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Abstract

An autonomous robot system that is to act in a real-world environment is faced
with the problem of having to deal with a high degree of both complexity as
well as uncertainty. Therefore, robots should be equipped with a knowledge
representation system that is able to soundly handle both aspects. In this paper,
we thus introduce an architecture that provides a coupling between plan-based
robot controllers and a probabilistic knowledge representation system based
on recent developments in statistical relational learning, which possesses the
required level of expressiveness and generality. We outline possible applications
of the corresponding models in the context of robot control, discussing suitable
representation formalisms, inference and learning methods as well as transparent
extensions of a robot planning language that allow robot control programs to
soundly integrate the results of probabilistic inference into their plan generation
process.
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Problem Introduction

Abstract Autonomous Robot in human environments

":”:’dumn Why the is there a need for powerful Probabilistic Reasoning?

Ex B To make reasonable predictions about the state of the

':Omt - environment.

SRL B High dimensional State Estimation problems.

SRT B Robust control programs

:;)m:,::; (i.e anticipate failures, select actions that maximize success
pictures likelihood).

B B Allows the robot to extract MEANING behind agent interaction.
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Setting the breakfast table — Uncertain Info

— Who's eating, who sits where, who eats what, who'’s going to need
Utensil x, vy, z.




Incorporating Reasoning

Abstract :  The Humanway -
ntraduetion Knowledge that Person X always eats cereal.
Intro. .
Ex. : Subconscious Heuristics for locating plates/bowls and utensils.
IR : .
contextual info —
Robot KR :
SRL * recent activity in the kitchen
SRT : (has someone recently run the dishwasher)
Template Ex. .

* spatial relationships

Prob. Param.

Pictures

Abplicalions of S :  All of this information is taken into account when deciding the order in
which places should be searched.

Architectural Overview

Representation

All of these decisions require reasoning under uncertainty, how can this be
adapted so that a Robot can solve similar tasks.




Robot Knowledge Representation

Abstract

Introduction

Intro.

EXx.

IR

Robot KR
SRL

SRT
Template Ex.
Prob. Param.

Pictures

Applications of S.R.
Models

Architectural Overview

Representation

What Does the Robot Need?
A Knowledge Representation that supports reasoning at

appropriate levels of abstraction.

B The model needs to be as general as possible, and not specific
to a particular instance of an environment.

First-order Languages, allow universal quantification, and abstract away
concrete objects.

Anybody who eats cereal is likely to use a bowl and a tablespoon.
But may use a cup or teaspoon.



Statistical Relational Learning

Abstract :  SRL is a combination of:

Introduction

Intro. B First Order Representations
Ex. .

s B the semantics of probabilistic graphical models.

Robot KR

SRL : Q. How does this affect Real-World environments?
SRT :  A. Complexity and Uncertainty.

Template Ex. .

Prob. Param.

First Order Representations —

Pictures

Applications of S.R. Are well suited to dealing with high degrees of complexity by supporting
— : universal rules that generalize across objects having similar
properties.
Probabilistic Models —
Allow for representing the varying degrees of uncertainty.
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B Contains a set of general First-Order sentences that describe
dependencies among atomic sentences pertaining to objects
belonging to particular classes.

B The strength of which is quantified by probabilistic parameters.

For any concrete set of objects belonging to the classes, the model can be
compiled(via template mechanism) into a ground model that represents a
full-joint probability distribution over all the ground atoms that can be con-
structed from the model’s set of logical predicates and the set of objects it
was combined with.
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Suppose the template model contains only a single(weighted rule):

Vp eats(p, Cereals) — uses(p, Bowl)

which applies to all people p.

If this model is combined with a set of concrete people, e.g.{Nick,Ashok}.

The ground model will represent the full-joint distribution over the set of
possible worlds implied by the ground atoms(boolean r.v.'s)

eats(Nick, Cereal),uses(Nick, Bowl),
eats(Ashok, Cereal),uses(Ashok, Bowl)

a distribution over 2* = 16 possible worlds.



Probabilistic Parameters

Abstract Generally it is not possible to quantify the degree of uncertainty that
Introduction applies to a particular aspect of the domain in question.

