Predicate Logic (or: First-order Logic [FOL])

or First-order predicate logic

or Predicate Calculus

P_k is the arity of a predicate (symbol)

arity is the number of arguments
Terms
Ex. 43 matrix: \((Q(x) \cup (P(f(x), z) \land \theta(a)) \land R(x, z, q(x)))\)

Shortcut:
\[I_{a}(x) = x^{a}\]
\[I_{a}(f) = f^{a}\]
\[I_{a}(P) = P^{a}\]
\[I_{a}(b) = b^{a}\]
\[P(x, f(x)) \]

\[\mathcal{I} / P(x, f(x)) = \text{student (coupon code)} \]

\[= P^a (x^a, f^a (x^a)) \]

\[= \prec (2, \text{succ (2)}) = \prec (2, 3) \]

\[= 2 < 3 = 0 \text{ (f)} \]
If F has the form $F = \forall x \in A$, then

$$\sigma(F) = \begin{cases} 1, & \text{if for all } u \in \mathcal{U}_A, \mathcal{A}[x/u](g) \neq 1 \\ 0, & \text{otherwise} \end{cases}$$

If F has the form $F = \exists x \in A$, then

$$\sigma(F) = \begin{cases} 1, & \text{if for some } u \in \mathcal{U}_A, \mathcal{A}[x/u](g) \neq 0 \\ 0, & \text{otherwise} \end{cases}$$
\(A \models F \) if \(\varphi(F) = 1 \)

If \(\varphi(F) = 1 \) for every suitable structure \(\mathcal{A} \), then \(F \) is valid, written \(\vdash F \).

If there is some suitable structure \(\mathcal{A} \) for which \(\varphi(F) = 1 \), then \(F \) is satisfiable.

If there is no model for \(F \) (i.e., no suitable structure \(\mathcal{A} \) s.t. \(\varphi(F) = 1 \)), then \(F \) is unsatisfiable.
The F is unsatisfiable (or a contradiction).

Exercise 4.4

$F: \forall x \exists y \, P(x, y, f(z))$

A model for F is $\mathfrak{A}(U_a, I_a)$, where

$U_a = \{ x \}$

$P^a \subseteq \{ (x, c, c) \}$

$z^a = c$

$f^a = c \circ c$
On interpretation B s.t. $B(f) = 0$

$V^B = \{ c \}$

$z = c$

$f^B = c \rightarrow c$

$p^B = \frac{1}{3}$

Exercise 4.5

$U = \{ 1, 2, 3 \}$

a is a model of F_1, F_2, and F_3

$F_1 + F_2 + F_3$

$P = \frac{1}{3} \{ (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 1) \}$
$F_2 + F_3$ B is a model of F_2, F_3, not F_1

$P = \{ 1 \}$

F_1, F_3 C is a model of F_1, F_3, not F_2

$P = \{ (1, 1), (2, 2), (3, 3), (1, 2) \}$

F_1, F_2 D is a model of F_1, F_2, not F_3

$\{ (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2) \}$
Exercise 4.6

Syntax is changed by adding

if \(t_1 \) and \(t_2 \) are terms, then \(t_1 = t_2 \) is a

formula

Semantics are changed by adding:

if \(F \) has the form \(t_1 = t_2 \), then

\[
\alpha(F) = \begin{cases}
1 & \text{if } \alpha(t_1) = \alpha(t_2) \\
0 & \text{otherwise}
\end{cases}
\]
Exercise 47

For part (a), the question is whether the system of inequalities
\[x < y \\
2 < y \] (Yes)
\[x < 2 \\
x = 1 \\
z = 2x \quad x = 1 \]
\[y = 3 \]

(b)
\[y = x + 1 \\
y = z + 1 \\
z = x + 1 \\
x \neq z + 1 \] (No)
Exercise 44

\[F = \forall x \in \mathcal{E} \left(x, x \right) \land \exists x \exists y \exists z \]

\[\left(\neg \in \left(x, y \right) \land \neg \in \left(x, z \right) \land \in \left(y, z \right) \right) \]

Here is instead a formula whose models have universes of cardinality exactly 3:

(Note: \(t_1 \neq t_2 \) is an abbreviation for \(\neg \left(t_1 = t_2 \right) \))

\[\exists x \exists y \exists z \forall u \left(x \neq y \land y \neq z \land x \neq z \land x = u \lor y = u \lor z = u \right) \]

\(a \geq 3 \) individuals

at most three individuals
(individual means element of the universe)

Exercise 57

\[\forall x \forall y \left((x = y) \land (y \neq 2) \lor (x = 2) \right) \]

Exercise 52

(a) \[\forall x \forall y \ (P(x, y) \lor P(y, x)) \]

(b) \[\forall x \forall y \ ((f(x) = f(y)) \Rightarrow (x = y)) \] \text{ if } \text{ is an injective function}

(c) \[\forall y \exists x \ (f(x) = y) \] \text{ if } \text{ is onto or surjective}
A function both injective and surjective is called a bijection.

Exercise 53

\[F = \forall x \forall y \forall z \left[f(x, f(y, z)) = f(f(x, y), z) \right] \]

\[\land \exists x \left[\forall y \left(f(x, y) = y \right) \right] \] (neutral element)

\[\land \forall y \, \exists z \left(f(y, z) = x \right) \] (inverse)
Exercise 54.

\[F = \text{Is Empty} (\text{null stack}) \]
\[\land \forall x \forall y (\neg \text{Is Empty} (\text{push} (x, y))) \]
\[\land \forall x \forall y (\top \implies \text{top} (\text{push} (x, y)) = x) \]
\[\land \forall x \forall y (\top \implies \text{top} (\text{push} (x, y)) = y) \]
\[\land \forall x (\neg \text{Is Empty} (x) \implies \text{push} (\text{top} (x), \text{pop} (x)) = x) \) \]