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Abstract

Empirical evidence shows that naive Bayesian classifiers perform quite well compared to more sophisticated classifiers,
even in view of inaccuracies in their parameters. In this paper, we study the effects of such parameter inaccuracies by inves-
tigating the sensitivity functions of a naive Bayesian network. We show that, as a consequence of the network’s indepen-
dence properties, these sensitivity functions are highly constrained. We further investigate whether the patterns of
sensitivity that follow from these functions support the observed robustness of naive Bayesian classifiers. In addition to
standard sensitivities given available evidence, we also study the effect of parameter inaccuracies in view of scenarios of
additional evidence. We show that standard sensitivity functions suffice to describe such scenario sensitivities.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Bayesian networks are often employed for classification purposes where an input instance described in
terms of observable feature variables, is to be assigned to one of a number of possible output classes. The
Bayesian network for this purpose computes, given the instance, the posterior probability distribution over
the variable modelling these classes. The actual classifier then is a function that assigns a single class to the
instance, based on the computed posterior distribution. Such classifiers are often built upon a naive Bayesian
network, consisting of a single class variable and a number of feature variables, which are modelled as being
mutually independent given the class variable. The parameter probabilities for such a network are generally
estimated from data and inevitably are inaccurate.

Experiments have shown, time and again, that classifiers built on naive Bayesian networks are competitive
with other, often more sophisticated classification models, regardless of the size and quality of the data set
from which they are learned, e.g. [5,9,12]. Various aspects of the naive Bayesian classifier have been studied
in attempts to explain these findings. For binary class variables, for example, it was shown that the commonly
used winner-takes-all rule, which assigns an instance to a class with highest posterior probability according to
the underlying Bayesian network, contributes to the naive classifier’s success [5]. The observed robustness was

0888-613X/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2008.02.008

* Corresponding author.
E-mail addresses: silja@cs.uu.nl (S. Renooij), linda@cs.uu.nl (L.C. van der Gaag).

Available online at www.sciencedirect.com

International Journal of Approximate Reasoning
49 (2008) 398–416

www.elsevier.com/locate/ijar

mailto:silja@cs.uu.nl
mailto:linda@cs.uu.nl


also attributed to the independence properties of the classifier. It was shown, for example, that naive Bayesian
classifiers perform well not only for completely independent feature variables, but also for functionally depen-
dent ones [5,12]. We note that most of the favourable experimental reports on naive Bayesian classifiers are
based on the assumption of a binary class variable with a rather uniform prior probability distribution over
its values.

In this paper, we follow up on the observation that, apparently, inaccuracies in the parameter probabilities
of the underlying naive Bayesian network do not significantly affect the performance of the classifier. We
employ sensitivity-analysis techniques to study the effects of parameter variation on the posterior probability
distributions computed from a naive Bayesian network, and thereby contribute further corroboration for the
observed robustness of this type of classifier. We would like to note that sensitivity analysis has been applied
before in the context of naive Bayesian classifiers, as a means of providing bounds on the amount of parameter
variation that is allowed without changing, for any of the possible input instances, the most likely value of a
binary class variable [3]. These bounds are useful for establishing which parameter upon variation can never
change the classifier’s output, regardless of the entered evidence. The computation of these bounds, however,
requires either explicit enumeration over all possible instances or a conversion of the naive Bayesian classifier
into an ordered decision diagram. We extend on these earlier results by studying the mathematical functions
that describe the sensitivity of a posterior probability of interest computed from the naive Bayesian network,
to variation of a parameter’s value; these functions are termed sensitivity functions [1,4]. We show that the
independence assumptions underlying a naive Bayesian network constrain these sensitivity functions to such
an extent that they can be established exactly from very limited information from the network at hand. In
addition, we study the sensitivity properties that follow from the constrained functions and argue how these
properties support the observed robustness of naive Bayesian classifiers.

In this paper, we also introduce the novel notion of scenario sensitivity, which we use for further studying a
classifier’s robustness. For classification problems, it is often assumed that evidence is available for every single
feature variable. In numerous application domains, however, this assumption may not be realistic, especially
not for domains in which evidence is gathered selectively in a stepwise manner. The question then arises how
much impact further evidence could have on the computed posterior probability distributions and how sen-
sitive this impact is to inaccuracies in the network’s parameters. We introduce the notion of scenario sensitiv-
ity to capture the latter type of sensitivity and show that the effects of parameter variation in view of scenarios
of additional evidence can be established efficiently for naive Bayesian networks.

The paper is organised as follows. In Section 2, we present some preliminaries on sensitivity functions and
their associated sensitivity properties. In Section 3, we establish the functional form of the sensitivity functions
for a naive Bayesian network in terms of variation of the parameter probabilities of the class variable, and
address the ensuing sensitivity properties. Section 4 addresses the sensitivity functions and associated proper-
ties that result from variation of the parameter probabilities of the feature variables. In Section 5 we introduce
the notion of scenario sensitivity and show that it can be established from standard sensitivity functions. The
paper ends with our concluding observations in Section 6.

2. Preliminaries and notation

A Bayesian network essentially is a compact representation of a joint probability distribution Pr over a set
of stochastic variables V [10]. The variables and their interrelationships are captured as nodes and arcs, respec-
tively, in an acyclic directed graph G. Associated with each node in the graph is a set of parameter probabilities
hðV jpðV ÞÞ that capture the strength of the relationship between a variable V and its parents pðV Þ. From a
Bayesian network, any prior or posterior probability of interest over its variables can be computed. In this
paper, we focus more specifically on naive Bayesian networks, in which the digraph modelling the interrelation-
ships between the variables has a restricted topology. The digraph of such a network is composed of nodes
fCg [ E with E ¼ fE1; . . . ;Eng, n P 2, and arcs ðC;EiÞ for all i ¼ 1; . . . ; n; the variable C is called the class

variable and the variables Ei are termed feature variables. The restricted topology of the digraph of a naive
Bayesian network captures conditional independence of any two feature variables given the class variable.
Although any probability can be computed from a naive Bayesian network, the posterior probabilities of
the various class values are of primary interest. The network further is associated with a classification function
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which, based upon these posterior probabilities, returns a single most likely class value, breaking ties at
random.

The parameter probabilities of a Bayesian network are either estimated from data or assessed by domain
experts, and inevitably include some inaccuracies. To investigate the effects of these inaccuracies on the com-
puted posterior probabilities, a Bayesian network can be subjected to a sensitivity analysis. In such an analysis,
one or more network parameters are varied systematically and the effects of this variation on an output prob-
ability of interest are studied. In this paper, we focus primarily on sensitivity analyses in which just one param-
eter is being varied; such an analysis is termed a one-way sensitivity analysis. The effects of the parameter
variation are captured by a simple mathematical function, called a sensitivity function. Before reviewing the
functional form of such a sensitivity function, we observe that upon varying a particular parameter probabil-
ity, the parameters pertaining to the same conditional distribution should be co-varied to ensure that their sum
remains one. The well-known scheme of proportional co-variation is often used for this purpose1 as it has been
shown to result in the smallest change in the output distribution [2]. Under this scheme, any one-way sensi-
tivity function is a quotient of two linear functions in the parameter under study [1,4]. More formally, upon
varying a single parameter probability x, the function fPrðcjeÞðxÞ that expresses the output probability of interest
PrðcjeÞ in terms of x takes the form

fPrðcjeÞðxÞ ¼
fPrðc;eÞðxÞ
fPrðeÞðxÞ

¼ a � xþ b
g � xþ h

where the constants a; b; g; h are built from the non-varied parameters from the network under study. The
four constants are derived analytically in [4]; feasible algorithms for their computation are available from [4,7].
In the sequel, instead of fPrðcjeÞðxÞ we will often write fcðxÞ or f ðxÞ for short, as long as no confusion is possible.
In our analyses, we further assume that parameters with an original assessment of 0 or 1 are not varied, since
these parameters represent logical consequences or impossibilities and therefore do not include any
inaccuracies.

