CSCE 330 Fall 2001
NOTES ON DENOTATIONAL SEMANTICS
Monday 01/9/10

The main reference for these notes is Section 9.4 of: Ghezzi, Carlo and Mehdi
Jazayeri. Programming Language Concepts, 2nd ed., New York: John Wiley
and Sons, 1987.

We consider a very simple language with only arithmetic and Boolean ex-
pressions; moreover, all variables are of integer type, and the control structures
are restricted to conditionals and while pretest loops.

The state of a program P (at a given time) is a triple, sp =< memp,ip,op >,
where

e memp : Idp — Z U {undef}
memp is called the memory function, and it gives the value of each iden-
tifier. undef is a special symbol that is not an integer.

e ipc /Z*and op € Z*
ip and op are called the input stream and output stream, respectively, and
they are strings (or sequences) of integers.

Each language instruction is specified by a state transformation.

e We begin with arithmetic expressions. Let EX be the set of all legal
arithmetic expressions.
dsempx : EX xS — Z U {error}
dsempx(E,s) = error if s =< mem,i,o > and mem(v) = undef for
some variable v occurring in E; otherwise
dsemgx(E,s) = e if s =< mem,i,0 > and e is the result of evaluating £
after replacing each variable v occurring in E with mem(v).

o Let AS be the set of all legal assignment statements.
dsemag : AS x S — S U {error}
dsemas(x := E,s) = error if dsemgx(E,s) = error; otherwise
dsemas(z = E,s) = s', where s' =< mem/,i',0' >,s =< mem,i,0 >
,i' = 1,0 = o,mem/(y) = mem(y) for ally # x,mem/(x) = dsempgx(E, s)

e Suppose that the input statements in our language are written as read(z),
which means that the next input value is assigned to . Let RD be the
set of all legal input statements.
dsemprp : RD x S — S U {error}
dsempgp(read(z), s) = error if s =< mem, i,0 > and i is empty; otherwise
dsempgp(read(z),s) = s', where s =< mem,i,0 >,s' =< mem/,i’,0’ >
,o=20,i=1TIi for some I € Z and some i’ € Z* , mem(y) = mem/(y) for
all y # z, and mem(z) = I.



Let W R be the set of all legal write statements.

dsemwp : WR x S — SU{error}

dsemw g(write(z), s) = error if s =< mem,i,0 > and mem(z) = undef,
otherwise

dsemw r(write(x),s) = s', where s =< mem, i,0 >,s' =< mem/,i',0' >
,mem =mem’,i =1i',0' = 00, where O = mem/(x)

Let SL be the set of all statement lists.

dsemgr, : SL x S — S U {error}

dsemgy, is defined recursively as follows:
dsemgr,(empty_list,s) = s

dsemgr,(H;T,s) = error if dsem(H, s) = error; otherwise
dsemgr(H;T,s) = dsemgy,(T,dsem(H, s))

Let BOOL be the set of all Boolean (relational) expressions.
dsempoor, : BOOL x S — {true, false} U {undef}
is defined almost exactly as dsempgx.

Let IF be the set of all if ...then...else... fi conditional (or selection)
statements. Let B be a Boolean expression. Let L1 and L2 be statement
lists.

dsemrp(if B then L1 else L2 fi,s) = error if dsempoor (B, s) = undef;
otherwise

dsemyp(if B then L1 else L2 fi,s) = U, where if dsem(B, s) = true, then
U =dsemsr,(L1,s), else U = dsemgr, (L2, s)

Let DO be the set of all syntactically correct while...do...od pretest
loop statements.

dsempo(while B do L od,s) = error if dsempoor,(B,s) = undef; other-
wise

dsempo(while B do L od,s) = s if dsempoor(B,s) = false; otherwise
dsempo(while B do L od, s) = error if dsemgy,(L, s) = error; otherwise
dsempo(while B do L od, s) = dsempo(while B do L od,dsemsr,(L,s))

Let PROG be the set of all syntactically correct programs in our language.
The language semantics is defined by the following function.

dsemproc : PROG x Z* — Z* U {error}

Let L is the statement list that makes up the program.

dsemproc(L,i) = out(dsemsy,(L,init(i)), where

— init(i) =< mem0,i,0 >, where mem0(z) = undef for all identifiers
x and o is the empty string
— out(error) = error

— out(< mem,i,0>)=o



