
Chapter 4 

Propagation in 
Bayesian networks 

This chapter presents the algorithm used in HUGIN for probability updating in 
Bayesian networks. The algorithm does not work directly on the Bayesian network, 
but on a so-called junction tree which is a tree of clusters of variables. The clusters 
are also called cliques because they are cliques in a triangulated graph, which 
is a special graph constructed over the network. Each clique holds a table over 
the configurations of its variables, and HUGIN propagation consists of a series of 
operations on these tables. The subjects in this chapter are rather mathematical, and 
the -reader interested in the results rather than in the reasoning behind them can jump 
directly to the summary in Section 4.7, which should give sufficient background for 
the reading of Chapters 5 and 6. 

In Section 4.1 we define the multiplication and division of tables to be used in 
the algorithm. Section 4.2 gives methods for entering evidence and updating prob
abilities provided the full joint ·probability table is available, and in Section 4.3 we 
give the architecture of the algorithm when the cluster tree is available. Section 4.4 
defines the concept junction tree, and we prove the correctness of the algorithm 
when applied on a junction tree. Section 4.5 is devoted to the construction of a 
junction tree from the Bayesian network. 

The HUGIN algorithm yields the exact updated probabilities, but if you are un
lucky,· the algorithm will require so much space or time that the task is intractable. 
In Section 4.6 we present a technique, stochastic simulation, which can be used to 
get approximate probabilities when this happens. 

4.1 An algebra of belief tables 

Before we treat probability updating, we will introduce more formally the multipli
cation of belief tables, which we have used implicitly already. 
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Table 4.1 Multiplication of two tables over {A, B}; both variables are ternary. 

ai a2 a3 ai a1 a3 ai a2 a3 
bi Xi X2 X3 bi x' i x' 2 x' 3 b1 X1X) x2x2 X3XJ 

b1. YI Yz yj b2 Y) Y2 Y) b2 YtYI Y2Y2 Y3Y3 
b3 zi z2 Z3 b3 z' I z' 2 z' l b3 z1zl z2z2_ Z3ZJ 

t t' t. t' 

4.1.1 Multiplication and division 

Let t and t' be two tables over the same variables. Then the product t · t'(c•) = 
t(c*) · t'(c*) for all configurations c•. 

Table 4.1 gives an example. 
If the two tables are over different sets of variables we can also perform a multi

plication. 
Let tAs be a table over {A, B}, and let tAc be a table over {A, C}. Then lAs 

and tAc are multiplied by constructing a table tAsc over {A, B, C}, and letting 
tAs · tAc(a, b, c) = tAs(a, b) · tAc(a, c) for all configurations (a, b, c). 

See Table 4.2 for an example. 

Table 4.2 Multiplication of tAs with tAc· 
a1 az a, az a1 az 

b1 xi Xz Ct YI Y2 bi (XiY1, X1Y3) (X2Y2. X2Y4) 

bz X3 X4 C2 Y3 Y4 b2 (X3Yi, X3}'3) (x4yz, x4y4) 

tAB lAc tAB · tAc 

Division can be perfonned in the same way. Only, we have to be careful with 
zeros. If the denominator table has zero-entries, then the numerator table must have 
zero at the same places. In that case we put g = 0. 

4.1.2 Marginalization 

Let tv be a table over V, and let W be a subset of V. A table tw over W can be 
constructed by marginalization. For each configuration.w* let tw(w*) be the sum 
of all tv(v*), where v* is a configuration of V coinciding with w*. The notation is 

tw = Etv. 
V\W 

We shall use the following proposition later. 

Proposition 4.1 Let W and V be disjoint sets of variables, and let tw and tv be 
tables over Wand V. Then 

L(tw · tv) = tw · �)v. 
v v 
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That is, tables containing only variables over which you do not marginalize can be 
taken out of marginalization. See Table 4.3 for an example. 

Table 4.3 An example that LA ts"· tA == tB LA tA
. 

I;: I a1 a2 a3 
YI I b1 Y1X1 Y1X2 Y1X3 
Y2 b2 Y2X1 Y2X2 Y2X3 
Y3 

b3 }'3XJ YJX2 }'3X3 

to tA tstA 

b1 Y1X1 + YiX2 + Y1X3 Y1 
h2. Y2Xi + Y2X2 + J2X3 Y2 I (x1 + Xz + X3) 

b? }'3Xi + y3X2 + yjX3 Y3 .... 
LA tatA ts LA tA 

4.2 Probability updating in joint probability tables 

Let A be a variable with P(A) = (x1, . . •  xn). Assume we get the information e that 
A can only be in states i and j. This statement says that all states except i and j 
are impossible, and we have the belief P(A, e) = (0, . . . •  0, X;, o ... ;A. Xj. 0, . . . •  0). 
Note that P(e), the prior probability of e, is x1 + Xj, the sum of the probabilities of 
the possible states. To calculate P(A \ e) we use the fundamental rule: 

P(A I e) = P(A, e) 
= 

P(A, e) . 
P(e) LA P(A, e) 

The way that e is entered can be interpreted as a multiplication of P(A) with the 
table!= (0, . . . , 0, 1, 0, . . .  , 0, 1, 0, ... , 0) resulting in P(A, e). 
Definition. Let A be a variable with n states. A firuling on A is an n-dimensional 
table of zeros and ones. 

Semantically, a finding is a statement that certain states of A are impossible. 
Now, let U be a universe of variables, and assume that we have easy access to 

P(U), the joint probability table. Then, P(B) for any variable B in U is easy to 
calculate: . 

P(B) = L P(U). 
U\IBI 

Suppose we wish to enter the abpve find}ng. Then P(U, e) is the table resulting 
from P(U) by giving all entries with �1n state i or j the value zero and leaving 
the other entries unchanged. Again, P(e) is the sum of all entries in P(U, e) and 

P(U \ e) = 

P(U, e) 
= 

P(U, e) 
P(e) Lu P(U, e) 
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Note that P(U, e) is the product of P(U) and the finding�· If e consists of several 
findings {/1, • • •  , f,,.) each finding can be entered separately, and P(U, e) is the 
product of P(U) and the findings l.· We can express the considerations above in 
the following theorem. 

Theorem 4.1 Let U be a universe of variables and let e = {fi. .. .  , fml· Then 

S� .If 

where 

_lf(!l _ _Lev �vJ .,. P(U, e) = P(U) · [.1 . . . . • l.,,. and = P(e) , � 

P(e)= LP(U,e). 
u 

Theorem 4.1 says that if we have access to P(U), then we can enter evidence and 
perform probability updating. However, even for small sets of variables, the table 
P(U) is intractably large, and we have to find a smaller representation. 

4.3 Cluster trees 

As shown in Section 2.3.7 (the chain rule), a Bayesian network over U is a represen
tation of P(U). This means that we can, in principle, calculate P(U) as the product 
of all conditional probabilities from the network. The question then, is whether we 
can enter evidence and perform probability updating in Bayesian networks without 
being forced to calculate P(U). It has turned out to be rather difficult. 

Instead we can work with another representation called cluster trees. 

Definition. A cluster tree over U is a tree of clusters 6f variables from U. The 
nodes are subsets of U, and the union of alf nodes is U. (A tree is an undirected 
graph without cycles.) 

The links are labelled with separators which consist of the intersection of the 
adjacent nodes. 

Each node and separator holds a real. numbered table over the configurations of 
its variable set. 

In Figure 4.1 we give a cluster tree for the network Mrrun 

@-@� 
G)-GJ 

Figure 4.1 The Bayesian network Mmin and a corresponding 
cluster tree; Separators are in square boxes. 

Now, let BN be a Bayesian network over U. A Cluster tree co"esponding to BN 
is constructed in the following way: 
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- form a family of nodes such that for each variable A with parent set pa(A) 
there is at least one node V such that pa(A) U {A} f; V; 

- organize the nodes as a tree with separators (so far there is no restriction on 
how you organize the tree); 

- give all nodes and separators a table of ones. 
. ,.. ..... 

