# Learning the Structure of Bayesian Networks 

Xiao Lin<br>Department of Computer Science and Engineering

April 24, 2014

- Assume that you are given a bunch of cases generated by some unknown Bayesian network $N$ over the universe $\mathcal{U}$ and you want to reconstruct the Bayesian network. What you will do is to learn the structure of the Bayesian network from the cases.



## Constraint Based Learning Methods

- The constraint based methods establish a set conditional independence statements holding for the data, and use this set to build a network with d-separation properties corresponding to the conditional independence properties determined [Jensen and Nielsen, 2007].



## Bayesian <br> Network

## Notation for Conditional Independence

- $I(a, b, \chi): a$ is independent from $b$ given $\chi$
- $I(a, b)$ : shorthand for $I(a, b, \phi)$
- $I(a, b, c): a$ is independent from $b$ given $c$


## Notation for PC Algorithm

- $A_{C} a b$ : the set of nodes adjacent to $a$ or to $b$ in gragh $C$, except for $a$ and $b$ themselves.
- $U_{C} a b$ : the set of nodes in graph $C$ on (acyclic) undirected paths between a and b , except for $a$ and $b$ themselves.


$$
\begin{aligned}
& A_{C} a b=\{c, d, f\} \\
& U_{C} a b=\{c, d, e, f\} \\
& A_{C} a b \cap U_{C} a b=\{c, d, f\}
\end{aligned}
$$

## PC Algorithm [Spirtes and Glymour, 1991]

(3) From the complete undirected graph C on the nodes set V .
(3) $i=0$.
repeat

- For each pair of nodes $(a, b)$ adjacent in $C$, if $A_{C} a b \cap U_{C} a b$ has cardinality greater than or equal to $i$ and $a, b$ are independent conditional on any subsets of $A_{C} a b \cap U_{C} a b$ of cardinality less than $i$, delete $\mathrm{a}-\mathrm{b}$ from C .
- $i=i+1$
until for each pair of adjacent nodes $a, b, A_{C} a b \cap U_{C} a b$ is of cardinality less than i.
Call the resulting undirected graph $F$.
(3) For each triple of nodes $(a, b, c)$ such that the pair $(a, b)$ and the pair (b, c) are each adjacent in $F$ but the pair ( $a, c$ ) are not adjacent in F , orient a-b-c as $a \rightarrow b \leftarrow c$ if and only if a and c are dependent on every subset of $A_{F} a b \cap U_{F} a b$ containing b. Output all graphs consistent with these orientations.


## learning skeleton of BN

- $i=0, I(a, b)$ ? If yes, remove the link $(a, b)$
- $i=1, I(a, b,\{x\})$ ? If yes, remove the link $(a, b)$. $\{x\}$ is any subset of $A_{D} a b \cap U_{D} a b$ with one node.
- $i=2, I(a, b,\{x, y\})$ ? If yes, remove the link $(a, b)$. $\{x, y\}$ is any subset of $A_{F} a b \cap U_{F} a b$ with two nodes.
- ... ( until the cardinality of $A_{F} a b \cap U_{F} a b$ is less than i.)


## orienting links



If and only if for every subset $S$ of $A_{C} a c \cap U_{C} a c$ containing $b, I(a, c, S)$ $\rightarrow$ Yes.

## example



## example



$$
\begin{aligned}
& \mathrm{i}=0 \\
& \mathrm{I}(\mathrm{a}, \mathrm{~b}) \text { ? Yes. remove }(\mathrm{a}, \mathrm{~b}) \\
& \mathrm{I}(\mathrm{a}, \mathrm{c}) \text { ? No } \\
& \mathrm{I}(\mathrm{a}, \mathrm{~d}) \text { ? No } \\
& \mathrm{I}(\mathrm{~b}, \mathrm{c}) \text { ? Yes. remove }(\mathrm{b}, \mathrm{c}) \\
& \mathrm{I}(\mathrm{~b}, \mathrm{~d}) \text { ? No } \\
& \mathrm{I}(\mathrm{c}, \mathrm{~d}) \text { ? No }
\end{aligned}
$$

## example



$$
\begin{aligned}
& \mathrm{i}=1 \\
& A_{C} a c \cap U_{C} a c=\{\mathrm{d}\} \\
& \mathrm{I}(\mathrm{a}, \mathrm{c}, \mathrm{~d}) ? \mathrm{No} \\
& A_{C} a d \cap U_{C} a d=\{\mathrm{c}\} \\
& \mathrm{I}(\mathrm{a}, \mathrm{~d}, \mathrm{c}) ? \mathrm{No} \\
& A_{C} c d \cap U_{C} c d=\{\mathrm{a}\} \\
& \mathrm{I}(\mathrm{c}, \mathrm{~d}, \mathrm{a}) ? \text { Yes. remove }(\mathrm{c}, \mathrm{~d}) \\
& A_{C} b d \cap U_{C} b d=\phi
\end{aligned}
$$

## example


$A_{C} a b \cap U_{C} a b=\{d\}$
$\mathrm{I}(\mathrm{a}, \mathrm{b}, \mathrm{d})$ ? Yes $\rightarrow$ converging connection

- Avoid new converging connection
- Avoid directed cycles


## References

Einn V.Jensen and Thomas D.Nielsen (2007)
Bayesian Networks and Decision Graphs Springer: NY, USA, 2007; 230-236.
Peter Spirtes and Clark Glymour (1991)
An Algorithm for Fast Recovery of Sparse Causal Graphs
Social Science Computer Review 1991, Vol. 9, No.1, 62-72.