A one-way sensitivity function f ðxÞ can take one of three general forms. The function is linear if the prob-
ability of interest is a prior probability rather than a posterior probability, or if the probability of the entered
evidence is unaffected by the parameter variation; note that in the latter case we have that PrðeÞ is a constant
and hence g ¼ 0. If the probability PrðeÞ of the evidence equals 0 whenever x ¼ 0, in which case we have that
h ¼ 0, then it is readily shown that the same must hold for the marginal probability Prðc; eÞ, that is, we must
have that b ¼ 0; the sensitivity function then reduces to a constant. In all other cases the sensitivity function is
a fragment of a rectangular hyperbola, which takes the general form

f ðxÞ ¼ r
x� s

þ t ¼ t � xþ r � s � t
x� s

; with s ¼ � h
g
; t ¼ a

g
; and r ¼ b

g
þ s � t

with the constants a; b; g; h as above. In the remainder of the paper, we focus on this last type of function
and assume any sensitivity function to be hyperbolic unless explicitly stated otherwise. A rectangular hyper-
bola in general has two branches and two asymptotes defining its center ðs; tÞ; Fig. 1 illustrates the locations of
the possible branches relative to the asymptotes. We observe that a sensitivity function is defined by
0 6 x; f ðxÞ 6 1; the two-dimensional space of feasible points thus defined, is termed the unit window. Since
a sensitivity function moreover should be continuous for x 2 ½0; 1�, its vertical asymptote necessarily lies out-
side the unit window, that is, either s < 0 or s > 1. From these observations we conclude that a hyperbolic
sensitivity function is a fragment of just one of the four possible branches shown in Fig. 1.

From a sensitivity function, various properties can be computed that serve to summarise the effects of
parameter variation. Here we briefly review the properties of sensitivity value [8] and of admissible deviation

[13]. The sensitivity value for a parameter x is the absolute value j of =oxðx0Þ j of the first derivative of the sen-
sitivity function f ðxÞ at the parameter’s original value x0. It describes the effect of an infinitesimally small shift
in the parameter on the output probability of interest. In essence, the larger the sensitivity value for a param-
eter is, the less robust the output probability of interest will be to inaccuracies in the parameter. We would like

1 When a parameter probability h is varied from the value hold to the value hnew, each parameter h0 6¼ h from the same distribution is
varied from h0old to h0new, where h0new ¼ h0old � 1�hnew

1�hold
.
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to note that the impact of a larger shift in a parameter’s value is strongly dependent upon the location of the
vertex of the sensitivity function, that is, of the point where j of =oxðxÞ j¼ 1. The vertex can lie within the unit
window, or to its left or right. A vertex that lies within the unit window basically marks the transition from
parameter values with a large sensitivity value to parameter values with a small sensitivity value, or vice versa.
A parameter with a small sensitivity value can thus have larger effects than its sensitivity value suggests, if it
lies in the proximity of the vertex, that is, if its original value x0 is close to the vertex’ x-value. If the posterior
probabilities computed from a Bayesian network are used for establishing the most likely value of an output
variable, it is the effect of parameter variation on the output value that is of interest. For a parameter with an
original value of x0, the admissible deviation is a pair ða; bÞ, where a is the amount of variation allowed to val-
ues smaller than x0 without changing the most likely output value and b is the amount of variation allowed to
larger values; the symbols and! are used to indicate that variation is allowed to the boundaries of the unit
window. The larger the admissible deviation for a parameter is, therefore, the more robust the output value
will be to inaccuracies in this parameter.

3. Sensitivity to class parameters

Upon being subjected to a sensitivity analysis, the independence properties of a naive Bayesian network
strongly constrain the general form of the resulting sensitivity functions. In fact, given just limited information
from the network, the exact functions can be readily established for each class value and each parameter prob-
ability. In this section we derive the sensitivity functions that describe an output probability of interest as a
function of a parameter for the class variable. We detail the sensitivity properties that follow from these func-
tions and discuss their possible effects on the robustness of naive Bayesian classifiers. In Section 4, we will
address the sensitivity functions for parameters for the feature variables in a similar fashion.

3.1. Functional forms

The following proposition states the functional form of any (hyperbolic) sensitivity function that describes
an output probability of a naive Bayesian network in terms of a single parameter x ¼ hðc0Þ, associated with a
specific value c0 of the class variable C. The proposition more specifically shows that such a function is highly
constrained and can in fact take only one of two forms. Proofs of this and subsequent propositions are pre-
sented in Appendix A.

Proposition 1. Let x ¼ hðc0Þ be a parameter probability pertaining to the value c0 of the class variable C, and let

x0 be its original value. Let PrðcjeÞ be an output probability of interest with the original value p0, and let p00 be the

original value of Prðc0jeÞ. Then, the sensitivity function fPrðcjeÞðxÞ has the following form:

√|2r|

center
(s,t)

• vertex

r < 0
s > 1
t ≤ 1

r < 0
s < 0
t ≥ 0

r > 0
s < 0
t ≤ 1

r > 0
s > 1
t ≥ 0

I

IVIII

II

Fig. 1. Two rectangular hyperbolas with branches in the Ist and IIIrd quadrants relative to the hyperbola’s center, and in the IInd and
IVth quadrants, respectively; the constraints on the constants r, s and t are specific for sensitivity functions.
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fPrðcjeÞðxÞ ¼
ð1� sÞ � x

x� s if c ¼ c0

p0

1� p00
� s � ðx� 1Þ

x� s otherwise

8><
>:

in which the value s, defining the function’s vertical asymptote, equals

s ¼ ð1� p00Þ � x0

x0 � p00

The value t, defining the horizontal asymptote of the sensitivity function, equals

t ¼
1� s if c ¼ c0

p0

1� p00
� s otherwise

(

We note that the above proposition pertains to a single output probability of interest PrðcjeÞ. Since the choice
of class value c, however, is arbitrary, the proposition holds for any value of C. The original value p0 of the
output probability of interest obviously depends on the value of c under consideration and, as a result, so does
the actual value of the horizontal asymptote t.

From the above proposition, we observe that the sensitivity function fPrðc0 jeÞðxÞ pertaining to the class value
whose parameter probability is being varied, includes the points fc0 ð0Þ ¼ 0 and fc0 ð1Þ ¼ 1 from the unit window;
the function thus is a fragment of either a IInd-quadrant or a IVth-quadrant hyperbola branch. The sensitivity
functions fPrðcjeÞðxÞ, c 6¼ c0, pertaining to the other values of the class variable then are fragments of either Ist- or
IIIrd-quadrant hyperbola branches. Fig. 2 illustrates the two possible situations. The sensitivity function
fPrðc0 jeÞðxÞ being a IInd-quadrant function corresponds with a vertical asymptote to the right of the unit window,
that is, with s > 1 and hence with x0 > p00; the sensitivity functions pertaining to the other values of C then are
IIIrd-quadrant functions. The IVth- and Ist-quadrant combination of functions corresponds with x0 < p00. To
intuitively explain why the function fPrðc0 jeÞðxÞ pertaining to the class value c0 has a different shape from the other
functions, we observe that since this function must include the two points fc0 ð0Þ ¼ 0 and fc0 ð1Þ ¼ 1 from the unit
window, it necessarily is an increasing function. Furthermore, because the function fPrðc0 jeÞðxÞ includes the point
fc0 ð1Þ ¼ 1, all functions fPrðcjeÞðxÞ with c 6¼ c0 must include fcð1Þ ¼ 0. Given their highly constrained functional
form, these functions moreover have essentially the same shape. In addition, the function values of the functions
have to sum to one for x ¼ 0, from which we have that they are necessarily decreasing functions.