- for each variable A choose exactly one node V containing pa(A) U {A} and 
')(. multiply P(A I pa(A)) on � table. , · , I\ . 

Then the product of all node tables in the cluster tree is the product of all conditional 
probability tables in BN, and therefore we have the following theorem. 

Theorem 4.2 Let BN be a Bayesian network over U. Then any cluster tree corre
sponding to BN is a representation of P(U), and P(U) is the product of all cluster 
tables divided by the product of all separator tables. 

Remark. In Theorem 4.2 we divide the product of all cluster tables by the product 
of all separator tables. This does not do any harm, because the separator tables 
consist of ones, but the reader may wonder why. The reason is that, when we 
now start to move the information around in the cluster tree, then the product of 
all cluster tables divided by all separator tables is invariant, and thereby the tree 
remains a representation of P(U). 

It is easy to insert findi 
. 

cluster tree. Let e be a finding on_ '.'1· Multiply Iii. 
. e on e ta le of any node containi!:\g A .. ))ten, !Y. . � c run rule and Theorem 4.1 � 
°'ihe producrofwrnode tables is P(U) · � = P(U, e). - . -" - . --· -· ··-

To calcuiate ·P(B, e) for an arbitrary vanable 11 is not as easy, and the coming 
sections are devoted t� this problem. 

4.3.1 Absorption in cluster trees 

We introduce an operation in cluster trees. It has the effect of re-arranging the 
information stored in the tables. 

Definition. Let V and W be neighbours in a cluster tree, let S be their separator, 
and let tv, tw and ts be their tables. The operation absorption is the result of the 
following procedure: 

- calculate tS = Lv\s tv; 

- give S tl)e table t��. 
- give W the table 'tiv. = twt · 

We then say that W has absorbed from V or that Wf �� to V. ' \� 
I I,!. r __ ,. ... •. · .. : 
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t* - rs-� 
' 

Figure 4.2 W abso�s from V. ts= Lv\stv; tiv = tw · �-
Remarks. 

/ 

(1) The idea behind abso1ption is that the information which V and W can have 
in common is the information on S, and this is what W receives from V. If 
W, V and S hold the same infonnation on S, that is if 

.. r l: tw,,;; ts',,;,, L: tv, 
W\S V\S 

then absorption does not change anything. We then say that the link is con
sistent. If all links in the cluster tree are consistent we say that the tree is 
consistent. If a tree is consistent, then abso1ption does not have any effect at 
all. 

_A§.sume that the link is consistent, but now some evidence changes tv to 
( · tv-' Then after W has absorbed from V, the three tables all hold V� new 

· information on S: .. { /' 
- � .---.... 

" * " · � �" � . - "* , �tw = �tw- = - �tw =-ts =ts= �ty. 
W\S - . W\S ts ts W\S 4 ts V\S 

--
(2) W can only absorb from V through S if tw has_ zeros in the entries _correspond-

ing to the zero-entries in ts . We say that a link in a cluster tree is supportive 
ii it allows �bsorption in both directions, and a cluster tree is supportive if all 
its links are supportive. -Note that th� cluster trees constructed in Section 4.2 
are supportive smce the separator tables have no zero-entries. 

Lemma 4.1 Supportiveness is preserved under absorption. 

Proof Let W absorb from V through the separator S. Then 

where 

t$ 
ttv = tw. ts'' ' 

ts::: I: tv. 
V\S 

Then any zero-entry in tS is also a zero-entry in tw. This clearly also holds forty. 
D 

Theorem 4.3 Let T be a supportive cluster tree. Then the product of all cluster 
tables divided by the product of all separator tables is invariant under absorption. 
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I. ! (< (J �· r�1..-1 '·· •. , -

Figure 4.3 Certainty updating through message passing in a 
cluster tree. The numbers on the links indicate the order in which 
the messages are passed and in which direction. 

Proof When W absorbs from V through the separator S, only the tables of W and 
S are changed. Therefore it is enough to prove that the fract�on of W s and Ss table 
is unchanged. We have 

,,,.. 

, ) . t' tiv . tw · C tw ' 
ts = � =ts. 

· .. _.· 
Theorem 4.3 ensures that if we start with a Bayesian network over U, construct 
a corresponding. cluster tree T, and then perform a series of abso1ptions, then T 
remains a representation of P(U), and P(U) can be calculated as the product of all 
cluster tables divided by the product of all separator tables. 

4.3.2 Message passing in cluster trees 

The next question is how many absorptions can we perform, and can they help us 
in transforming the tables in a cluster tree into a form where it is easy to calculate 
P(A) for single variables? 

We can think of absorptions as messages passed between the nodes in the tree. 
That is, a node V sends a message to its neighbour W when W absorbs from V. 
Message passing scheme. A node V can send exactly one message to a neighbour 
W, and it may only be sent when V has received a message from each of its other 
neighbours. 

Consider, for example, the cluster tree in Figure 4.3. The leaves of the tree (the 
nodes A, B, C, D) can send to their single neighbour (1). Then E can send to G, 
and H can send to F (2). Next, G can send to F, and F .can send.to�G (3), F can 
send to H, B and C, and G can send to E (4). Finally E can send to A and H to 
D (5). Now each node has sent to all of its neighbours. 

As can be seen, the message passing algorithm is not sequential, and a good way 
of thinking of it is that each varia�le is busy waiting, eager to send messages. Each 
time it receives a message _it updates its own table and sends a message to the eligible 
neighbours (if any). 

Theorem 4.4 Let T be a supportive cluster tree, and suppose that messages are 
passed according to the message passing scheme. Then: 
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; � A;" . i�-®rn_·· 
� � 

Figure 4.4 A cluster tree over binary variables. All variables 
except A are in state y. In the node (A, B, C) A is in state y, 

and in the node (A, E) A is in state n. Though the cluster tree 
is consistent, the table for tA marginalized from tABC is different 
from the marginal taken from tAE· 

(i) message passing can continue until a message has been passed in both direc
tions of each link; 

(ii) when a message has been passed in both directions of each link then T is - ---- . ( ' ,_ ,  .. coil.sistenf; ·· · -- , I - , " / .,,., . 0 v�..- -: r ,·� r, •· 1:· ·� . ,  t ' / 

Proof. (i) Exercise 4.3. 
(ii) If T consists of only one node then the theorem is obviously true. 

Assume that T has more than one node, and let (V, W) be an arbitrary link with 
separator S. Let the first message to be passed over (V, W) be from W to V, and 
let tv, ts and tw be the tables before the message is passed. 

W hen the rnes�i:ge has been passed we have ts = Lw\s tw. Next, when the 
message from V 'and W has to be passed, the tables for S and W have not been 
changed ( W  has not received further messages ). Let the table for V be t"y". After 
message passing we have ·-! ::._>;- \f'J 

Now 

t** = "'"" t** and s . £....., ,1 
· V\S 

t•• t':." w =twL t* 
. 

s 

.l t*• t••, 
. ··. ..... 

t� = tv- = - tv= -t_s =ts = · •.87' E .,,;· � · . S S.' L:" · · •s *· ** �..,.* 
. . � r � · r � -

•'' ,V\S -, , .·\S .,·.· S S '7\S !: S _ 1 .. , S ,; 
�-,� • }_- '· ��·· • �'I'. � Therefore the lmk is consistent. ' ' " 

4.4 Junction trees 

D 

Let T be a cluster tree over U, let A be a variable in U, and suppose that A is an 
element of the nodes V and W. If T is consistent we would expect LV\IAI tv = 
LW\{AI tw. Certainly this is so if V and W are neighbours, but otherwise there is 

no guarantee. See Figure 4.4 for an example. 
We say that a consistent cluster tree is globally consistent if for any nodes V and 

W with intersection I we have 

i:,.,,:�-

L:tv = ,Ltw. 
V\I W\I 

' ; 
"' =�· .. 
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c . {<' ( I�- · ,4 

v ..,."'· · . .,.r �: �� L• 

� .. /', \ . ' \ I " . 
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'"·_,.I t,\ . .- .: • 

. 
'" '· 
._ ... ;:.-;... 