Intro. .

IERX' :  So the probabilistic parameters of the models should be learnt from data.
Robot KR (Training data for parameter learning)

SRL .

SRT Note: The structure of the model

:::)P'::r:; (spec. of possible dependencies in the domain)

IS given by expert knowledge.

Pictures

Applications of S.R.
Models

Architectural Overview

Representation




Pictures

Abstract

Introduction

Intro.

EXx.

IR

Robot KR

SRL

SRT

Template Ex.

Prob. Param.

Pictures

Applications of S.R.
Models

Architectural Overview

Representation




Abstract

Introduction

Applications of S.R.
Models

Benefits 1

Benefits 2

Architectural Overview

Representation
Formalisms

Learning

Inference

Integration with the
Control Program

References

Applications of S.R. Models



Benefits from Probabilistic Reasoning Capabilities

Abstract

Introduction

Applications of S.R.
Models

Benefits 1

Benefits 2

Architectural Overview

Representation
Formalisms

Learning

Inference

Integration with the
Control Program

References

B Tasks are usually under-specified.

[0 A Robot can fill in the missing parts of a task specification by
inferring the most likely specification and adjusting its control
program appropriately.

[1 Setting the table.

[1 Parametrizing a plan with knowledge represented by an
retrieved from a statistical relation model is desirable in that it
allows the adaptation of default plans to a concrete situation.

B Context Specific Decision-Making and Plan Selection

[0 Given a statistical relational model that captures precisely the
connection between sequences of actions and the respective
contexts.

[ In the absence of facts, infer a "logical’(most likely) truth value
to create an appropriate plan.
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B Use probabilistic models to select heuristics

[1 Search Heuristic (for an item that is unknown) —
Infer from common kitchen layouts, the most likely location of a
utensil.
[1 Even known items can rely on a search
Ex. Is what I'm looking for in the dishwasher
Has ... moved the item to another spot.
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Probabilistic Reasoning Engine interacts with the Robot Controller using RPC'’s.
Plan Based Controller is implemented on top of an extended version of the Lisp
dialect, RPL.

B It stores known facts about entities in the environment in a KB which can
be used to provide evidence to the probabilistic reasoner.
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When the Control Program is faced with a situation in which probabilistic
inference is necessary e.g. an under-specified task it query’s the p.r. system by
Issuing a request consisting of:

B the name of the model to use
B alist of evidence variables( taken from KB)
B a list of query variables (variables are logical ground atoms)
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Results
Example
Representation
Formalisms . .
The ProbCog reasoner, which manages a pool of probabilistic models, then
Learning processes the request by:
Inference

B instantiating the selected model for the given set of objects
B running the inference method
B returning the inference results in a reply.
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The Robot Controller then processes the returned probabilities by applying
Suitable operators:

B thresholding, or
B argmax

and uses the processed result to parametrize its plans or modify its control
program in general.
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Problem: Setting the table.
In KB: 3 people will be participating {Moo Moo, Piggy, and Blue }

These are members of Nick’s family that are known to the model.

Goal: To set the table the following info is needed:

B what utensils to put at which seat.

If info regarding what utensils people will probably use, and their seating
order, then the robot has the information that it needs.

This translates to the following probabilistic query:

P(sitsAtIn(?p, 7pl, M), usesAnyIn(?p, 7u, M) |
mealT (M, Break fast) A day(M, Saturday) A
takesPartIn(P1, M) Aname(P1, MooMoo) A
takesPartIn(P2, M) Aname(P2,Piggy) A
takesPartIn(P3, M) A name(P3, Blue))
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A representation formalism that combines first-order logic with undirected
probabilistic graphical models.

Logical Language — FOL
Probabilistic Language:  — Markov Networks

Syntax: FO formulas with weights
Semantics: Templates for Markov net features

Learning:

Parameters: Generative or discriminative

Structure: Inductive Logic Programming with arbitrary clauses and MAP
score

Inference:

Maximum a Posteriori Probability (MAP): Weighted satisfiability
Marginal: MCMC with moves proposed by SAT solver
Partial grounding + lazy inference

FROM: Pedro Dominigos Dept of Computer Science & Engr.
University of Washinagton.