We illustrate the functional form of the sensitivity functions derived above with an example. The example
demonstrates specifically that as a result of their constrained form, any sensitivity function can be established
from very limited information.

0
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0.8

1

0 0.2 0.4 0.6 0.8 1

f c
(x

)

xx0

fc’ (x )

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f c
(x

)

xx0

fc’ (x )

Fig. 2. Example sensitivity functions for a class parameter x ¼ hðc0Þ with an original value x0 ¼ 0:2; the original posterior of interest is
p00 ¼ 0:05 (left) and p00 ¼ 0:65 (right), respectively.
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Example 1. We consider a naive Bayesian network with a class variable S modelling the possible stages I, IIA,
IIB, III, IVA and IVB of cancer of the oesophagus. The parameter probabilities for this class variable are:

S I IIA IIB III IVA IVB

hðSÞ 0.04 0.31 0.04 0.23 0.10 0.28

The feature variables of the network capture the results from diagnostic tests. For a particular patient, the
available findings are summarised in the input instance e, giving rise to the following posterior probability dis-
tribution over the class variable:

S I IIA IIB III IVA IVB

PrðSjeÞ 0.01 0.19 0.01 0.07 0.61 0.11

Suppose that we are interested in the effect of inaccuracies in the parameter probability x ¼ hðS ¼ IVAÞ on
the posterior probabilities PrðSjeÞ computed for our patient. The effect is captured by six functions with the
same vertical asymptote, whose value s is readily established: since the original parameter value is x0 ¼ 0:10,
and for this patient the original posterior for stage IVA is 0.61, we find that s ¼ ð1� 0:61Þ�
0:10=ð0:10� 0:61Þ ¼ �0:08. The sensitivity function fIVAðxÞ therefore is a IVth-quadrant hyperbola branch;
the functions for the other stages are Ist-quadrant branches. Without performing any further computations,
we establish that

fIVAðxÞ ¼
1:08 � x

xþ 0:08
and fSðxÞ ¼

PrðSjeÞ
1� 0:61

� �0:08 � ðx� 1Þ
xþ 0:08

for any S 6¼ IVA

From the above considerations, we have that the sensitivity functions resulting from a one-way sensitivity
analysis for a class parameter, are highly constrained. In fact, from Proposition 1 we observe that the func-
tions are fully determined by just the original value x0 for the class parameter being varied and the original
posterior probability distribution over the output variable of interest. The exact functions as a consequence
are readily computed, requiring just a single network propagation to establish the posterior class distribution.

3.2. Sensitivity properties

From the sensitivity functions derived above, any sensitivity property pertaining to a class parameter can be
computed. We study the properties of sensitivity value and admissible deviation.

3.2.1. Sensitivity value

From the sensitivity function fPrðcjeÞðxÞ expressing the output probability PrðcjeÞ in terms of a class param-
eter x ¼ hðc0Þ, the associated sensitivity value is readily established:

ofPrðcjeÞ

ox
ðx0Þ

����
���� ¼

ð1� p00Þ �
p00

ð1� x0Þ � x0
if c ¼ c0

p0 �
p00

ð1� x0Þ � x0
otherwise

8>><
>>:

where p0 again is the original value of PrðcjeÞ and p00 is the original value of Prðc0jeÞ; x0 is the parameter’s ori-
ginal value as before. From 1� p00 P p0 for any value c of the class variable, we observe that the highest sen-
sitivity value for the parameter x is obtained when the output probability of interest pertains to the class value
c0 whose parameter is being varied. The sensitivity value found then in fact matches the upper bound on sen-
sitivity values for sensitivity functions in general [11]. Note that for a binary class variable, we would have that
1� p00 ¼ p0 and the sensitivity values for the two class values would be the same. The sensitivity values com-
puted from the function fPrðc0 jeÞðxÞ for different combinations of values for x0 and p00 are depicted in Fig. 3. The
figure shows that large sensitivity values can be found only for rather extreme parameter values in combina-
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tion with less extreme output probabilities. We further recall that, despite their small sensitivity values, also
parameters with an original value close to the x-value of the sensitivity function’s vertex may show significant
effects upon variation. For class parameters, the sensitivity function fPrðc0 jeÞðxÞ always has its vertex within the
unit window; the vertex in fact lies on the line x ¼ 1� f ðxÞ. If the vertical asymptote of the sensitivity function
lies quite close to the unit window and the vertex in addition is not too far from the asymptote, then a param-
eter with an original value in the proximity of the vertex will show considerable impact on the output prob-
ability if it is varied further to the nearby extreme.

From the above considerations, we have that in naive Bayesian networks the output probability of interest
will be sensitive to variation in a class parameter only if the class value under consideration either occurs
rather seldomly or quite frequently in the domain of application and the instance at hand does not support
the (un)likelihood of this class value. As long as the class parameters of a naive Bayesian network are not
highly unbalanced, therefore, will the probability with which an instance is predicted to belong to a particular
class be quite insensitive to parameter variation. We note that it is not uncommon to find class variables with
such distributions in the domains in which naive Bayesian classifiers are being applied. Yet, also the output
probabilities computed from a naive Bayesian network in which one or more class values have rather small
prior probabilities, will be quite robust as long as the posterior probabilities computed for these classes are
quite extreme for all possible instances.

3.2.2. Admissible deviation

In view of establishing the most likely class value for an instance, the property of admissible deviation is of
interest. We recall that the admissible deviation for a parameter gives the amount of variation that is allowed
in its original value before the most likely class value changes. The following proposition gives the admissible
deviation for a class parameter in a naive Bayesian network. The proposition more specifically shows that the
most likely class value changes exactly once upon varying such a parameter.

Proposition 2. Let x ¼ hðc0Þ be a parameter probability pertaining to the value c0 of the class variable C, and let

x0 be its original value. Let p00 be the original value of Prðc0jeÞ, let pT
0 ¼ argmaxc 6¼c0 fPrðcjeÞg, and let cT be a value

of C for which PrðcTjeÞ ¼ pT
0 . Then,

fPrðcjeÞðxÞ 6 fPrðcTjeÞðxÞ for all c 6¼ c0

Furthermore, the admissible deviation for x is

ða; bÞ ¼
ðx0 � xm;!Þ if pT

0 < p00
ð ; xm � x0Þ if pT

0 > p00
ð0;!Þorð ; 0Þ otherwise

8><
>:

where xm ¼
pT

0 � x0

ð1� x0Þ � p00 þ pT
0 � x0

0 0.2 0.4 0.6 0.8 1
x0 0

0.2
0.4

0.6
0.8

1

p'0
0
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3

|dfc' /dx (x0)|

Fig. 3. The sensitivity value for a class parameter x ¼ hðc0Þ and sensitivity function fPrðc0 jeÞðxÞ, as a function of the original parameter value
x0 and the original posterior p00.
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From the above proposition, we observe that any class parameter can be varied to the boundary of the unit
window in one of the two possible directions without changing the most likely class value, as indicated by the 
and ! symbols. Upon varying any such parameter in the other direction, the most likely class value changes
exactly once. Note that Fig. 2 supports these observations. For the case where pT

0 ¼ p00, we note that, given the
original value x0 of the parameter under study, the two class values c0 and cT are equally likely. The boundary to
which the parameter can be varied without inducing a change then depends on which of the two class values is
designated the unique most likely class by the network’s associated classification function. We further observe
that the smaller the difference is between the two posterior probabilities pT

0 and p00, the smaller the admissible
deviation for the parameter is and the less robust the class value returned by the classifier will be.

