappears when
'1';Substitution is allowed, e.g., first order formulations. A

returned value of "failure" for a problem indicates ei-
ther the top goal does not follow from the assertions or
the search ordering and goal generation and deletio'h

... strategies specified by the planning routine are inade-
F qUatefor the problem. (It is possible to write a complete
,~,,~lan!1ing routine which theoretically always returns
~ sUccess" for solvable problems.)

--
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We will now present two MESON procedures for goal
tree analysis incorporating the new rules discussed
above. The procedures are logically divided into four
subprocedures with labels "initialize," "loop," "update-
marks," and "update-goals."

The instructions placed at the label initialize define
GOALS(the set of goals to be attempted) to be the set
consisting of only the top goal and also initialize the
goal tree.

The instructions placed at the label loop select a goal
G from GOALS,an operation to be performed and an as-
sertion D if needed. The selected operation is then per-
formed for the goal G and assertion D. Those operations.
try to establish goals or create subgoals.

The instructions placed at the label update-marks
mark a goal "established" if each of a list of partner suc-
cessors is marked "established," "contradicted" or "dis-
placed." Thus, if each of a conjunction set of subgoals of
a goal is established, the goal is established.

The instructions placed at the label update-goals add
newly generated subgoals to the tree and GOALSprovid-
ed certain acceptance criteria are met.

The selection of the next goal in GOALSto be oper-
ated upon and the selection of the operation and the as-
sertion to be used in operating on that goal are assumed
to be accomplished by some externally specified plan-
ning routine ("the planner"). The planner, in addition
to specifying a search strategy, may restrict or totally
eliminate use of some of the operations. For example,
traditional goal tree procedures without the contradic-
tion mechanism correspond to a planner which never
uses the operation at "op3."

The planner, by applying the operation at "op5" to a
goal, removes the goal from GOALSand thereby signifies
that no more operations will be applied to the goal.

If one wishes to insure completeness, the planner
must in some order process all operations (except the
operation at op5) for each goal and potentially applica-
ble assertion. The planner may select the goals of a con-
junctive set of goals in any desired order to attempt
their establishment. The procedure(s) make no assump-
tion as to whether the search is depth first, breadth
first, or some mixture of these.

MESON Procedure

initialize: Let GOALSbe a set consisting of only the
top goal. Initialize the goal tree to the top goal.

loop: If GOALS is empty, exit procedure with "fail-
ure." Let G be a goal in GOALS selected by the
planner. The planner selects one of the following
operations to be performed on G and selects D, a
premise, implication or general contrapositive of
implicatKm, as required by the operation.

opt: If G matches the premise D, mark G "estab-
lished" and go to update-marks. Otherwise go to
loop.

op2: If G matches the consequent of D, where D is an
implication or general contrapositive of implica-

--
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-, .u. _UI1~H1UICl,eaana go to update-marks.
~.., ;, ',""'";:{oto loop.

01- "r(:G matches an un expanded partner of G not
marked "displaced" or an unexpanded ancestor
partner of G, mark G displaced and go to update-
marks. Otherwise go to loop.

op5: Delete G from GOALSand go to loop.
update-marks: If G is top goal, exit procedure with

"success." If all partner goals of G are marked es-
tablished, contradicted, or displaced, let G1 be the
parent of G, set G= G1, mark G established and go
to update-marks. Otherwise go to loop.

update-goals
test 1: If a member of A is identical to G or to an an-

cestor of G, go to loop.
test 2: If a member of A is complementary to another

member of A, an unexpanded partner of G or to an
un expanded ancestor partner of G, go to loop. Oth-
erwise add the numbers of A to GOALSand to the
goal tree as a conjunctive set of successors of G and
go to loop.

The MESON procedure for equality incorporates
rules for handling the equality relation. It differs from
the MESON procedure in that three new operations are
added. Also, the rules for disregarding newly generated
subgoals (at test 1 and test 2) have not been proven to
preserve completeness although we believe complete-
ness is preserved with these rules applied. We maintain
the update goals subprocedure in the MESON proce-
dure for equality with the admonition that if complete-
ness is to be preserved these rules should be bypassed
(at present).