Downfalls

Abstract :  The expressiveness of MLN'’s does come at a price.

Introduction :

Applications of S.R. E i : :

. : B learning is generally more problematic

Architectural Overview B inference becomes more expensive and is therefore less well suited
Representation : to near real-time applications.

Formalisms .

MLN . ) . .

Downtall :  Despite these drawbacks. MLN's are useful when expressiveness is key.
BLN :

ey :  When the added expressiveness is not needed. They use a representation
Learning :  based on directed graphical models.

Inference

Integration with the

B i Use BLN's(Bayesian Logic Networks).
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ProbCog

Abstract :  The ProbCog framework supports the conversion of BLNs to MLNs. This
Introduction E means that:

Applications of S.R. .

Models

B Learning algorithms applicable to BLNs can be used to learn MLNSs,

Architectural Overview

Repres_entation § and

F;Rahsms B Inference algorithms for MLNs can be used for BLNSs.

Downfall

BLN . . . .

ProbCog :  The support for conversions allows the extension of models with

= i constraints unsupported by BLNs as needed, transforming them to MLNs
= and continuing the modelling process in the richer representation

Integration with the E Iang Uage.

Control Program
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Note: The structure of the model(specification of possible dependencies),

IS given by a knowledge engineer.

meal(m) ‘

# day

«:_’;j:-akesPartIn(p,m.}.'_;,"_L

— e

person{p)

name |

::;;;:iéénsumesAnvln{ p,f, m}_ =

—is

‘-:.:j_'_":t}sesAnyln{p,u,rr;]:,';';-i—.'_ type

e, =

‘ foodif)

utensil(u) _ type

~ usedByAllln( u,m) =

e /{—P-
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The structure on the previous slide can be translated into either:

conditional dependencies — MFrags
logical formulas - features of MLNs

The ProbCog learning stage uses a training database containing a list of
ground atoms(atomic sentences that directly correspond to sensory
observations) in order to learn the model parameters that most
appropriately explain the observations that were made.

Q. How to obtain a training database?
A. Use sensors.
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Data Sensor Time Generated atoms

[D_Cups  RFID:Cupboard; t

ID_Cups RFID:Glove p, (+X performed(P1, A1, S1)
actionT(A1, Pickup)
place(A1, Cupboardy)
involves(A1, Cups)

[D_Cups  RFID:Table t+x+y | succ(Sq, S2)

performed(P1, Az, S2)
actionT(A», Putdown)
place(Aq, Table)
involves(Az, Cups)



Actual Learning

Abstract :  The learning algorithms that yield parameters from the gathered training
Introduction : data are based on either ML or MAP estimation.
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In MLNSs learning needs to be done approximately.

Architectural Overview

Representation

B The learning problem itself is ill-posed in the sense that there is not

Formalisms

Learning a single optimal solution.

Overview

Expl. .

Example : Q. How do the author’s tackle this problem?

£elleanng :  Their implementations of learning algorithms for MLNs allow the use of
SWItCh - - - - - - - LR

= constrained optimization to impose necessary integrity conditions on the

distributions.

Inference

Solution #2.
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The problem can also be circumvented by learning in the BLN framework
and then translating the model to a MLN.

B provided that the dependency structure can be captured by the BLN.

Q. Why does this work.

BLNs make the causal structure explicit, which makes ML easier because
it reduces to counting occurrences of parent-child configurations in the
data.
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g9 Bread
name(p) Frank
mealT(m) Dinner Lunch Breakfast Dinner
takesPartIn(p,m)| True False True False True False True False
True 16.7% 0.0% 0.0% 0.0% 896.7% 0.0% 87.5% 0.0%
False 83.3% | 100.0% | 100.0% | 100.0% 3.3% 100.0% | 12.5% | 100.0%
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Hardness

Abstract :  There are high demands on the reasoning capabilities of the system.
Introduction E (Real_time).

Applications of S.R. .