I \ � 
�I: \ /:' '· . , I - . . ·.' ' · • St l. • � :..-.. -:- �· - -'"" 1.- ..... _.. ·;.,t 

I ,  
t 

w 

' 
\ 

•.. . ..... \\ '· \ 

.. ..-- ---.::::. 

Figure 4.5 V is a leaf of T linked to Wand with separator S. 

As Figure 4.4 indicates, the reason why consistence does not imply global con
sistence is that a variable A can be placed in two locations in the tree such that 
information on A cannot be passed between the two locations. To ensure global 
consistence we must add a requirement to cluster trees. 

Definition. A cluster tree is a junction tree if, for each pair of nodes V, W, all nodes 
on the path between V and W contain the intersection V n W. 

Theorem 4.5 A consisten� junctfon tree is globally co7fSi.stent. 

Proof Exercise 4. 7. D 

The following theorems will show that if we construct a junction tree corresponding 
to a Bayesian network, then we have good algorithms for insertion of evidence as 

well as probability updating. When we construct a cluster tree corresponding to a 
Bayesian network we have severai dc;gr�s of freedom, and we shall use them for 

constructing a junction tree. However:·it i°!; not easy. For example, with the clusters 
in Figure 4.4 it is impossible to construct a tree with the junction tree property. We 

,_will leave this problem here, and return to it in Section 4.5. 

Theorem.4.6 Let T be a consistent junction. tree over: U, and let tu be the product 
of all node tables divided by the product of all separator tables. Let V be a-node 
with table tv. Then 

tv = 'L:tu. 
U\V 

Proof Induction on the number of nodes. 
Clearly the theorem holds when .T consists of a single_�ode. 
Now, assume the theorem to hold for any junction tree with n nodes, and let T be 

a consistent junction tree with n + 1 nodes. Let V be a leaf of T linked to W and 
with separator .S (see Fig. 4.5). Let T' be the junction tree resulting from removing 
V (and S), and let T' have the universe U'. Then 

1'· s.C/�\ ··f '/ 
-'· .(" - " ., . .. ,· �-. :· ... � '. � 

a . .. . . -

·
-;:;,.
t tu tv 

, , .. i' :c u=· ,.-. -r "'--'" ts 
.. ••:!''. 

where tu• is the product of all node tables in T' divided by the separator tables in 
T'. Let D be the set of variables V \ S, and let H be W \ S. From the junction tree 

property we have that D n U' = 0. 
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Since T is consistent we have 

Now 

L::tv = ts =

. 

�tw ---------� 
D 

-ci; . / -,;:-:- . ' , 
1'\:: , ;,> '. .<· �, .. ,,._../ tv (\.� ( ' .  "'t '-"�Etu• ·ts · L.J

U
< D D 

Lntv 
= tu•· · -t-s 

ts - tu··-. - ts ' '----. . -., 
· . = tu•. ' 

'· f � -
I 

-· �. 
-., ,, 

-� ;;. 

" 

Therefore, by the induction hypothesis we· have : -�'. .. -��-···:: .. ... �,.,_':·� � .,. r-s,,, 
\ 

�.,-lo .,_.11:. n., , Etu =tv, 
"'" 

I:] 1�---:-� ( ;•_. ',, <tit.- - · w·, [ ;�i·1;;;/_. )1 - \: . . ' ' . 11\.. . . ) , .. ,, �· , __ ·- __ _/ 
·:..., . U\V1 

----
. ',,-i _ -

;�_ .
,\ 

for all Vi m T if'�:. ' • �. ·, : ' - , '. ., �-' / 

Furthermore; --- _ .. .. --- ·--·-· 

_, /��-; L.J tu 
�...- """ ,... _,.1 :!! 

I \.._. j • 

/1 U\V 
. ( .� . , ., 

�.i.i 
= 

= 

tv Etu• ·ts U'\S _ .  

tv. Etu• ts· U'\S 
··--· .. , 

\',--·� _,I 
-

- ...,- · ., ..• \ .. .  \' ., . " IJ f: 1 · '. ''' · 
. . ) ' l 

. \ w . �--l-

·\ ... -- , b c:! 
. , ,r,, �r �- ' ,.,,. ��. 

I·' ' -' 

\'. .. ' ' 

r. '· .' � 

-.�. ,, 
� 

tv ··Etw ts W\S . ��: ' 
·' 

_, 
= 

tv t -·s
'\... ts , ' 

= ty. � 

(..'· 
. ..... 

The considerations above are summarized in the following theorem. 

� - ·' 

D 

Theorem 4.7 Let BN be a Bayesian network representing P(U), and let T be a 
ju,nction tree corresponding to BN. After a fall round of message passing in T, we 
have for -each node V and each separator S that 

tv = L P(U) = P (V) and ts = P(S). 
U\V . 

- -· . 
Proof By Theorem 4.2, P (U) is the product of the initial node tables divided by 
the separator tables. Theorems 4.3 and 4.4 give that after a full round of message 
passing T is consistent, and P(U) is the product of all node tables divided by all 
separator tables. Theorems 4.5 and 4.6 yield the conclusion. D 
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. ' 
J r=L· " I • .-�"'}:: 

1..,. 

v 

Figure 4.6 The message passing in DistributeEvidence(V). 

IA.#-·" ,\ .. c-" .. 

Figure 4.7 The message passing in CollectEvidence(V). 

Theorem 4.8 Let BN be a Bayesian network representing P (U), and let T be a 
junction tree corresponding to BN. Let e = {f1 ,  . .. , f m }  be findings on the variables 
{At. . . .. , Am}. For each i find a node containing Ai and multiply its table with L· 

Then, after a fall round of message passing we have for each node V and separator 
S that 

tv = P (V, e) ts = P(S, e) P(e) = Etv. 
v 

Proof Use Theorem 4.1 and proceed as in the proof of Theorem 4.7. D 

4.4.1 HUGIN propagation 

Assume that we have a consistent junction tree, and now a single node V receives 
evidence. Then half of the messages can be avoided: V sends messages to all of 
its neighbours who recursively send .messages to all neighbours except the one from 
which the message came (see Fig. 4.6). We call this algorithm DistributeEvidence. 

Now, suppose that we. are only interested in the certainty of one node, V. Then 
half of the certainty updating messages can be avoided: V asks all its neighbours 
to send it a message, and if they.are not allowed to do so, they recursively pass the 
request to all neighbours except the one from which the request came (see Fig. 4.7). 
We call this algorithm CollectEvidence. 

The two algorithms DistributeEvidence and CollectEvidence can be used for a 
more organized message passing scheme. No matter the amount of evidence entered, 
take any variable V. Call CollectEvidence from V and after that call DistributeEvidence 
from V. The result is that all messages have been passed, and they were passed 
when permitted (see Fig. 4.8 and Exercise 4.5). 

��..:.��:· ... �.·;,·;..+.:0';_e;r•·. · ·;, -:.� . .-• .. :-i,!j�� -:,�;�-:_,..;�_;..; _•-.;·;.;��:t--.d··· ·,;;.;';-·-··� �:-�.•· ... . � · ;.,; "- ·"�;_._:,:� .- .;�,:· · ·  .. �. -- -;.. � . . ···· .· 
- :..' ;··, ,;�_!·-:, ..;..,:._ �i.·."=�·tl).'o __ \:i..::.:_;:··"-,:-_.;.: .. "T.;..��.,�:��-�-.� 
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i , 'L \:Ju·''" i � " ' · '· ·""' 
\. '(it' i 

I � U ���J:;·�;, 

Figure 4.8 Updating through CollectEvide�Ilowed by 
DistributeEvidence(V). -

©- � ,;.�id e. �:e., 
Figure 4.9 Evidence ev has been entered at the righthand side 
of S .  ew has been entered at the lefthand side of S. C is used 
as a root for the propagation. 