As a special case of the above proposition, we consider a uniformly distributed binary class variable, that is,
we consider the case where x0 ¼ 0:5 and pT

0 ¼ 1� p00; note that in this case we find for the value xm at which the
two sensitivity functions intersect, that xm ¼ 1� p00. The admissible deviation for the class parameter x ¼ hðc0Þ
then equals ðp00 � 0:5;!Þ if pT

0 < p00, that is, if the instance at hand supports the class value c0 whose parameter
probability is being varied. The admissible deviation equals ð ; 0:5� p00Þ if pT

0 > p00, that is, if the instance
points to the other value of the class variable. We note that the more extreme the original value p00 of the pos-
terior probability of interest is, the larger the admissible deviation will be and the less impact variation of a
class parameter can have on the most likely class value. Further note that for non-binary class variables,
the value of xm in the admissible deviation may be less extreme, which may result in smaller admissible devi-
ations and a less robust output class.

Example 2. We consider again the naive Bayesian network and the associated patient information from
Example 1. Suppose that we are interested in the effects of inaccuracies in the parameter probability x ¼
hðS ¼ IVAÞ, with an original value of x0 ¼ 0:10, on the most likely class value established for our patient. We
recall that, with the parameter’s original value, stage IVA is the most likely stage for the patient, with a
probability of 0.61; the second most likely stage is stage IIA, with a probability of 0.19. Using these probabilities,
we find for the value xm from Proposition 2 that xm ¼ 0:19 � 0:10=ð0:90 � 0:61� 0:19 � 0:10Þ ¼ 0:03. The
admissible deviation for the parameter under study thus is ð0:07;!Þ. This admissible deviation indicates that the
parameter can be varied from 0.10 to 1.00 without inducing a change in the most likely stage for the patient.
The parameter can also be varied to smaller values, but the most likely stage will change from IVA to IIA if the
parameter adopts a value smaller than 0.03. Note that the most likely stage cannot change into any other value
upon varying the parameter. Further note that, although in absolute terms only a small shift is allowed to smaller
parameter values, the admissible deviation is quite large relative to the parameter’s original value.

Now suppose that we were to use a two-valued rather than a six-valued variable class variable. We define
for this purpose the new variable Operable, of which the value ‘yes’ coincides with stages I, IIA and IIB, and
the value ‘no’ captures the stages III, IVA and IVB. Given the patient’s available information, the posteriors
PrðOperable ¼ yesjeÞ ¼ 0:21 and PrðOperable ¼ nojeÞ ¼ 0:79 are computed; the value ‘no’ thus is the most
likely class value for the patient. Suppose that we are interested in the effects of inaccuracies in the parameter
x ¼ hðOperable ¼ noÞ, with an original value of x0 ¼ 0:61, on the most likely value of the output variable.
We find that the sensitivity functions associated with the two values of the class variable intersect at xm ¼ 0:29.
The admissible deviation for parameter x thus equals ð0:32;!Þ. This admissible deviation indicates that the
parameter can be varied from 0.61 to 1.00 without inducing a change in the most likely class value.
The parameter can also be varied to values smaller than 0.61, but the most likely value will change from ‘no’ to
‘yes’ if the parameter adopts a value smaller than 0.29. Note that the parameter can thus be varied to
approximately half its original value.

From the above considerations, we conclude that the most likely class value established from a naive Bayes-
ian network will be quite sensitive to inaccuracies in the network’s class parameters if the output probabilities
for the class variable are more or less uniformly distributed. More specifically, the most likely class value
will not be very robust to variation in the class parameters if it has approximately the same posterior prob-
ability as the runner-up value. The classification performance of a naive Bayesian classifier will thus be quite
robust if the majority of presented instances result in a single rather likely class value. In fact, it will be robust
as long as the majority of instances belong to the a priori most likely class, which we would expect if the clas-
sifier is sufficiently tailored to the domain of application.
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4. Sensitivity to feature parameters

In this section we derive for a naive Bayesian network the sensitivity functions that describe an output
probability of interest as a function of a parameter for a feature variable. We show that also for feature
parameters the exact sensitivity functions can be readily established given just limited information from the
network. We further detail the sensitivity properties following from the functions and discuss their possible
effects on the robustness of naive Bayesian classifiers.

4.1. Functional forms

The following proposition states the functional form of any (hyperbolic) sensitivity function that describes
an output probability of a naive Bayesian network in terms of a single feature parameter x ¼ hðe0vjc0Þ, where e0v
denotes a value of the feature variable Ev and c0 is a value of the class variable. The proposition shows that the
function again is highly constrained; in fact, for any class value and any feature parameter, only one of four
functional forms can result.

Proposition 3. Let Ev be a feature variable and let ev be its value in the instance e. Let x ¼ hðe0vjc0Þ be a parameter
probability pertaining to the value e0v of Ev and the class value c0, and let x0 be its original value. Let PrðcjeÞ be an

output probability of interest with the original value p0, and let p00 be the original value of Prðc0jeÞ. Then, the

sensitivity function fPrðcjeÞðxÞ has one of the following forms:

fPrðcjeÞðxÞ ¼

x
x� s if c ¼ c0 and ev ¼ e0v
x� 1
x� s if c ¼ c0 and ev 6¼ e0v
p0 � x0 � s

x� s otherwise

8>><
>>:

in which the value s, defining the function’s vertical asymptote, equals

s ¼
x0 � x0

p00
if ev ¼ e0v

x0 þ ð1� x0Þ
p00

otherwise

8><
>:

The value t, defining the horizontal asymptote of the sensitivity function, is

t ¼
1 if c ¼ c0

0 otherwise

�

We consider again the possible locations of the sensitivity functions for a feature parameter under study. For
the case where ev ¼ e0v, we find for the value s ¼ x0 � x0=p00 of the vertical asymptote that s < 0. The asymptote
thus lies to the left of the unit window. Since the sensitivity function fPrðc0 jeÞðxÞ pertaining to the class value c0
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Fig. 4. Example sensitivity functions for a feature parameter x ¼ hðe0vjc0Þ with original value x0 ¼ 0:2; the original posterior of interest is
p00 ¼ 0:4, with ev ¼ e0v (left) and ev 6¼ e0v (right), respectively.
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further includes the point fc0 ð0Þ ¼ 0 from the unit window, we conclude that it is a fragment of a IVth-quad-
rant hyperbola branch. The function fPrðcjeÞðxÞ for any class value c 6¼ c0 is a fragment of a Ist-quadrant branch.
For the case where ev 6¼ e0v, we find that s > 1; we then find IIIrd- and IInd-quadrant branches, respectively.
Fig. 4 illustrates the two possible situations. To intuitively explain why the function fPrðc0 jeÞðxÞ again has a dif-
ferent shape from the other functions, we observe that varying a feature parameter hðeijc0Þ given a particular
value c0 of the class variable has a direct effect on the posterior probability Prðc0jeÞ of this class value c0 only;
the probabilities PrðcjeÞ, c 6¼ c0, for the other values of the class variable are affected only indirectly to ensure
that the distribution over the class variable sums to one. From the highly constrained form of the functions,
moreover, we have that all functions fPrðcjeÞðxÞ, c 6¼ c0, have the same shape. The shape of the function fPrðc0 jeÞðxÞ
therefore must be deviant.

