Lemma 9.1 (1) - Alternate proof

1. \((A \land B), (B \land C), A \rightarrow A\) hypothesis
2. \(\therefore \quad \therefore \quad \therefor
6. \((A > B), (B > C)\) \vdash (A > C)\) Deduction Theorem

7. \((A > B)\)

8. \((A > B) \vdash (B > C) \supset (A > C)\)

Proof of Lemma 9.1 (3): \(\vdash (\neg B > (B > C))\)

1. \(\neg B \vdash \neg B\) hypothesis

2. \(\neg B \vdash (\neg B \supset (\neg C \supset \neg B))\) axiom 1

3. \(\neg B \vdash ((\neg C \supset \neg B) \supset (B > C))\) axiom 3

4. \(\neg B \vdash (\neg C \supset \neg B)\) m.p. on 1, 2
5. \(\neg B \vdash (B \rightarrow C) \) m.p. on 4, 3

6. \(\vdash (\neg B \rightarrow (B \rightarrow C)) \) Deduction Theorem

The truth table for implication:

<table>
<thead>
<tr>
<th>(P_1)</th>
<th>(P_2)</th>
<th>((P_1 \rightarrow P_2))</th>
<th>(\neg (P_1 \rightarrow P_2))</th>
<th>(\neg P_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>
\[(A \supset (B \supset A)) \quad | \quad A \supset B \supset \neg A)\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>(B ⊃ A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>

This shows that axiom 1 is a tautology.

Axiom 2 and axiom 3 are tautologies also.

If A is a tautology and \((A \supset B)\) is a tautology, then B is a tautology.
If A is a tautology and $(\neg A \lor B)$
is a tautology, then B is a tautology.

Theorem 9.2 If $\vdash A$, then A is a tautology.

Proof By complete induction on the length of
the derivation of A.

Basis. (Length 1). Let D be a theorem (of \mathcal{L})
with a proof of length 1, so D is an axiom.

By exercise 9.2 (1), D is a tautology.
Inductive Step. Let B be a theorem with a proof of length $k > 1$. If B is an axiom, then the argument of the basis case still holds. If B is not an axiom, then B follows from previous formulas in the derivation using modus ponens. The previous formulas have the form A and $(A \rightarrow B)$. By exercise 9.9/1(d), B is a tautology. \[\square \]
Exercise 9.14

\[L(Y) = L(P_b) \quad \text{language} \]

\[(A \supset B) \supset (A \supset A) \quad \text{axiom} \]

\[\{ A, (A \supset B) \} \rightarrow B \quad \text{rule of inference (mp)} \]

(a) The axiom is a tautology as one can check by \(T \)!

\[
\begin{array}{cccccc}
A & B & A \supset B & A \supset A & (A \supset B) \supset (A \supset A) \\
T & T & T & T & T \\
T & F & T & T & T \\
F & T & T & T & T \\
F & F & T & T & T \\
F & T & T & T & T \\
T & T & T & T & T \\
T & T & T & T & T \\
\end{array}
\]
m p preserves total order as shown in Exercise 9.9 (d).

So, yes

1. \((A \cap B) > (A \cup A) \) \hspace{1cm} \text{axiom}

2. \((A \cap B) > (A \cup A) \) \rightarrow \((A \cap B) > (A \cap B) \) \hspace{1cm} \text{axiom with}\n
3. \((A \cap B) > (A \cap B) \) \hspace{1cm} \text{mp on 1, 2}
Case 1. Let \(\overline{A} \) be an axiom and \((\overline{A} \rightarrow \overline{B}) \) be also an axiom.

\[
\begin{align*}
\{ \overline{A} , (\overline{A} \rightarrow \overline{B}) \} \rightarrow & \quad \overline{B} \\
(\overline{A} \rightarrow \overline{B}) , (\overline{A} \rightarrow \overline{A}) \rightarrow & \quad (\overline{A} \rightarrow \overline{B}) \rightarrow (\overline{A} \rightarrow \overline{B})
\end{align*}
\]
Exercises 9.6.

The converse of the Deduction Theorem is:

If $B_1, \ldots, B_{k-1} \vdash_{p_0} (B_k \rightarrow c)$ then $B_1, \ldots, B_{k-1}, B_k \vdash c$.

Proof:

1. $B_1, \ldots, B_{k-1} \vdash_{p_0} (B_k \rightarrow c)$ given

2. $B_1, \ldots, B_{k-1}, B_k \vdash_{p_0} (B_k \rightarrow c)$ def. of derivation

reliance for hypothesis
Comment: This is a formal way of describing what people mean by
"the propositional calculus is monotonic?"

3 $B_1, \ldots, B_{k-1}, B_k \vdash \top, B_k$ hypothesis
4 $B_1, \ldots, B_{k-1}, B_k \vdash C$ m.p. on 2, 3
Recall Theorem 9.2: If $\vdash_{\text{Po}} A$, then A is a tautology. (The soundness of the propositional calculus; the propositional calculus is sound.)