HUG IN propagation uses corresponding junction trees, and the operations Collect
Evidence and DistributeEvidence. A node Rt in the junction tree is chosen as a root, 
and whenever a propagation takes place, -CollectEvidence(Rt) is called foiiowecfby- a. 
call of DistributeEvidence(Rt). When the calls are finished, the tables are normalized 
so that they sum to one. 

HUG IN propagation has a _n_ice side effect, namely that it gives access to various 
probabilities of sets of entered finilin;:---·- • 

Let us use Theorem 4.8 to have a closer look at what is actually communicated 
in the propagation algorithm. The general situation is described in Figure 4.9. 

A call of CollectEvidence(C) will cause a call of CollectEvidence(V), and by 
Theorem 4:8 this will result in tv = P(V, ev ). This gives that P (ev) can be cal
culated without further propagations. Unfortunately, the situation is not symmetric. 
In the DistributeEvidence phase the message passed from W to S is P (S, e). 

4.S Construction of junction trees 

In this section we shall give a method for constructing junction trees for DAGs. 

4.5.1 Singly connected DAGs 

A DAG is singly connected if the graph you get by dropping the directions of the 
links is a tree (see Fig. 4.10). 

For singly connected DA Gs it is easy·to construct junction trees. For each variable 
A with pa(A) =I= 0 you form the cluster pa(A) U {A}. Between any two clusters 
with a non-empty intersection you add a link with the intersection as a separator. 
The resulting graph is called a junction graph. All separators consist of a single · 
variable, and if the junction graph has cycles, then all separators on the cycle contain 
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~ 
Singly conn�ted Multiply connected 

Figure 4.10 Examples of singly connected and multiply con
nected DAGs. 

Figure 4.11 A singly connected DAG and its junction graph. 
By removing any of the links with separator F you get a junction 
tree. 

the same variable. Therefore any of the links can be removed to break the cycle, 
and by removing links until you have a tree, you get a junction tree (see Fig. 4.11). 

We know that when we construct a cluster tree corresponding to a DAG, then for 
all variables A there must be a cluster V containing pa(A) U {A}. We can illustrate 
this on a graph_ by having a link between any pair of variables which must appear 
in the same cluster. This means that we take the DAG, add a link between any pair 
of variables with a common child, and drop the directions of the original links. The 
resulting graph is called the moral graph. From the moral gr'1h you can� 
�lusters to consider, namely the �liques in the graph {1!'-_axi�lisets of variables that 
are all pairwise linked). In Figure 4.12 we give an example ottbe construction. /\ � 
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(a) DAG (b) Moral graph 

(c) Junction graph (d) Junction tree 

Figure 4.12 Construction of a junction tree for a singly con
nected DAG. 

4.5.2 Coping with cycles 

Consider the junction graph in Figure 4.13. The intersection of the two clusters of 
variables is (AB), and a junction tree is easily found. 

Consider the DAG in Figure 4.14(a) with the moral graph in Figure 4.14(b). 
Sticking to the approach that the clusters are the cliques in the moral graph, we see 
that if we join A ,  B and C, then we get a junction tree. 

The DAG in Figure 4.15 is more problematic. The cycle in the junction graph 
cannot be broken. 

The propagation problem is that coupled information (on (DE)) is decoupled but 
meets again under propagation. This can also be seen from the cycle D - E - C -

A - B - D in the moral graph. A way to solve the problem is to add so-called 
fill-ins to the moral graph: add a link between C and D and one between B and C. 
The result is shown in Figure 4.16 together with the resulting junction tree. 

The general rule for filling-in the moral graph is that any cycle with more than 
three variables shall have a chord. In this case the graph is called triangulated. 

In Figures 4.17 and 4.18 there is another example of the process from DAG to 
junction tree. Note that without the fill-in (B - D) the cycle A - B - F - D - A 
does not have a chord . 

CONSTRUCTION OF JUNCTION TREES 
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(a) DAG (b) Moral graph (c) Junction tree 

Figure 4.13 Construction of a junction tree for a simple multiply 
connected DAG. 

� 
� 
@ 

(a) DAG (b) Moral graph (c) Junction tree 

Figure 4.14 Another simple DAG with a cycle. 

Figure 4.15 A DAG with a large cycle. 

83 
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Figure 4.16 The filled-in moral graph from Figure 4.15, the 
j�nctio�· graph, and the j�tion tree resulting from removing the 
!mks with separator D and C. 

Figure 4.17 A DAG, the moral and triangulated graphs. The 
fill-ins are indicated by dotted lines. 

4.5.3 From DAG to junction tree 

In this section we present, without proofs, alg0rithms for triangulation of graphs and 
for construction of junction trees from triangulated graphs. Proofs of Theorems 4.9 
and 4.10 are given in Appendix A. 
Definition. An undirected graph is triangulated if any cycle of length > 3 has a 
chord. 

Definition. A node A is eliminated by ad�ing links such that all of its neighbours 
are pairwise linked and then removing A together with its links. .. 

Note that 1f a node A can be eliminated without adding links, then A cannot be •. . ·, 
•- • .  . . . ' I � . f, part of a chordless cycle of length :- J...· ,·· . n.. 

. 

. . . "" .• ; ' "";r .. .  ·. . .., ::· •. �\! .. .. .,. \. '. ; . : 
c \,,\(" .1v'\·_ t./>. -· ... - � '_ :-" � .'};\'. , ·\ • .1" . ) t ··�· · . • · ·- -

Theorem 4.9 A graph is triangulatea'if <ind only if all of its nodes can be eliminated -· 

one by one without adding <f'LY link. 

Theorem 4.9 yields a method for triangulation as well aS a test for whether a graph 
is triangulated. The method consists of eliminating the nodes in some order (adding 

ucsn 
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Figure 4.18 The junction graph for the trian�lated_gra.p.hjn .-
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Figure 4.17 and a junction tree. ,._ � ( · r ,r . 
·.�: · __ �::·.:��)��· .-· " _.-:� 

links, if necessary) and when this is done the resulting graph is triangulated. An 
example is given in Figure 4.20. · 

Note that there are several triangulations of the graph. Intuitively, triangulations 
with as few fill-ins as possible are preferred. However, optimality is connected 
to the resulting junction tree and the computational complexity of the propagation 
algorithm. We shall return to the question of optimality later. ., 

Definition. A junction graph for an. undirected graph G is an qndirected, labelled 
graph. The nodes are the cliques in G. Every pair·of nodes ··with a non-empty 
intersection has a link labelled by the intersection. 

·. 

There is an easy way of identifying the cliques in a triangul�ed graph G. Let 
Ai , . ; . , An be an elimination sequence for G, and let Ci be ttie set of variables 
containing Ai and all its neighbours at the time of elimination (neig: hours. with 
higher numbers). Then every clique of G is a C1 for some i .�· l ';' '��-· 

The reader may check that the cliques of the graphs in Figure 4.ZO(a) are Ci. c{, · :·� 
C3, C4, and that the cliques of the graph in Figure 4.20(b) are C1 ,C2,C3'o..����- _ _  . 

The junction tree we are aiming at will be a subgraph of the junction graph. $1iice. ::. ' " 
message passing will be restricted to links in the junction tree we are not allowed to 
remove a link from the junction graph if thereby .some kiqd of information cannot 
be passed. If, for example, the clusters U and V have the variable A in common, 
they have a link with label A. If this link is removed, there shall be another path· in 
the remaining graph through which information on A can be passed from U to V. 
So, let us recall the following definition. 

Definition. A spanning tree of a junction graph is a junction tree if it has the 
property that for each pair of nodes, U, V, all nodes on the path between U and V 
contain U n V. (A subtree of a graph is a. spanning tree if all nodes of the graph 
are nodes in it.) 
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Not triangulated Triangulated 

Not trianguiated Triangulated 

Figure 4.19 Triangulated and not triangulated graphs. 

Theorem 4.10 An undirected graph is triangulated if and only if its junction graph 
has a junction tree. 

Definition. The weight of a link in a junction graph is the number of variables in 
the label. The weight of a junction tree .is the sum of tI;ie weights of the labels. 