We again illustrate the functional form of the sensitivity functions derived above with an example. The
example once more demonstrates that as a result of their constrained form, any sensitivity function can be
established from very limited information.

Example 3. We again consider the naive Bayesian network and the patient information from Example 1. We
further consider the feature variable CT-loco, modelling the presence or absence of loco-regional metastases as
suggested by a CT scan of the patient’s thorax. The network includes the following parameter probabilities for
this variable:

The posterior probability distribution PrðSjeÞ computed over the class variable given the available findings
for our patient, who shows no signs of loco-regional metastases, are found in Example 1. Now suppose that we
are interested in the effect of inaccuracies in the parameter probability x ¼ hðCT -loco ¼ nojS ¼ IVAÞ on these
posterior probabilities. The effect is captured by six sensitivity functions with the same vertical asymptote,
whose value s is readily established: since the original value of the parameter equals 0.52 and the original
posterior probability of stage IVA for the patient is 0.61, we find that s ¼ 0:52� 0:52=0:61 ¼ �0:33. The
sensitivity function fIVAðxÞ therefore is a IVth-quadrant hyperbola branch; the functions for the other stages are
Ist-quadrant branches. Note that for the complement of the parameter x, the six sensitivity functions would all
have their vertical asymptote at s ¼ 1:33. Without performing any further computations, we establish that

fIVAðxÞ ¼
x

xþ 0:33
and fSðxÞ ¼ PrðSjeÞ � 0:85

xþ 0:33
for any S 6¼ IVA

From the above considerations, we have that the sensitivity functions resulting from a one-way analysis for a
feature parameter, are highly constrained. Just as the sensitivity functions for the class parameters, we find that
the functions for the feature parameters are exactly determined by the original values for these parameters and
the original posterior probability distribution for the output variable of interest. Computing the exact functions
as a consequence again requires just a single network propagation to establish the posterior class distribution.

4.2. Sensitivity properties

From the sensitivity functions derived above, any sensitivity property pertaining to a network’s feature
parameters can be computed. We again study the properties of sensitivity value and admissible deviation.

4.2.1. Sensitivity value

From the sensitivity function fPrðcjeÞðxÞ expressing the output probability PrðcjeÞ in terms of a feature
parameter x ¼ hðe0vjc0Þ, the associated sensitivity value is readily established: if the observed instance e includes
the value ev ¼ e0v, we find that

hðCT -locojSÞ I IIA IIB III IVA IVB

CT -loco ¼ yes 0.02 0.02 0.48 0.48 0.48 0.27
no 0.98 0.98 0.52 0.52 0.52 0.73
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ofPrðcjeÞ

ox
ðx0Þ

����
���� ¼ ð1� p00Þ �

p00
x0

if c ¼ c0

p0 �
p00
x0

otherwise

8><
>:

where p0 again is the original value of PrðcjeÞ and p00 is the original value of Prðc0jeÞ; x0 is the parameter’s ori-
ginal value as before. If the instance e includes another observed value ev 6¼ e0v, then a similar result is found by
replacing x0 by 1� x0. From 1� p00 P p0 for any value c of the class variable, we find that the highest sensi-
tivity value for the parameter x again is obtained when the output probability of interest pertains to the same
class value c0 as the feature parameter being varied, regardless of the value that is observed for the feature var-
iable Ev. For the case where the instance e includes the value ev ¼ e0v, Fig. 5 depicts the sensitivity value of
fPrðc0 jeÞðxÞ for different combinations of values for x0 and p00. The figure shows that large sensitivity values
can only be found if the original value x0 for the parameter under study is quite small and the original pos-
terior probability p00 is less extreme; more specifically, we have that ofPrðc0 jeÞ=oxðx0Þ

�� �� > 1 if and only if
x0 < p00 � ð1� p00Þ 6 0:25. For the case where ev 6¼ e0v, large sensitivity values are found only if x0 is larger than
0.75 and p00 is non-extreme.

From the above considerations we have that large sensitivity values can only be found for feature variables
that, given a particular class, have a rather unlikely value and whose unlikely value is found in an instance that
does not strongly support this class; this property was already noticed before for binary observable variables
in Bayesian networks in general [14]. As long as the feature parameters given each class in a naive Bayesian
network are not highly unbalanced, therefore, will the probability with which an instance is predicted to
belong to a particular class be quite insensitive to parameter variation. Yet, also the output probabilities com-
puted from a naive Bayesian network in which one or more features given a particular class have rather small
prior probabilities, will be quite robust as long as the posterior probabilities computed for this class are rather
extreme for all possible instances.

4.2.2. Admissible deviation

The following proposition states the admissible deviation for a feature parameter in a naive Bayesian net-
work. This admissible deviation gives the amount of variation that is allowed in the parameter’s value before
the most likely class changes. The proposition more specifically shows that in a naive Bayesian network, the
most likely class value can change at most once upon varying a feature parameter.

Proposition 4. Let Ev be a feature variable and let ev be its value in the instance e. Let x ¼ hðe0vjc0Þ be a parameter

probability pertaining to the value e0v of Ev and the class value c0, and let x0 be its original value. Let p00 be the

original value of Prðc0jeÞ; in addition, let pT
0 ¼ argmaxc 6¼c0 fPrðcjeÞg and let cT be a value of C for which

PrðcTjeÞ ¼ pT
0 . Then,
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Fig. 5. The sensitivity value for a feature parameter x ¼ hðe0vjc0Þ and sensitivity function fPrðc0 jeÞðxÞ, where the instance e includes ev ¼ e0v, as
a function of the original parameter value x0 and the original posterior p00.
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fPrðcjeÞðxÞ 6 fPrðcT jeÞðxÞ for all c 6¼ c0

Furthermore, the admissible deviation for x is

ða; bÞ ¼

ð0;!Þ or ð ; 0Þ if pT
0 ¼ p00

ðx0 � xm;!Þ if ev ¼ e0v and pT
0 < p00;

or if ev 6¼ e0v; p
T
0 > p00 and 1� x0 < p00=pT

0

ð ; xm � x0Þ if ev ¼ e0v; p
T
0 > p00 and x0 < p00=pT

0 ;

or if ev 6¼ e0v and pT
0 < p00

ð ;!Þ otherwise

8>>>>>>>><
>>>>>>>>:

where

xm ¼
pT

0 �
x0

p00
if ev ¼ e0v

1� pT
0 �

1� x0

p00
if ev 6¼ e0v

8><
>:

From the above proposition, we observe that any feature parameter can be varied to the boundary of the unit
window in at least one direction without changing the most likely class value. Upon varying any such param-
eter in the other direction, the most likely class value can change at most once. Figs. 4 and 6 support these
observations. For the case where pT

0 ¼ p00, we again note that the boundary to which the parameter can be var-
ied without inducing a change depends on which of the two class values c0 and cT is designated the unique most
likely class by the network’s classification function. We further observe that the smaller the difference between
the posterior probabilities pT

0 and p00 is, the smaller the admissible deviation for the parameter is and the less
robust the returned class value will be.

We consider a feature parameter x ¼ hðe0vjc0Þ and an instance e in which ev ¼ e0v has been observed; similar
arguments hold for ev 6¼ e0v. We suppose that the class value c0 is not the most likely class value given the avail-
able evidence. If the original value x0 of the parameter is rather small, we would not expect to find the feature
value e0v with class c0. When actually observed, therefore, the feature value does not support c0. If the other
observations in the instance also do not support c0, we expect that pT

0 � p00 and a large admissible deviation
can be found for the parameter. If the other observations from the instance do support the class value c0, how-
ever, we would expect to find a larger p00 and hence a smaller admissible deviation. Fig. 6 illustrates these
observations. Now if, on the other hand, the original parameter value x0 is relatively large, we would indeed
expect to find the feature value e0v with class c0. The actual observation of e0v then supports c0 and we expect to
find a somewhat larger posterior probability p00 and a relatively small admissible deviation. A reverse argumen-
tation holds for the case where c0 is the most likely class value.