Theorem 9.5: If $A \in \mathcal{F}(\text{Po})$ and A is a tautology, then $\vdash_{\text{Po}} A$.

(The propositional calculus is complete.)
Lemma 9.2 Let $A \in F(p_o)$ and let p_1, \ldots, p_r be the propositional variables that occur in A. Consider each row of the table for A and for each p_i write B_i as follows: if p_i is 1, then $B_i = p_i$; otherwise, $B_i = \neg p_i$. Similarly, let $A'\equiv A$ if A is 1 in that row of the table and let $A'\equiv \neg A$ otherwise. Then, $B_1, \ldots, B_r \vdash p_o A'$.
Example of the construction:

\[A = (p_1 \rightarrow (p_2 \Rightarrow p_1)) \]

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>p_2</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>
Example: \(A = (P_2 > P_1) \)

\[
\begin{array}{c}
\begin{array}{c}
l_1, P_2 \vdash (P_2 > P_1) \\
l_1, \neg P_2 + (P_2 > P_1) \\
\neg l_1, P_2 \vdash \neg (P_2 > P_1) \\
\neg l_1, \neg P_2 + (P_2 > P_1)
\end{array}

\begin{array}{ccc|c}
p_1 & p_2 & P_2 > P_1 \\
1 & 1 & \text{t} \\
1 & 0 & \text{t} \\
0 & 1 & \text{f} \\
0 & 0 & \text{t}
\end{array}
\end{array}
\]
Proof (by induction on the number of connectives) (Note: Let \(k \) be the number of propositional variables in \(A \))

Base \(\{n = 0\} \)
The formula has the form \(p_i \ (= A) \)

On \(k \):

\[p_i \lor p_i \]
\[\neg p_i \lor \neg p_i \]
Inductive case. At least one proposition connecting. Consider two cases:

A has the form \(\neg C \) — see below.

A has the form \((B \supset C)\) — see below for deriving — (a)

(b) so pose that \(A \) is assigned \(\top \)

\(B \) is assigned \(\bot \), and \(C \) is assigned \(\bot \)

By inductive assumption:

(1) \(B_1, \ldots, B_k \vdash B \)

(2) \(B_1, \ldots, B_k \vdash C \)
(3) \(B, \ldots, B_k \vdash \lnot \lnot (B > c) \) \(\text{axiom 1} \)

(4) \(B, \ldots, B_n \vdash (B > c) \) \(\text{on } p \text{ on } 2, 3 \)

(5) \(A \) is assigned \(\top \), \(B \) is assigned \(\top \), and \(C \) is assigned \(\top \). \(\text{Then:} \)

(1) \(B, \ldots, B_k \vdash a \vdash B \) \(\text{ind. assumption} \)

(2) \(B, \ldots, B_k \vdash \top \)

(3) \(B, \ldots, B_k \vdash (\top (B > c)) \) \(\text{axiom 1} \)

(4) \(B, \ldots, B_n \vdash (B > c) \) \(\text{on } p \text{ on } 2, 3 \)
(a) A is t, B is f, C is f.

(1) $B_1 \ldots B_k + \alpha B \\
\text{Ind. assumption}$

(2) $B_1 \ldots B_k + \alpha C$

(3) $B_1 \ldots B_k + (\alpha B \geq (B > C))$ \hspace{1cm} \text{Lemma 9.1 (3)}

(4) $B_1 \ldots B_k + (B > C)$ \hspace{1cm} \text{mp on (1) and (2)}

Show with Lemma 9.2
Proof of Theorem 9.5: If $A \in P_0$ and A is a tautology, then $\vdash P_0 A$.

If A is a tautology, then it is assigned T in every row of its truth table.

Let p_1, \ldots, p_k be the propositions of A.

The truth table of A has 2^k rows.

In half of them, p_k is assigned T, so
B_k (of Lemma 9.2) is P_k, and

$M_B, \ldots, B_{k-1}, P_k \vdash A$ (by Lemma 9.2)

In the other half of the rows of M_B, P_k is!

$M_B, \ldots, B_{k-1}, A \vdash A$ (by Lemma 9.2)

$M_B, \ldots, B_{k-1}, P_k \vdash (P_k \Rightarrow A)$ and then on (1)

(2) $B_1, \ldots, B_{k-1} \vdash (\neg P_k \Rightarrow A)$ and then on (2)
(5) \[B_1 \ldots \ldots, B_{k-1} \vdash ((\neg \mu \triangleright A) \circ (\neg \nu \triangleright \neg A) \triangleright A) \]

Lemma 9.1 (8)

Use m, p, twice (5, 3, 4):

(7) \[B_1 \ldots \ldots, B_{k-1} \vdash A \]

Do this (1-6) \(k-1 \) more times, and obtain,

\[\vdash A \]