For technical reasons it is necessary to put in premis-
es of the form a=a for each term a or, if in a setting
using free variables and substitutions, one must put in
x=x and f(xv..,xn) = f(xvu,xn) for each n-ary function
symbol f. Such axioms can be replaced by appropriate
procedure rules if desired.

MESON Procedure with Equality

initialize: (Same as for MESON procedure.)
loop: (Preface and operations 1-5 same as for

MESON procedure; the only change is the addition
of the following operations.)

op6: If G contains a term matching term a where a=b
or b=a is the consequent of D, where D is a prem-
ise, implication or general contrapositive of impli-
cation, let A be the set consisting of G with a single
instance of a replaced by b plus the antecedents of
D and go to update-goals. Otherwise go to loop.

op7: If the consequent of D, where D is a premise, im-
plication or general contra positive of implication
contains a term matching term a where G is a r!-b
or b r!-a, let A be the set consisting of the comple-
mented consequent of D with a single instance of a

'ceo
spectively G) contains a term matching term

where G (respectively H) is a r!-b or b r!-a, let A ~
the set consisting of H (respectively G) with a sin.
gle instance of a replaced by b and go to update-
goals. Otherwise go to loop. (Note: see exampll!li
below.)

update-?1arks: (Same as for MESON procedure.)
update-goals: (Same as for MESON procedure.)

We attempt to clarify op8 and shed light on its Use.
fulness. Consider the case that H is G and G is a ;'"b, a "

and b simple constants. Then, reading the "respective.
ly" case, we see that G contains term a and H iEQ;",b.
Then A, the possible new subgoal, is G with replace-
ment, i.e., b r!-b. Taking the other case (ignoring the "re.
spectively") yields the same possible subgoal. This is
certainly unproductive and could actually be deleted

with no risk involved. However, in a free variable setting
with substitution it is important. Suppose the goal is
f(x)r!-x and the sole premise is f(f(x))r!-x. By op8 where
His G is f(x)r!-x, ignoring the respectively's (for varia-
tion), we have H containing a term x matching f(y),
under substitution f(y) for x, where G is f(y)""y (the
change of variable name is a necessary detail); now a;",b
is f(y) r!-y. Then A consists of H with replacement, i.e.,
f(f(y))r!-y, This subgoal matches the premise and the
desired result is obtained.

It is impossible to give an adequate discussion within
this paper of the modifications required to handle first
order formulas, i.e., allowing quantification of individu-
al variables in the problem statement. This is best done
elsewhere where space permits a full discussion. The

. modifications are generally straightforward if the reader
is familiar with resolution theory, in particular ME. See
Loveland [11]. Subtle points do arise, however, as sug-
gested below.

Performing matching by use of the general unifica-
tion algorithm is an important idea and, although we
can conceive of reasons to select less general substitu-
tions under certain conditions, the advantages of ob-
taining the most general subtitution should not be given
up lightly. This is an important aspect where knowledge
from resolution theory can enhance the problem reduc-
tion method.

We make two further points, really warnings, con-
cerning adopting the above description of the MESON
procedure to first order expressions. If the goal has a
free variable in it, the negation of the goal should be
made a (hypothetical) premise. To see this, consider the
following example. Goal: P(y) (i.e., we want to know if
3yP(y)). Assertion: ""'P(f(a)) -- P(a). Clearly either
P(a} or P(f(a)) holds. We need ""'P(x} as a premise to
realize this. A second point: a substitution may occur in
a subgoal when applying an assertion implication. This
substitution must be made at each occurrence of the re-

".

",
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placeJvariable throughout the goal tree. Thus copies of
the goal tree must be retained in such instances for
bac.'mp in case of failure. A good format for handling
this involves adopting the ME format to the MESON
procedure organization.

IV. CONCLUSION

This paper can be read simply for the illustrations of
possible extensions for the problem reduction method.
However, we have attempted to convey informally that
resolution theory can contribute to the understanding
of alternate syntactic methods. Other devices of resolu-
tion such as linear representation of goal trees and use
of unit clauses from premises may also be of use. We do
believe that the MESON format, which simply extends
classical goal tree representation, may present a very
useful way of incorporating resolution ideas in future
problem solving programs.
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