Example 4. We consider again the naive Bayesian network and the patient information from Examples 1 and
3. Suppose that we are once more interested in the effect of inaccuracies in the parameter probability
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Fig. 6. Example sensitivity functions for a feature parameter x ¼ hðe0vjc0Þ with original value x0 ¼ 0:2; c0 is not the most likely class value,
and variation of the parameter either makes c0 the most likely value (left) or does not change the most likely value (right).
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x ¼ hðCT -loco ¼ nojS ¼ IVAÞ, with an original value of x0 ¼ 0:52, on the most likely class value established
for our patient. We recall that, with the parameter’s original value, stage IVA is the most likely stage for the
patient, with a probability of 0.61; the second most likely stage is stage IIA, with a probability of 0.19. We
further recall that for the patient no signs of loco-regional metastases were found on the CT scan. Using the
above probabilities, we now find for the value xm from Proposition 3 that xm ¼ 0:19 � 0:52=0:61 ¼ 0:16. The
admissible deviation for the parameter under study thus is ð0:36;!Þ. This admissible deviation indicates that
the parameter can be varied from 0.52 to 1.00 without inducing a change in the most likely stage of the
patient’s cancer. The parameter can also be varied to smaller values, but the most likely stage will change from
IVA to IIA if the parameter adopts a value smaller than 0.16. Note that the parameter can thus be varied to
approximately one-third of its original value. Further note that the most likely stage cannot change into any
other value upon varying the parameter under study.

From the above considerations, we conclude that the most likely class value established from a naive Bayes-
ian network will be quite sensitive to inaccuracies in the network’s feature parameters if the output probabil-
ities for the class variable are more or less uniformly distributed. More specifically, the most likely class value
will not be very robust to variation in the feature parameters if it has approximately the same posterior prob-
ability as the runner-up value. The classification performance of a naive Bayesian classifier will thus be quite
robust if the majority of presented instances result in a single rather likely class value. Yet, the output class
value established from a naive Bayesian network in which one or more features given a particular class have
rather small prior probabilities, will also be quite robust as long as the posterior probabilities computed for
this class are rather extreme for all possible instances.

5. Scenario sensitivity

For classification problems, it is generally assumed that evidence is available for every single feature var-
iable. In the previous section, in fact, we also adopted this assumption. In practical applications, however, this
assumption may not always be realistic. In the medical domain, for example, a patient is to be classified into
one of a number of diseases without being subjected to every possible diagnostic test. The question then arises
how much impact additional evidence could have on the probability distribution over the class variable and
how sensitive this impact is to inaccuracies in the network’s parameters. The former issue is closely related to
the notion of value of (perfect) information and can be studied as part of a sensitivity-to-evidence (SE) analysis
[6]. The latter issue involves a notion of sensitivity that differs from the standard notion used in the previous
sections in that it pertains not to actually available evidence but to scenarios with possibly additional evidence.
We refer to this notion of sensitivity as scenario sensitivity and use the term evidence sensitivity to refer to the
more standard notion. Although it is applicable to Bayesian networks in general, we restrict our discussion of
the notion of scenario sensitivity here to the context of naive Bayesian networks.

Before elaborating on the effects of inaccuracies in a network’s feature parameters on the impact of addi-
tional evidence, we begin by reviewing the impact of the new evidence itself on an output probability of inter-
est. For this purpose, we consider, for a specific class value, the ratio of the two posterior probabilities given
the available instance prior to and after receiving the new evidence, respectively. Let EO and EN be sets of fea-
ture variables with ; � EO � EN � E and EN � EO ¼ fE1; . . . ;Elg, 1 6 l 6 n. Let eO and eN be consistent
instances of EO and EN, respectively, such that eN extends the available instance eO with the newly obtained
evidence for the variables E1; . . . ;El. Then, for each class value c, we have that

PrðcjeNÞ
PrðcjeOÞ ¼

Ql
i¼1PrðeijcÞP

cj

Ql
i¼1PrðeijcjÞ � PrðcjjeOÞ

where ei is the value of Ei in EN. Note that the above property allows us to compute the new posterior prob-
ability distribution over the class variable from the previous one without performing any additional network
propagations.

Example 5. We consider again the naive Bayesian network and the associated patient information from the
previous examples. Suppose that, in addition to the diagnostic tests to which the patient has already been
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subjected, a CT scan of the upper abdomen can be performed to establish the presence of metastases in the
liver. The network includes the following parameter probabilities for the feature variable CT-liver:

hðCT -liverjSÞ I IIA IIB III IVA IVB

CT -liver ¼ yes 0.05 0.05 0.05 0.05 0.05 0.69

no 0.95 0.95 0.95 0.95 0.95 0.31

For deciding whether or not to perform the scan, we would like to know the possible impact of the test
result on the posterior probability distribution over the various stages computed for our patient, that is, we
are interested in the posterior distributions given an additional positive result and given an additional negative
result from the scan. From the parameter probabilities mentioned above and the original posterior probability
distribution PrðSjeÞ from Example 1, we compute the probability of a positive test result to be

P
SPr

ðCT -liver ¼ yesjSÞ � PrðSjeÞ ¼ 0:12. We recall that for our patient, the original probability of stage IVB was
computed to be 0.11. Given an additional positive result from the scan, the new probability of stage IVB
would be

PrðIVBjeNÞ ¼ 0:69

0:12
� 0:11 ¼ 0:63

Note that a positive test result from the CT scan of the liver would, for this patient, change the most likely
stage from IVA to IVB. Further note that the new posterior probability distribution over the various stages
can be established without requiring any additional computations from the network. Similar observations
hold for computing the impact of a negative test result on the posterior probability distribution.

So far, we considered the impact of additional evidence on the posterior probability distribution over the
class variable computed from a naive Bayesian network. We now turn to the sensitivity of this impact to inac-
curacies in the network’s parameters and write the above probability ratio as a function of a parameter x:

hðxÞ ¼ PrðcjeNÞ
PrðcjeOÞ

� �
ðxÞ ¼ PrðcjeNÞðxÞ

PrðcjeOÞðxÞ
The impact of inaccuracies in parameters of already observed feature variables on the posterior distribution
over the class variable can be studied with the sensitivity functions given in the previous sections. These func-
tions, however, do not provide for establishing the effect of inaccuracies in parameters of yet unobserved fea-
tures. Focusing on the latter, we now observe that, if the parameter x pertains to a variable from the set
EN � EO of newly observed feature variables, then the denominator in the above formula is a constant with
respect to x. The function hðxÞ then just scales the sensitivity function fPrðcjeNÞðxÞ describing the output prob-
ability given all available evidence. Given the posterior probability distribution PrðCjeOÞ over the class vari-
able prior to obtaining the new information, we can therefore immediately determine the sensitivity of the
impact of the additional evidence to parameter variation from the sensitivity function fPrðcjeNÞðxÞ. Note that
for a naive Bayesian network the latter function is readily established for each feature parameter x once
the posterior probability distribution PrðCjeNÞ is available.

