Often you want to assume that your knowledge is complete.

Example: you can state what switches are up and the agent can assume that the other switches are down.

Example: assume that a database of what students are enrolled in a course is complete.

The definite clause language is **monotonic:** adding clauses can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is **non-monotonic:** adding clauses can invalidate a previous conclusion.
Completion of a knowledge base

- Suppose the rules for atom a are

 $a \leftarrow b_1$.

 \vdots

 $a \leftarrow b_n$.

 equivalently $a \leftarrow b_1 \lor \ldots \lor b_n$.

- Under the Complete Knowledge Assumption, if a is true, one of the b_i must be true:

 $a \rightarrow b_1 \lor \ldots \lor b_n$.

- Under the CKA, the clauses for a mean **Clark’s completion:**

 $a \leftrightarrow b_1 \lor \ldots \lor b_n$
Clark’s completion of a knowledge base consists of the completion of every atom.

If you have an atom \(a \) with no clauses, the completion is \(a \leftrightarrow \text{false} \).

You can interpret negations in the body of clauses. \(\sim a \) means that \(a \) is false under the complete knowledge assumption. This is called negation as failure.
Bottom-up negation as failure interpreter

\[C := \{\}; \]
repeat
\[\text{either} \]
\[\text{select } r \in KB \text{ such that} \]
\[r \text{ is } "h \leftarrow b_1 \land \ldots \land b_m" \]
\[b_i \in C \text{ for all } i, \text{ and} \]
\[h \notin C; \]
\[C := C \cup \{h\} \]
\[\text{or} \]
\[\text{select } h \text{ such that for every rule } "h \leftarrow b_1 \land \ldots \land b_m" \in KB \]
\[\text{either for some } b_i, \sim b_i \in C \]
\[\text{or some } b_i = \sim g \text{ and } g \in C \]
\[C := C \cup \{\sim h\} \]
until no more selections are possible
Negation as failure example

\[p \leftarrow q \land \sim r. \]
\[p \leftarrow s. \]
\[q \leftarrow \sim s. \]
\[r \leftarrow \sim t. \]
\[t. \]
\[s \leftarrow w. \]
Top-Down negation as failure proof procedure

- If the proof for a fails, you can conclude $\sim a$.
- Failure can be defined recursively:
 Suppose you have rules for atom a:

 $$ a \leftarrow b_1 $$
 $$ \vdots $$
 $$ a \leftarrow b_n $$

 If each body b_i fails, a fails.
 A body fails if one of the conjuncts in the body fails.
 Note that you need finite failure. Example $p \leftarrow p$.