Question 1

(10 points)
Prove the converse of the deduction theorem: If $B_1, \ldots, B_{k-1} \vdash (B_k \supset C)$, then $B_1, \ldots, B_{k-1}, B_k \vdash C$.

Prove: If $\vdash (B_k \supset C)$ then $B_k \vdash C$.

(1) $\vdash (B_k \supset C)$ assumption

(2) $B_k \vdash (B_k \supset C)$ b/c any proof from axioms a6a is also a proof from axioms
(3) \(B_k + B_k \) and hypotheses.

(4) \(B_k + C \) mostly focuses on (2), (3)

["monotonicity of the propositional calculus"]
(30 points) (This is exercise 3 in Schöning.) A formula G is called a (logical) consequence of set of formulas $\{F_1, F_2, \ldots, F_k\}$ if for every assignment A that is suitable for each of F_1, F_2, \ldots, F_k and G it follows that, whenever A is a model for F_1, F_2, \ldots, F_k, then it is also a model for G. (This is indicated $F_1, F_2, \ldots, F_k \models G$ or $A \models G$.)

Show that the following assertions are equivalent:

1. G is a logical consequence of F_1, F_2, \ldots, F_k.
2. $((\land_{i=1}^{k} F_i) \rightarrow G)$ is a tautology.
3. $((\land_{i=1}^{k} F_i) \rightarrow G)$ is unsatisfiable. (Hint: Prove 1 \rightarrow 2, $\neg 3 \rightarrow \neg 2$, and 3 \rightarrow 1.)

(recall: this part was not graded)

\[\square \quad \text{(error in underline)} \]

\[Q \]

1 \rightarrow 2, consider a suitable assignment A (i.e., a suitable interpretation) of F_1, F_2, \ldots, F_k that is not a model of F_1, \ldots, F_k. Then at least one of F_1, F_2, \ldots, F_k, say F_i, is false in A, i.e., $A(F_i) = 0$. Therefore,
\(a(\bigwedge_{i=1}^{k} F_i) = 0 \). Therefore \(a(\bigwedge_{i=1}^{k} F_i \rightarrow \ell) = 1 \).

Now, consider a suitable assignment \(a \) of \(F_1, F_2, \ldots, F_k \) that is a model of \(F_1, F_2, \ldots, F_k \). Then, \(a(F_i) \) is true for every \(1 \leq i \leq k \). Therefore \(a(\bigwedge_{i=1}^{k} F_i) = 1 \).

But, since \(\ell \) is a logical consequence of \(F_1, \ldots, F_k \), \(a(\ell) = 1 \). So, \(a(\bigwedge_{i=1}^{k} F_i \rightarrow \ell) = 1 \).
\[73 \rightarrow 72\]

Let \(\alpha \) be a suitable assignment of \(\bigwedge_{i=1}^{k} f_i \rightarrow \neg \alpha \)

that is a model of \(\alpha \), i.e., \(\alpha \left(\bigwedge_{i=1}^{k} f_i \rightarrow \neg \alpha \right) = 1 \).

Then, either (i) \(\alpha \left(\bigwedge_{i=1}^{k} f_i \right) = 0 \), and therefore

\[\alpha \left(\bigwedge_{i=1}^{k} f_i \rightarrow \neg \alpha \right) = 1\]

or

(ii) \(\alpha \left(\bigwedge_{i=1}^{k} f_i \right) = 1 \) and \(\alpha \left(\neg \alpha \right) = 1 \), and therefore

\[\alpha \left(\bigwedge_{i=1}^{k} f_i \rightarrow \neg \alpha \right) = 0\]
2 \implies 3
Assuming \text{73}
\text{For every suitable assignment } \alpha \text{ for which}

\[\alpha \left(\bigwedge_{i=1}^{k} F_i \right) = 1 \]

then \[\alpha (\neg A) = 1 \]

Then, \[\alpha (A) = 0 \] Therefore,

\[\alpha \left(\bigwedge_{i=1}^{k} F_i \rightarrow A \right) = 0 \]

\text{For every suitable assignment } \alpha \text{ for which}

\[\alpha \left(\bigwedge_{i=1}^{k} F_i \right) = 0 \]

then \[\alpha \left(\bigwedge_{i=1}^{k} F_i \rightarrow A \right) = 1 \]
73 \to 72

Let α be a suitable assignment of $\bigwedge_{i=1}^{k} f_i \land \neg \psi$ that is a model. Then,

$$\alpha(\bigwedge_{i=1}^{k} f_i \land \neg \psi) = 1,$$

so $\alpha(\bigwedge_{i=1}^{k} f_i) = 1$ and

$$\alpha(\bigwedge_{i=1}^{k} \neg \psi) = 1,$$

so $\alpha(\bigwedge_{i=1}^{k} \neg \psi) = 0$, so

$$\alpha(\bigwedge_{i=1}^{k} f_i \rightarrow \psi) = 0,$$

and therefore

$$\bigwedge_{i=1}^{k} f_i \rightarrow \psi$$

is not a tautology.
3 \rightarrow 1

Assume α is a model of $\bigwedge_{i=1}^{k} F_i$. Then, by (3),
$\alpha(-4) = 0$, so $\alpha(4) = 1$. Therefore, if α
 is a model of each of the F_i, then
α is a model of G.

Question 2(c).

Consider $KB \cup \{ 2g \}$. Run the marking algorithm.
g is not marked. Therefore, in the minimal
model of KB, q could be false. Therefore, there is no model of KB in which q is false. Therefore, q does not logically follow from KB.