Example 6. We consider again the previous example. Suppose that we now are interested in the effects of
inaccuracies in the parameter probability x ¼ hðCT -liver ¼ yesjIVBÞ of the feature variable CT-liver on the
ratio of the posterior probabilities of stage IVB. We recall that the new posterior probability of this stage given
the additional evidence of a positive test result would be 0.63; the probability of IVB given just the available
evidence was 0.11. We now establish the sensitivity function fPrðIVBjeNÞðxÞ ¼ x=ðxþ 0:41Þ and find that

hIVBðxÞ ¼
1

0:11
� x
xþ 0:41

From Example 3 we had that the probability of the class value IVB increased from 0.11 to 0.63 upon a positive
liver scan, thereby becoming 5.7 times as likely. We can now in addition conclude that if the parameter x is
varied, the class value IVB can become at most 6.4 times as likely as without the additional evidence.
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6. Concluding observations

Numerous experiments have shown that classifiers built on naive Bayesian networks perform quite well,
even if their parameter probabilities are known to include considerable inaccuracies. In this paper, we used
sensitivity-analysis techniques to study the effects of these parameter inaccuracies on the posterior probability
distributions computed from a naive Bayesian network. We showed that the independence properties of such a
network serve to highly constrain the functional form of the associated sensitivity functions. These functions,
in fact, are determined solely by the original value of the parameter under study and the original posterior
probability distribution over the class variable, and can thus be efficiently computed, requiring a single net-
work propagation only. The properties that we derived from the sensitivity functions further provided some
fundamental corroboration for the empirically observed robustness of naive Bayesian classifiers in practice.

In our future research, we would like to further underpin the observed robustness of naive Bayesian clas-
sifiers by studying properties of sensitivity. In this paper, for example, we have studied the effects of varying a
single parameter probability only on an output probability of interest. Especially when discussing the possible
effects of inaccuracies in a network’s feature parameters, it seems only natural to consider the effects of simul-
taneous variation of two or more parameters. In general, the n-way sensitivity functions that describe such
effects are fractions of two multi-linear functions in the parameters varied. Establishing and analysing these
functions quickly becomes infeasible. In naive Bayesian networks, however, these functions may again turn
out to have rather constrained forms. For example, only feature parameters pertaining to the same value
of the class variable can interact in their effect on the computed posterior probabilities. Without such inter-
action effects, we expect that our observations concerning the robustness of a classifier’s performance to
parameter variation can be generalised. Studying the interaction effects in detail, moreover, may result in addi-
tional insights in the apparent lack of sensitivity to parameter inaccuracies.

In this paper, we further introduced the novel notion of scenario sensitivity, which describes the effects of
parameter inaccuracies in view of scenarios of additional evidence. We showed that for naive Bayesian networks
such scenario sensitivities can be readily expressed in terms of the more standard sensitivity functions. More spe-
cifically, for parameters of newly observed feature variables, the scenario sensitivity functions just scale with the
standard ones. In the near future, we would like to study the properties of scenario sensitivity functions for all
classifier parameters, and study the notion of scenario sensitivity in Bayesian networks in general.

Appendix A

A.1. The proof of Proposition 1

Proof. Let x ¼ hðc0Þ be a parameter with original value x0, pertaining to the value c0 of class variable C. Let
PrðcjeÞ be an output probability of interest with original value p0, and let p00 be the original value of Prðc0jeÞ.

We begin by writing the marginal probability Prðc; eÞ as a function of the parameter x ¼ hðc0Þ of the
network’s class variable. Using the definition of conditional probability, we have that

Prðc; eÞ ¼ PrðejcÞ � hðcÞ
If c is the class value whose parameter probability is being varied, that is, if c ¼ c0, then Prðc; eÞ relates directly
to the parameter x ¼ hðc0Þ in the sense that Prðc; eÞðxÞ ¼ PrðejcÞ � x. If c 6¼ c0, on the other hand, we have that
the conditional probability in the expression above co-varies with the parameter x. We then find that the mar-
ginal probability Prðc; eÞ relates to x as

Prðc; eÞðxÞ ¼ PrðejcÞ � hðcÞ � 1� x
1� x0

We thus find that the marginal probability Prðc; eÞ can be expressed in terms of the parameter x ¼ hðc0Þ as

Prðc; eÞðxÞ ¼
Prðejc0Þ � x if c ¼ c0

�PrðejcÞ � hðcÞ
1� x0

� xþ PrðejcÞ � hðcÞ
1� x0

otherwise

8<
:
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Similarly, using the definition of marginalisation, the probability PrðeÞ can be written as

PrðeÞðxÞ ¼ Prðc0; eÞðxÞ þ
X
c6¼c0

Prðc; eÞðxÞ

where the marginal probabilities Prðc0; eÞ and Prðc; eÞ with c 6¼ c0, relate to the parameter x as indicated above.
We define the following three constants:

a ¼ Prðejc0Þ ¼ Prðc0; eÞ
x0

b ¼ Prðc; eÞ
1� x0

h ¼
X
c6¼c0

Prðc; eÞ
1� x0

¼ PrðeÞ � Prðc0; eÞ
1� x0

We now find that the probabilities Prðc; eÞ and PrðeÞ can be expressed in terms of the parameter x ¼ hðc0Þ and
the above constants as

Prðc; eÞðxÞ ¼
a � x if c ¼ c0

�b � xþ b otherwise

�

and

PrðeÞðxÞ ¼ ða� hÞ � xþ h

For c ¼ c0, we thus find for the sensitivity function that

fPrðc0 jeÞðxÞ ¼
Prðc0; eÞðxÞ

PrðeÞðxÞ ¼
a � x

ða� hÞ � xþ h
¼ ða=ða� hÞÞ � x

xþ h=ða� hÞ ¼
ð1� sÞ � x

x� s

and for c 6¼ c0 that

fPrðcjeÞðxÞ ¼
Prðc; eÞðxÞ
PrðeÞðxÞ ¼

�b � xþ b
ða� hÞ � xþ h

¼ t � ðx� 1Þ
x� s

where the constant s defines the vertical asymptote that is shared by the sensitivity functions fPrðc0 jeÞðxÞ and
fPrðcjeÞðxÞ, c 6¼ c0. The constant t defines the horizontal asymptote for the function fPrðcjeÞðxÞ with c 6¼ c0; note
that the horizontal asymptote of the function fPrðc0 jeÞðxÞ is defined by t ¼ 1� s.

The value s for the sensitivity functions fPrðc0 jeÞðxÞ and fPrðcjeÞðxÞ, c 6¼ c0, equals

s ¼ � h
a� h

¼ � ðPrðeÞ � Prðc0; eÞÞ=ð1� x0Þ
Prðc0; eÞ=x0 � ðPrðeÞ � Prðc0; eÞÞ=ð1� x0Þ

¼ Prðc0; eÞ � PrðeÞ
ðð1� x0Þ=x0 þ 1Þ � Prðc0; eÞ � PrðeÞ

¼ Prðc0; eÞ � PrðeÞ
ð1=x0Þ � ðPrðc0; eÞ � x0 � PrðeÞÞ ¼

x0 � PrðeÞ � ðPrðc0jeÞ � 1Þ
PrðeÞ � ðPrðc0jeÞ � x0Þ

¼ x0 � ðp00 � 1Þ
p00 � x0

The value t for the sensitivity function fPrðcjeÞðxÞ with c 6¼ c0 equals

t ¼ �b
a� h

¼ � Prðc; eÞ
ð1� x0Þ � ðPrðc0; eÞ=x0 � ðPrðeÞ � Prðc0; eÞÞ=ð1� x0ÞÞ

¼ � PrðcjeÞ � PrðeÞ � x0

ð1� x0Þ � Prðc0jeÞ � PrðeÞ � PrðeÞ � x0 þ Prðc0jeÞ � PrðeÞ � x0

¼ p0 � x0

�ð1� x0Þ � p00 þ x0 � p00 � x0

¼ p0 � x0

x0 � p00

¼ p0 � x0

x0 � ð1� p00Þ
� x0 � ð1� p00Þ

x0 � p00
¼ p0

1� p00
� s

The properties stated in the proposition now follows. h

S. Renooij, L.C. van der Gaag / Internat. J. Approx. Reason. 49 (2008) 398–416 413



A.2. The proof of Proposition 2

Proof. Let x ¼ hðc0Þ be a parameter with original value x0, pertaining to the value c0 of class variable C. Let p00
be the original value of Prðc0jeÞ, let pT