Theorem 4.1lc�irho1J�l�ro�f) .·· � ����e· 'o/ the:; j�t�� "gr�;h· of a •t;kzngulat�d ·. 
graph is a junction tree· if and only if it is a spanning tree of maximal weight. 

Theorem 4.11 provides an easy way of constructing junctie����. nam�I; ·Kru�kal' s 
algorithm: choose successively a link of maximal weight unless it creates a cycle. 

There are other ways of constructing junction trees, In particular, if an elimination 
sequence for the triangulated graph is known, very efficient algorithms exist (see 
Exercise 4.8). So, if the graph is triangulated then the construction of a junction 
tree is rather fast. 

The only problematic step in the process from DAG to junction tree is the tri
angulation. Since any elimination sequence will produce a triangulation it may not 
seem a problem, but for the propagation algorithm it is. In HUGIN propagation the 
cliques in the junction graph shall have joint probability tables attached to them. 
The size of the table is the product of the number of states of the variables. So, 
the size increases exponentially with the size of the clique. A good triangulation, 

STOCHASTIC SIMULA TION 

(a) (b) 

Figure 4.20 Two examples of triangulation through elimination. 
The numbers on the nodes indicate the elimination order, and the 
dotted lines are fill-ins. 

(a) (b) 

Figure 4.21 Junction graphs for the two triangulated graphs in 
Figure 4.20. 
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therefore, is a triangulation yielding small cliques, or to be more precise, yielding • 

small probability tables. The .problem of determining an optimal triangulation is J 
NP-complete. However; there is a heuristic algorithm which has proven to give / 
fairly good results. It is a version of the greedy approach: eliminate repeatedly a 
node not requiring fill-ins and if this is not possible, eliminate a node yielding the I 
smallest table. In Figure 4.23 an example is given. J 

4.6 Stochastic simulation 

The propagation method requires tables for the cliques in the triangulated graph. 
These cliques may be very large, and it happens that the space requirements cannot 
be met by the hardware available. In this case an approximate method would be 
satisfactory. 

In this sectioR we shall give a flavour of an approximate method called stochastic 
simulation. The idea behind the· simulation is that the causal model is used to 
simulate the flow of impact. When impact from a set of variables to a variable A is 
simulated, a random generator is used to decide the state of A. 

To illustrate the technique, consider the Bayesian network in Figure 4.24 with the 
conditional probabilities specified in Table 4.4. 
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Figure 4.22 Junction trees for the junction graphs in Figure 4.20. 

Figure 4.23 A heuristic elimination sequence is E, D (and 
A,B,C). 

A a;--a; 
Figure 4.24 An example network. All variables have the states 
y and n. 
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A 'f ..l"i I ../�· �' b I I 

Table 4.4 The conditional probabilities for the example 
network. P(A) = (0.4, 0.6) . 

&1 ft ;, 
I' • ·' ·> ( 

( 'l 

( 

'?.f1 
'{�� 

' A A B 
( ,> B y ___!!___ C y n D y n 

I I , . y 0.3 0.8 y 0.1 0.4 y 0.5 0.1 
' . !. i'·'l'. n 0.1 0.2 n 0.3 0.6 n 0.5 0.9 ) .:Y} P(B I A) P(C I A) P(D I B) 

j 

r 
l 

D 
y 
n 

c 
y n 

(0.9, 0.1) (0.999, 0.001) 
(0.999, 0.001) (0.999, 0.001) 

P(E I C,D) 

Table 4.5 A set of 100 configurations of (A, B, C, D, E) sampled from the 
network in Figure 4.24 and Table 4.4 

CDE 
AB yyy yyn yny ynn nyy nyn nny nnn 
yy '4 0 5 0 1 0 2 0 
yn 2 0 16 0 1 0 8 0 
ny 9 1 10 0 14 0 16 0 
nn 0 0 4 0 0 0 7 0 

The idea now is to draw a random configuration of the variables (A, B, C, D, E), 
and to do this a sufficient number of times. 

A random configuration is selected by successively sampling the states of the vari
ables. First the state of A is sampled. A random generator (with even distribution) 
is asked to give a real number between zero and one. If the number is less than 
0.4 the state is y, if not the state is n. Assume that the result is y. From the 
conditional probability table P(B I A) we have that P(B I y) = (0.3, 0.7). The 
random generator is asked· again, and if the number is less than 0.3, the state of B 
is y. This procedure is repeated to get the state of C, D, and E, and a configuration 
is determined. 

The next configuration is sampled through the same procedure, and the procedure 
.is repeated until m configurations are sampled. In Table 4.5 an example set of 
configurations is given. 

· 

The probability distributions for the variables are calculated by counting in the 
sample set (see Exercise 4.12). For 39 of the samples in Table 4.5 the first state is 
y, and this gives an estimated prof;>ability P(A) = (0.39, 0.61). 

The method above, called forward sampling, does not require a triangulation of the 
network, and it is not necessary to store the sampled configurations (like Table 4.5); 
it is enough to store the counts for each variable. Whenever a sampled configuration 
has been determined, the counts of all variables are updated, and the sample can 

·> 7 
o(, .. � 1'1� 
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be discarded. This method saves a great deal of space, and each configuration is 
determined in a time linear to the number of variables. The cost is accuracy and 
time. 

So far only the initial probabilities are calculated. When evidence arrives, it cau 
be handled by simply discarding the configurations which do not conform to it. 
That is, a new series of stochastic simulations are started, and whenever a state of 
an observed variable is drawn, you stop simulating if the state drawn is not the 
observed one. 

Unfortunately, this method has a serious drawback. Assume in the example above 
that the observations for the network are B = n and E = n. The probability for 
(B = n, E = n) is 0.00282. This means that in order to get 100 configurations 
you should for this tiny example, expect to perform more than 35 000 stochastic 
simulations. 

Methods have been constructed for dealing with this problem. A promising method 
is called Gibbs sampling. 

In Gibbs sampling you start with some configuration consistent with the evidence 
(for example determined by forward sampling); 'iiii(fthen you randomly charige the 
state of the variables in causal order. In one sweep through the variables you 
determine a new configuration, and then you use this configuration for a new sweep, 
etc. 

In the example let B = n and E = n be the evidence, and let the starting 
configuration be ynyyn. Now, calculate the probability of A given the other states 

.......--.,_ of that configuration.
_ 
:iiat is; 

_
P (A I B = n, C = y, D = y, E = n). �rom �e 

.. · ' .-' ; 11e!Wmk we see that it 1s sufficient to calculate P(A I B = n, C = y). It ts easily /_1,.< ;· done by Bayes' rule: it i{(0.8, 0.2) . . We draw a number from the random generator, 
\ ' \.:  /' and let us assume that the number is 0.456 resulting in A = y. The next free variable 

..,.. . ... " · is C. We calculate 

��.---· � .... 

P(C I A = y, B = n, D = y, E = n) = P (C I A = y, D = y, E := n) 

= (0.996, 0.04). 

We draw from the random generator, and assume we keep C = y. 
In general the calculati,on goes as follows. Let A be a variable in a Bayesian 

network BN, let B1 , . • .  , Bn be the remaining variables, and let b* = (b1 ,  • . • , bn) 
be a configuration of (B1 , . . .  , Bn).  Then P(A, b*) is the product of all conditional 
tables of BN with B; instantiated to b; . Therefore P(A, b*) is proportional to the 
product of the tables involving A, and P (A I b*) is the result of normalizing this 
product. Note that the calculation of P(A I b*) is a local task. 

Back to the example. The next variable is D. We follow the same procedure and 
assume that the result is D = y. Then the configuration from the first sweep is 
unaltered, i.e. ynyyn. 

The next sweep follows the same procedure. Assume the result for A is that the 
state is changed to n. Then we shall calculate P(C I A = n, D = y, E = n), and 
so forth. 