Models

Probabilistic Inference is NP-Hard, and exact inference is "realistically”

Architectural Overview

, infeasible.
Representation
Formalisms
Lo So the authors resort to the following approximate inference techniques:
earning

Inference

o :  Independent sampling
BLNSs :  MCMC - Markov chain Monte Carlo
MLNs : A class of algorithms for sampling from probability distributions

o . based on constructing a Markov chain that has the desired
?Ei?!ﬁt'ﬁ?oﬁiihnfhe distribution as its equilibrium distribution. The state of the chain after
a large number of steps is then used as a sample from the desired
distribution. The quality of the sample improves as the number of
steps increases.

Fig.

loopy belief propagation
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The ProbCog supports various sampling algorithms.

As long as domains lack deterministic dependencies and queries involve
few evidence variables, standard methods such as:

M likelihood weighting
B Gibbs sampling(MCMC algo)

In the presence of unlikely evidence, its important to explicitly incorporate
the evidence into the sampling procedure if acceptable convergence rates
are to be reached:

sampling backward from the evidence — backward simulation
propagating the effect of evidence variables before proceeding
with forward sampling —

B importance sampling based on evidence-prepropagation
B EPIS-BN
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The only inference algorithm with acceptable results is:

MC-SAT — combines ideas from MCMC and satisfiability.
Is based on Markov logic, which defines Markov networks using
weighted clauses in FOL.

From MCMC — MC-SAT - is a slice sampler with an auxiliary
variable per clause, and with a satisfiability-based method for
sampling the original variables given the auxiliary ones.

From SAT — MC-SAT — wraps a procedure around the SampleSAT
uniform sampler that enables it to sample from highly
non-uniform distributions over satisfying assignments.

Author Adaptations

B cardinality constraints —

(the number of objects that a object/group can be related to)
B fully maintaining model structure —

do not decompose complex formulas into clauses.
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Consider the query:
P(sitsAtIn(?p, 7pl, M), usesAnyIn(?p, 7u, M) |

* Cup
+ Knife
+ Plate

-

> > >

i

mealT (M, Break fast) A day(M, Saturday)
takesPartIn(P1, M) A name(P1, MooM oo)
takesPartIn(P2, M) A name(P2, Piggy)
takesPartIn(P3, M) A name(P3, Blue))

N

+ Cup
& Knife

+ Plate
& Spoon
& Bowl

+ Cup
& Knife
& Plate
« Spoon
+ Bowl

+ Cup
+ Knife
# Plate
+ Spoon
+ Bowl

|
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Example

How is the Probabilistic Reasoning system integrated into the
plan language(RPL), which is used for controlling the kitchen robot.

Plans written in RPL are the basis of a transformational planning system.

The plan language needs to make use of highly declarative language
constructs such as:

with-failure-handling  — indicating failure handling and failure recovering
code.

at-location — execution of plan steps at a specific location.

Note: RPL like every Lisp-like language, provides a powerful mechanism to
extend the language with new commands.

Note: RPL also allows the addition of new special forms
(e.g. for establishing variable bindings)
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RPL is extended with a new declarative language construct likely-yet.

It's analogous to the Lisp special from let, establishing a binding
of variables to tuples of atoms and the corresponding probabilities
within the current lexical context, based on a set of queries and a
set of evidences.

Several applications of the resulting probability distributions are
conceivable:

B decisions may be based directly on probabilities

B or the user may be interested in a a list of the most likely atoms to
parametrize a plan.
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Example

(likely —let

((places
cquery
‘(sitsAtln ?person 7seating—location M)
rargmax ?person)
(utensils
cquery ‘(usesAnyln ?person Zutensil M)
:threshold 0.05)
revidence
"((takesPartln P1 M) (name Pl “Anna™)
(takesPartln P2 M) (name P2 “Bert™)
(takesPartln P3 M) (name P3 "Dorothy™)
(mealT M "Breakfast™)))
(with—designators
(( table “(the entity (name kitchen—table))))
(for—all—matching
(lambda ((? person 7place 7m)
(?person ?entity—type 7m))
(with—designators
((obj (an entity (type .entity—type)
(status unused)))
(seat (a location (on ,table)
(place ,place))))
(achieve (entity—on—entity
obj table
seat ))))
(cross—product places utensil ))))
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