0 ¼ argmaxc 6¼c0 fPrðcjeÞg, and let cT be a value of C for which
PrðcTjeÞ ¼ pT

0 .
We begin by observing that all sensitivity functions fPrðcjeÞðxÞ share the same vertical asymptote, located at

x ¼ s, regardless of the class value c.
The first property stated in the proposition now follows from the observation that, regardless of the

location of the vertical asymptote, all functions fPrðcjeÞðxÞ for the class values c 6¼ c0 are monotonically
decreasing and intersect only at f ð1Þ ¼ 0. As a consequence, either c0 or cT is the most likely value of the class
variable C, regardless of the value of the parameter x.

For the admissible deviation for the class parameter x ¼ hðc0Þ, we observe that regardless of the location of
the vertical asymptote, the function fPrðc0 jeÞðxÞ includes the two points fc0 ð0Þ ¼ 0 and fc0 ð1Þ ¼ 1, while the
function fPrðcTjeÞðxÞ includes fcTð1Þ ¼ 0. The two functions therefore intersect at some value xm 2 ½0; 1i for the
parameter x within the unit window. The value of xm now follows from fPrðc0jeÞðxÞ ¼ fPrðcTjeÞðxÞ:

ð1� sÞ � x
x� s

¼ pT
0

1� p00
� s � ðx� 1Þ

x� s
() ð1� sÞ � x ¼ pT

0

1� p00
� s � ðx� 1Þ () x ¼ �s � pT

0

ð1� p00Þ � ð1� sÞ � s � pT
0

Substituting the value ð1� p00Þ � x0=ðx0 � p00Þ for s in the above formula and multiplying both the numerator
and the denominator by ðx0 � p00Þ=ð1� p00Þ results in

xm ¼
pT

0 � x0

ð1� x0Þ � p00 þ pT
0 � x0

Note that our assumption of hyperbolic sensitivity functions implies that x0 6¼ p00. The admissible deviations
stated in the proposition now follow immediately from the functional forms. h

A.3. The proof of Proposition 3

Proof. Let Ev be a feature variable with value ev in instance e. Let x ¼ hðe0vjc0Þ be a parameter with original
value x0, pertaining to the value e0v of Ev and the class value c0. Let PrðcjeÞ be an output probability of interest
with the original value p0, and let p00 be the original value of Prðc0jeÞ. We prove the proposition for ev ¼ e0v; the
proof for ev 6¼ e0v is analogous.

We begin by writing the marginal probability Prðc; eÞ in terms of the network’s parameters:

Prðc; eÞ ¼
Y

Ei2EnfEvg
hðeijcÞ � hðcÞ � hðe0vjcÞ

where ei is the value of the feature variable Ei in the input instance e. Building upon this expression, the prob-
ability Prðc; eÞ relates to the parameter x ¼ hðe0vjc0Þ as

Prðc; eÞðxÞ ¼

Q
Ei2EnfEvg

hðeijc0Þ � hðc0Þ � x if c ¼ c0

Q
Ei2E

hðeijcÞ � hðcÞ otherwise

8><
>:

Similarly, using the definition of marginalisation, the probability PrðeÞ can be written as

PrðeÞðxÞ ¼ Prðc0; eÞðxÞ þ
X
c 6¼c0

Prðc; eÞ

where the marginal probability Prðc0; eÞ relates to the parameter x as indicated above and the sumP
c 6¼c0Prðc; eÞ is constant with respect to x. Note that the parameters hðevjc0Þ for ev 6¼ e0v, which co-vary with

x, are no part of the above expression since such values ev do not occur in the input instance e, as a result
of our assumption ev ¼ e0v.
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We define the following constants:

a ¼
Y

Ei2EnfEvg
hðeijc0Þ � hðc0Þ ¼

Prðc0; eÞ
x0

b ¼
Y
Ei2E

hðeijcÞ � hðcÞ

h ¼
X
c6¼c0

Prðc; eÞ ¼ PrðeÞ � Prðc0; eÞ

For the class value c ¼ c0 we now find for the sensitivity function fPrðc0 jeÞðxÞ that

fPrðc0 jeÞðxÞ ¼
Prðc0; eÞðxÞ

PrðeÞðxÞ ¼
a � x

a � xþ h
¼ x

x� s

and for the class value c 6¼ c0 we find that

fPrðcjeÞðxÞ ¼
fPrðc;eÞðxÞ
fPrðeÞðxÞ

¼ b
a � xþ h

¼ r
x� s

where the constant s ¼ �h=a defines the vertical asymptote that is shared by the functions fPrðc0 jeÞðxÞ and
fPrðcjeÞðxÞ, c 6¼ c0; its value equals

s ¼ �x0 �
PrðeÞ � Prðc0; eÞ

Prðc0; eÞ ¼ x0 � 1� PrðeÞ
Prðc0; eÞ

� �
¼ x0 �

x0

p00

The constant r ¼ b=a of the function fPrðcjeÞðxÞ with c 6¼ c0 now directly follows from fcðx0Þ ¼ p0 ¼ r=ðx0 � sÞ.
Finally, the function fPrðc0 jeÞðxÞ has a horizontal asymptote defined by t ¼ a=a ¼ 1. The function fPrðcjeÞðxÞ with
c 6¼ c0 has t ¼ 0=a ¼ 0. The proposition summarises these properties. h

A.4. The proof of Proposition 4

Proof. Let Ev be a feature variable with value ev in instance e. Let x ¼ hðe0vjc0Þ be a parameter with original
value x0, pertaining to the value e0v of Ev and the class value c0. Let p00 be the original value of Prðc0jeÞ; in
addition, let pT

0 ¼ argmaxc 6¼c0 fPrðcjeÞg and let cT be a value of C for which PrðcTjeÞ ¼ pT
0 .

The first property stated in the proposition follows from the observation that all functions fPrðcjeÞ with c 6¼ c0

have the same horizontal and vertical asymptotes and therefore do not intersect. As a consequence, either c0 or
cT is the most likely value of C, regardless of the value of x.

For the admissible deviation for the parameter hðe0vjc0Þ, we consider the value xm at which the two functions
fPrðc0jeÞðxÞ and fPrðcTjeÞðxÞ intersect. We establish this value for the situation where ev ¼ e0v; for ev 6¼ e0v the proof
is analogous. For ev ¼ e0v we find that

fPrðc0 jeÞðxÞ ¼ fPrðcTjeÞðxÞ ()
x

x� s
¼ pT

0 �
x0 � s
x� s

() x ¼ pT
0 � ðx0 � sÞ

Substituting s in the above formula with its value x0 � x0=p00 results in xm ¼ pT
0 � x0=p00 2 ½0;1i. Note that the

intersection of the two functions lies within the unit-window if xm < 1, that is, if x0 < p00=pT
0 . We further note

that the sensitivity function fPrðc0 jeÞ is a IVth-quadrant hyperbola branch, and therefore pT
0 < p00 if and only if

x0 > xm. The admissible deviations given ev ¼ e0v now follow immediately from the functional forms. h
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