In this way a large sample of configurations consistent with the observations are 
produced. The question is whether the sample is representative for tile probability 

! , .·· -�·i � � - :.: -- •. : . .  : �,� • . .. • j t:,/ r> .  � :-.1 �:?:��?'?· ���".: . J (o. f; ';f 0 .  i:� ., -;/ , 
SUMMARY O F  SECTIONS 4.2-4.5 .:.>� .;:?:: · 1 _·,�� °! �:-;,:· � f;), { ){ o }L�{' " ·) :  

, .., , ,c. . 'l'· . / ,., ., .,  ! "' {··· � '1 r:i!>, � � . .  :::. . • •  �J f .. . ·k ,  - ·.?. i '! �. I O .c,, 0�.;·I .� r •1 1 , ,.._ " -':'/ ""·· � -.�- L • -.� . ' . 
distribution. It is not always so. It may be that the initial configuration . is rather 
improbable, and therefore the first samples, likewise, are out of the mainstream .. . -0 • 

Therefore you usually discard the first 5'-10% of the samples. � is called burn-in. 111·: 
Another problem is that you may be �tm;k: in certain "areas" of the configuration�. 

Perhaps there is a set of very likely configurations, but in order to reach them from 
the one you are in, a variable should change to a state which is highly improbable 
given the remaining configuration (see Exercise '4.13). 

A third serious problem is that it may be very hard to find a starting configuration. 
Iri fact, it is NP-hard (see Exercise 4.14). 

We shall not deal with these problems, but refer the interested reader to the liter
ature. 

4. 7 Summary of Sections 4.2-4.5 
Junction trees 

The nodes of a junction tree are sets of variables, they are called cliques. Each 
link is labelled with a separator which is the intersection of the adjacent cliques. 
Each clique and separator holds a real numbered table over the configurations of its 
variable set. 

The junction tree property. For each pair V, W of cliques, all cliques on the path 
between V and W contain the intersectiOn V n W. 

A junction tree is said to represent the Bayesian· network BN over the variables 
u if: 

(i) for each variable A, there is a clique containing pa(A) U (A}; 

(ii) P(U) is the product of all clique tables divided by all separator tables. 

Construction of junction trees 

Let BN be a Bayesian network over the variables U. 

(i) Construct the moral graph: the undirected graph with a link between all 
variables in pa(A) U {A} for all A. 

(ii) Triangulate the moral graph: add links until all cycles consisting of more than 
three links have a chord. 

(iii) The nodes of the junction !fee are the cliques of the triangulated graph. 

(iv) Connect the cliques of the triangulated graph with links such that a junction 
tree is c�nstructed. 

(v) First give all cliques and separators a table consisting of only ones. Then, 
for each variable A find a clique containing pa(A) U {A}, and multiply P(A I 
pa(A)) on its table. 

The resulting junction tree represents BN. 
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r;;;-.. tw � t.S r.:-.. v--i s r----i v i 

� t• � 
J.<'igure 4.25 W abso�s from V. t'W = tw · i!• tS = L.V\S tv . 

Findings 

A finding is a statement that some states of a variable are impossible. A finding can 
be represented as a table of zeros and ones with a zero at the places for impossible 
states. 

A finding on a variable A is entered into a clique V containing A by multiplying 
Vs table by the table for the finding. 

Absorption in junction trees 

Definition. Let V and W be neighbours in a junction tree, let S be their separator, 
and let tv, tw and ts be their tables. The operation absorption is the result of the 
following procedure: 

- calculate ts = LY\s tv ; 

- give s the table ts; 

t' 
- give w the table tw = tw f.. 

We then say that W has absorbed from V.  (See Fig. 4.25.) 

HUGIN propagation 

An arbitrary clique Rt in the junction tree is chosen as a root. The operation 
CollectEvidence is called in Rt followed by a call of DistributeEvidence in Rt. 

CollectEvidence(Rt) asks all neighbours to CollectEvidence and they proceed 
down the tree recursively. When all the called neighbours have finished, Rt ab
sorbs from them. 

DistributeEvidence(Rt) makes all its neighbours absorb from Rt, and afterwards 
recursively DistributeEvidence to its neighbours (except Rt). See Figure 4.26. 

Correctness of HUGIN propagation 

Theorem 4.8 Let BN be a Bayesian network representing P(U), and let T be a 
junction tree corresponding to BN. Let e = {/1 , . . . , fm} be findings on the variables 
{A1, . . .  , Am}. For each i find a node containing A; and multiply its table with I_;. 

Then, after a full round of message passing we have for each node V and separator 
S that 

tv = P(V, e) ts = P(S, e) P(e) = I )v .  
v 
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Figure 4.26 Updating through CollectEvidence(V) followed by 
DistributeEvidence(V). 

@- ew )9 e, 

Figure 4.27 Evidence ev has been entered at the righthand side 
of S. ew has been entered at the lefthand side of S. C is used 
as a root for the propagation. 

Side effect of Hugin Propagation 

Let Rt be the root for HUGIN propagation, and let W and V be neighbours with 
separator S. Assume that W is closer to Rt than V. Then S divides the entered 
evidence in ev and ew (see Fig. 4.27). 

A call of CollectEvidence(Rt) results in the table P(S, ev) being communicated 
from V to S. By marginalization you can calculate P(ev). 

4.8 Bibliographical notes 

A version of probability updating in singly connected DAGs through message pass
ing was presented by Kini & Pearl (1983). HUGIN propagation was proposed by 
Jensen et al. (1990). It is a modification of an algorithm proposed by Lauritzen & 
Spiegelhalter (1988). Similar methods were used for pedigree analysis by Cannings 
et al. (1978). Shafer & Shenoy (1990) propose a different message-passing method 
for junction trees. Other propagation methods for multiply connected DAGs exist, 
e.g. arch reversal proposed. by Shachter ( 1986) or conditioning proposed by Pearl 
(1986a). 

The concepts of triangulated graphs and junction trees have been discovered and 
rediscovered with various names. l:t Bertele & Brioschi (1972) they are used for 
dynamic programming, and Beeri et al. (1983) use them for data base management. 
A good referenee on triangulated graphs is Golumbic (1980). Tarjan & Yannakakis 
(1984) gives various triangulation' methods and very efficient methods for testing 
whe�a graph is triangulated. Jensen & Jensen (1994) contains a proof of Theo
rem .�.W together i a method for constructing optimal junction trees from trian-
gulatliI graphs · .  , � 

Forward sampl · w reposed by Henrion ( 1988). Gibbs sampling was originally 
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introduced for image restoration by Geman & Geman (1984). Further readings on 
sampling methods could be Geyer (1992), Fung & Favero (1994), and Jensen et al. 
(1995). Gilks et aL (1 994) have developed a system, BUGS, for Gibbs sampling in 
Bayesian networks. 

Exercises 

Exercise 4.1 For Table 4.6, calculate tvtw and �-
Table 4.6 Table for Exercise 4. 1 .  

a J  az a3 
bJ 1 2 3 
bi 3 2 1 

tv 

CJ Cz C3 
bJ 6 12 24 
bi 18 6 12 

tw. 

Exercise 4.2 For the universe U over the ternary variables (A, B, C) with the joint 
probability Table 4.7 we get the findings /J :  "A is in state aJ ", and fz: "C is in 
state CJ or c3". 

Table 4.7 Table for Exercise 4.2. 
aJ a2 a3 

bJ (2,4,3) . (1 ,4,8) (5,0,7) 
b2 (5,10,4) (2,3,3) (1 ,5,4) 
� (1 ,5,6) (3,3,3) (0,6,2) 

P(A, B,  C) multiplied by len. . l01 

Calculate P(B I /1 , /z), P(C I /1 , /2), P(/1) , P(h,) and P(/1 , /z). 
Exercise 4.3 Prove that the anarchistic message passing algorithm formulated in 
Section 4.3.2 never runs into a deadlock: as long as there are unused message 
channels at least one variable can send a message. (Hint. Induction on the number 
of nodes and the fact that any sending sequence must start with a leaf sending.) 

Exercise 4.4 Let B be independent of C given A, and let P(A,  B) and P(A , C) be 
consistent. What is P(A, B, C)? 

