Proofs

- A **proof** is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is **sound** if $KB \vdash g$ implies $KB \models g$.
- A proof procedure is **complete** if $KB \models g$ implies $KB \vdash g$.
One rule of derivation, a generalized form of *modus ponens*:

If “$h \leftarrow b_1 \land \ldots \land b_m$” is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

This is forward chaining on this clause.

(This rule also covers the case when $m = 0$.)
Bottom-up proof procedure

KB ⊢ g if g ∈ C at the end of this procedure:

\[C := \{\}; \]
\[\text{repeat} \]
\[\quad \textbf{select} \ \text{clause} \ "h \leftarrow b_1 \land \ldots \land b_m" \ \text{in} \ KB \ \text{such that} \]
\[b_i \in C \ \text{for all} \ i, \ \text{and} \]
\[h \notin C; \]
\[C := C \cup \{h\} \]
\[\textbf{until} \ \text{no more clauses can be selected}. \]
Example

\begin{align*}
a & \leftarrow b \land c. \\
a & \leftarrow e \land f. \\
b & \leftarrow f \land k. \\
c & \leftarrow e. \\
d & \leftarrow k. \\
e & . \\
f & \leftarrow j \land e. \\
f & \leftarrow c. \\
j & \leftarrow c. \\
\end{align*}
Soundness of bottom-up proof procedure

If \(KB \vdash g \) then \(KB \models g \).

- Suppose there is a \(g \) such that \(KB \vdash g \) and \(KB \models \not\models g \).
- Then there must be a first atom added to \(C \) that isn’t true in every model of \(KB \). Call it \(h \). Suppose \(h \) isn’t true in model \(I \) of \(KB \).
- There must be a clause in \(KB \) of form

\[
h \leftarrow b_1 \land \ldots \land b_m
\]

Each \(b_i \) is true in \(I \). \(h \) is false in \(I \). So this clause is false in \(I \). Therefore \(I \) isn’t a model of \(KB \).
- Contradiction.
The C generated at the end of the bottom-up algorithm is called a **fixed point**.

Let I be the interpretation in which every element of the fixed point is true and every other atom is false.

I is a model of KB.
Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in KB is false in I. Then h is false and each b_i is true in I. Thus h can be added to C. Contradiction to C being the fixed point.

I is called a **Minimal Model**.
If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.