Exercise 4.5 Prove that a call of CollectEvidence in any node followed by a call of 
DistributeEvidence in the same node will result in a full propagation (all messages 
passed and passed when permitted). 

Exercise 4.6 Construct the moral graph and a junction tree for the singly connected 
DAG below. 

Exercise 4. 7 Show that a consistent junction tree is globally consistent. 
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� 
Figure for Exercise 4.6. 

Exercise 4.8 (Construction of a junction tree from an elimination sequence.) 
G is a triangulated graph over U, and A J , • • •  , An is an elimination sequence of 

U.  Ci is the set of variables containing Ai and all its neighbours at the time of 
elimination. 

(i) Show that each clique of G is a C; for some i .  

(ii) Show that for all i < n there is a j > i such that Ci \ {Ad.� Ci. 

< \� \ (iii) Assume that C; and Ci are cliques (i < j) such that C; \ {Ad � Ci .  Show (Z°' ( .� . \ that there exists a junction tree for G with the link (C; , Ci).  
' 7- ' .  . 
· ·' ' . f: '(iv) Use (ii) and (iii) to construct a junction tree for the graph in Figure 4.20(a). 
�-;·��· . !� • \ . 
·· ·· �' ' Exercise 4.9 (i) Construct a junction tree for the DAG given below, by using the 
e-;· :;... elimination order F, J, D, B, A,  I, K, E. 

. '.i �-

Figure for Exercise 4.9 

(ii) The numbers inside the nodes indicate the number of states. _Use the procedure 
from the end Of Section 4.5 to construct a junction tree. 

Exercise 4.10 (i) For the DAG given below, compute P(A, B,  C), when P(A) = 

(0.3 , 0.7) (see Figure and Table 4.8 for Exercise 4.lO(i)). · 

(ii) The DAG is extended as shown in the Figure and Table 4.9 for Exercise 4. lO(ii). 
Calculate P(B ,  C, D). 



96 . P ROPAGATION IN BAYESIAN NEIWORKS 

Table 4.8 Table for Exercise 4. IO(i). 

·�--A = y  A = n  A = y  .
B = y · -0.2 0.5 C = y 0.9 
B = n 0.8 0.5 C = n 0.l 

P� I �  P� I �  

� . � @ 
Figure for Exercise 4. 1 O(i). 

(iv) We are told that A = y and D = n. What is P(B)? 
(v) Initially, what was P(A = y,  D = n)? 

�-i;�i9'_'l.'\J.\ \2"1 ,�,.t ) \ �i; : , , 1 f ,V.H .  \i) 

A = n  
o:4 

0.6 

.� ' rj� L 
Exercise 4.11 (Conditioning.) Propagation methods for singly connected DAGs have 
existed for a long time. A propagation method for multiply connected DAGs consists 
of reducing a DAG to a set of singly connected DAGs. 

(i) Consider the DAG (a) below with P(A) , P(B I A), P(C I A) and P(D I B, C) 
given. Assume that A = a. Show that the DAG .is reduced to the DAG (b) with 
P(B I a) , P(C I a), and P(D I B, C) given. 

, ..._ , . . ,. ,  •· � \.' . : 
(ii) Show that P(D, a) = P.(D+·b-, c)P(B j a)P(C I a). ;:: f . �. �' . ..  \:< '  • _( : '· '.' 
(iii) Assume that for all states a of A we have a redu�l:d DAG as in (i) . Let 

evidence e be entered and propagated in all the reduced DAGs, yielding P(B, e I a), 
P(C, e I a), P(D, e I a) for all a. Calculate P(B, e) and P(A, e). 

The procedure above is called conditioning on A. 
(iv) Reduce the DAG by conditioning on B. Show that the tables are P(A I b) , 

P(C I A) and P(D I C, b) . 
(v) Show that conditioning on D does not result in a si�S]G. 
Conditioning over several variables can be performed"�tepwise . • . w · 1' 
(vi) Determine a minimal set of conditioning variables rorlhe DA n below 

to reduce it to singly connected DAGs. 
(vii) The numbers attached to the variables indicate the number of states. Deter

mine a conditioning resulting in a minimal number of singly connected DAGs. 

Table 4.9 

C = y  
C = n  

Table for Exercise 4.IO(ii). 
B = y B = n  
(0, 1) (0.7, 0.3) 

(0.4, 0.6) (0.5, 0.5) 
P(D I B, C) 

EXERCISES 

v 
(a) 

Figure for Exercise 4. IO(ii). 

� 
V ?  

(b) (c) 
Figure for Exercise 4. 1 l(i)-(v). 
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Exercise 4.12 Calculate the marginals from the sample in Table 4.5, and compare 
the result with the exact marginals. 

Exei:cise 4.13 The binary variables A and B are parents of the binary variable C. 
P(A) = P(B) = (0.5 , 0.5), and the conditional probability table is an exclusive or 
table: C = y if and only if exactly one of A and B is in the state y. 

Show that Gibbs sampling on this structure will give either P(C = y) = 1 or 
P(C = n) = 1. 

Exercise 4.14 Given a Bayesian network over U with evidence e entered, show that 
it is NP-hard to find a configuration U* such that P(U•, e) > 0. 
(Hint. Look at Exercise 3. 16.) 

Figure for Exercise 4.1 l (vi)-(vii). 
"" 



. , .  · : l  : ;; t, tj� 

f tM '- " ' ��SC& • • 

A"' T 11tlro_.-tf..._ 1'4 
<B-:r�0-...� .. .,;. 

�ti....,.,, tnr, 

Appendix A 

Construction of junction trees 
(proofs) 
This appendix contains proofs of the crucial theorems in Section 4.5. 
Definitions. Let G be an undirected graph with node set N .  

If in G there is a link between A and B they are said to be neighbours. Sometimes 
the word adjacent i� used. A path in G is a sequence A1 , . • •  , An of distinct nodes 
where A 1  and A;+1 are neighbours. A cycle is a path where A 1  = An and all other 
nodes are distinct. A chord in a cycle A 1 ,  . . . , An is a link between two nodes A; 
and Aj. where i and j are not consecutive numbers. 

G is triangulated if any cycle of length > 3 has a chord. 
A subset S of N is complete if each pair of nodes in S are neighbours. A node is 

simplicial if its neighbour set is complete. 
A node . A is eliminated from G by . adding links to · G such that A becomes 

simplicial and then removing it together with its links. The result is denoted G 11 •  G 
is said to be eliminatable if all nodes can be successively eliminated without adding 
extra links. 

Theorem A.1 Any eliminatable graph is triangulated. 

Proof Induction on the number of nodes. 
Clearly, a graph consisting of one node is both triangulated and eliminatable. 
Assume the theorem to hold for all graphs consisting of <;: n nodes, and let G be 

an eliminatable graph with n nodes. Since G is eliminatable it must have at least 
one simplicial node A. By the induction hypothesis, G 11 is triangulated. Since A is 
simplicial, any cycle of iength > 3 containing A must have a chord (see Fig. A.l). 
Hence G is triangulated. 

To prove that any triangulated graph is eliminatable we need a lemma . 

Lemma A.I (Decomposition lemma.) Let G be a noncomplete triangulated graph 
with at least three nodes, and with node set N .  Then there is a complete subset S of 
N such that G \ S is disconnected. 
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Appendix A 

Construction of junctio11 trees 
{proofs) 
This appendix contains ·proofs of the crucial theorems in Section· 4.5. 
Definitions. Let G be an undirected graph with node set N .  

If i n  G there is a link between A and B they are said to be neighbours. Sometimes 
the word adjacent is used. A path in G is a sequence A1 , • • •  , An of distinct nodes 
where A; .and A1+1 are neighbours. A cycle is a path where A1 = A. and all other 
nodes are distinct. A chord in a cycle A 1 ,  • • •  , A. is a link between two nodes A1 
and A1, where i and j are not consecutive numbers. 

G is triangulated if any cycle of length > 3 has a chord. 
A subset S of N is complete if each pair of nodes in S are neighbours. A node is 

simplicial if its neighbour set is complete. 
A node A is eliminated from G by adding links to ' G such that A becomes 

simplicial and then removing it together with its links. The result is denoted GA. G 
is said to be eliminatable if all nodes can be successively eliminated without adding 
extra links. 

Theorem A.1 Any eliminaiable graph is triangulated. 

Proof Induction on the number of nodes. 
Clearly, a graph consisting of one node is both triangulated and eliminatable. 
Assume the theorem to hold for all graphs consisting of < n nodes, and let G be 

an eliminatable graph with n nodes. Since G is eliminatable it must have at least 
one simplicial node A. By the induction hypothesis, GA is triangulated. Since A is 
simplicial, any cycle of length > 3 containing A must have a chord (see Fig. A.I). 
Hence G is triangulated. 

To prove that any triangulated graph is eliminatable we need a lemma. 

Lemma A.1 (Decomposition lemma.) Let G be a noncomplete triangulated graph 
with at least three nodes, and with node set N. Then there is a complete subset S of 
N such that G \ S is disconnected. 
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® 
Figure A.I A cycle containing a simplicial node must have a 
chord. 

Proof Let A and B be two nonadjacent nodes, and Jet S be a minimal set of nodes 
such that any path between A and B contains a node from S. Clearly G \ S is 
disconnected, and Jet GA denote the connected component containing A joined with 
S (see Fig. A.2). GD is defined similarly. 

·- . 

. --· --Fig�re A.2 'A triangulated graph with a separator consisting of 
(C, DJ.  GA coii"srsts·of the nodes A, C, D, E, F, and G . .  

� 

./ ?' . 
/ 

\ :  ' . 

- -- We only need to prove that S is complete. Let C and z:i be nodes from S. We 
.� -·, shall.prove that they are neighbours. 

>·- · " '  l Since S is minimal there must be a path from A to B with C as the only node 
·:. · from S; the same holds for D. Now, take a �hortest path. in· G.,i.. .com1ecting C and 
L '.:,'. . D. Do the same for Gs andjpi!J the two paths in a cycle ()f length > 3. This cycle 
�- , , must have a chord, .and tlie only ciic>rd-possible 'is a link between C and D. ... : . - --:.. .: '· - ,-� . -.1 ... '. •:!. . , . ..  ' · , ·  • t - �  ··: · : . - :� -· - .: ' ·  '/:._ . •  •. � �- . 

!' Theorem A�2 Any triangulate'd gr�ph IS eliminatable: 

Proof Induction on the number of nodes. 
Clearly, any graph with at most two nodes is both triangulated -and eliminatable. 

To carry out an induction proof it would suffice to prove that any triangulated 
graph contains at least one simplicial node. If this is the case, then a triangulated 
graph with n nodes is reduced by eliminating a simplicial node, and the induction 
hypothesis will yield the graph eliminatable. For technical reasons we shall use a 
slightly stronger result. 

Claim. Let G be a triangulated graph containing at least two nodes. Then it contains 
at least two simplicial nodes. If G is not complete then the two nodes can be chosen 
nonadjacent. 

As indicated above. the claim is sufficient to orove the theorem. 

. ' 

·) I 
'_,! 
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<�: �'· �� - : ,· · - · .. 
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NOw,. assume' the claim t o  be true for any graph with < n nodes and let G have 
n node8. Jf G is, complete then any two nodes are simplicial. So, suppose that G is 
not complete. Then the decomposition lemma yields a complete subset S separating 
G into at least two components. 

Let G.A and Gs be defined as in the proqf of the rlr.cornrm�ition lemma They ""' 
both triangulated (any chordless cycle in GJ· is also a chordless cycle in G). 

If c�- is not. ·complete we 9an choose two nonadjacent simplicial n�es A1 and 
A2-· Since they 'cannot both b't< members of S, we choose A 1  outside S to ensure 
that A1 is sirnplici�l in G. If G�l is complete, choose any node outside S. The same 
can be done for dn) Since both nodes are chosen outside S they are nonadjacent. '· ' 
Let us recall the following. 

Definitions. A junction graph for an undirected graph G is an undirected, labelled 
graph. The nodes are the cliques of G, and every pair of nodes with a nonempty 
intersection has a link labelled by that intersection. 

A spanning tree of Gs junction graph is a junction tree for G if it has the property 
that for each pair U, V of nodes, all the nodes in the path between U and V contain 
the intersection Un V. The labels on the links in a junction tree are called separators. 

Theorem A.3 A connected undirected graph G is triangulated if it has a junction 
tree. 

Proof Induction on the number of nodes in the graph. 
The theorem is trivially true for any graph with at most two nodes. 
Assume the theorem to hold for all graphs with < n nodes. Let G be a connected 

graph with n nodes, and let T be a junction tree, for G .  Since T is a tree there is a 
clique C with only one neighbour C' in T .  Let A E C \ C'. Since T is a junction 
tree, A can only be a member of one clique, namely C. Then all neighbours of A 
are members of C and hence pairwise linked. This means that A is simplicial in G. 

Now, remove A from C (if thereby the new clique becomes a subset of C' then 
remove C from T ). The resulting tree T* is a junction tree for GA . 

By the induction hypothesis GA is triangulated, and hence G is also triangulated . 

Theorem A.4 Any connected triangulated graph has a junction tree. 

Proof Induction on the number of nodes of the graph. 
Trivially, the theorem is true for any graph with at most two nodes. 
Assume the theorem to hold for any graph with < n nodes, and let G be a 

connected triangulated graph with n nodes. By the proof of Theorem A.2 G has at 
least one simplicial node A. Then A together with its neighbours form a clique C 
in G. Also, G and GA have the same cliques except for C. GA may instead have 
a clique consisting of C \ (A ). Also, GA must be triangulated because G is, and -
by the induction hypothesis - GA has a junction tree T *. 

Now, construct T from T *  in the following way. 
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Figure A.3 The construction of a junction tree for . G from a 
junction tree for GA. 

- If not, then S is a subset of a clique C' in r•. In this case, add the clique C 
with a link to C' labelled S (see Fig. A.3). 

It is easy to verify that T is a junction tree for Q. 

,/; . � 

Appendix B 

Value of informatio:n (proofs) 

This appel?dix contains proofs omitted in Section 5.5. 

Proposition B.l If V(P(H)) = I >hP(h) then EV(T) = V(P(H)). 
heH '' 

Proof. 

EV(T) = L P(t)V(P(H I t)) = L P(t) I >hP(h I t) = L :L>hP(h, t) 
teT teT heH teT heH 

L _L_>hP(h, t) = L ahP(h) = V(P(H)). 
heH teT heH 

Proposition B.2 (Jensen's inequality) 
(Jensen is the most frequent Danish name. This Jensen lived from 1859 to 1925.) 
Let V : Rn -+ R be a convex function. Let !.i , . . .  , !.n E Rn and let a1 , • • •  , an E 

[O, 1 ], such that L:7=1 a; = 1. Then 

v (� a;!_;) � � a1 V(J_;). 

Proof Induction on n. The basis n = 2 is precisely the convexity property. 
Assume that the inequality holds for n - 1 .  

n-1 
Put t =  :La;, then an = 1 - t, and assume t f= 0. 

l=l 
'·. 

( n ) 
_ __.-- · ·  

V "" a;X · . 
/ "  

L _, 

( . 1 • I < I � . j..:) . 
I �" (' '  ·\' ; . �t £. { � {' :·.�· .. . ; .: .. "-

( n- 1 ,ai
' ). V(t LL:.!.; + (1 - t)!.n) 

i=I t 

� tr (I:�!.;) + (1 - t) V(!.n) 
1 i = I  t J .. ! ;. - . h-1 

'..:: t L �VCJ.1) '.+- an V(!.n) 
i=l t 

. ' I • .\ ."- �-·----· 
� ' �  f, .. 

t'!. -- I 

� I (1 ,. , 
. ' I ,' � J63 , ·· 
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