
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Valuation-Based Systems for Discrete Optimization 
by 

Prakash P. Shenoy 
School of Business, University of Kansas, Lawrence, KS 66045-2003, USA 

Tel: (913)-864-7551, Fax: (913)-864-5328, Bitnet: PSHENOY@UKANVM 

Abstract 
This paper describes valuation-based systems for representing and solving 

discrete optimization problems. The information in an optimization problem is 
represented using variables, sample spaces of variables, a set of values, and func
tions that map sample spaces of sets of variables to the set of values. The func
tions, called valuations, represent the factors of an objective function. Solving the 
optimization problem involves using two operations called combination and 
marginalization. The combination operation tells us how to combine the factors 
of the objective function to form the global objective function. Marginalization is 
either maximization or minimization. Solving an optimization problem can be 
simply described as finding the marginal of the joint objective function for the 
empty set. We state some simple axioms that combination and marginalization 
need to satisfy to enable us to solve an optimization problem using local compu
tation. 

1. Introduction 
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The main objective of this paper is to describe a valuation-based system (VBS) for repre
senting and solving discrete optimization problems. There are several reasons why this is useful. 

First, I initially proposed VBSs for managing uncertainty in expert systems [Shenoy, 
1989a, 1989b]. Here I show that these systems also have the expressive power to represent and 
solve optimization problems. 

Second, problems in decision analysis involve managing uncertainty and optimization. 
That both of these problems can be solved in a common framework suggests that decision prob
lems also can be represented and solved in the framework of VBS. Indeed, Shenoy [ 1990a] 
shows that this is true. In fact, the solution procedure for VBS when applied to decision 
problems results in a method that is computationally more efficient than decision trees and influ
ence diagrams. 

Third, the solution procedure of VBS when applied to optimization problems results in a 
method called non-serial dynamic programming [Bellman, 1957; Bertele and Brioschi, 1972]. 
Thus in an abstract sense, the local computation algorithms that have been described by Pearl 
[1986], Shenoy and Shafer [1986], Dempster and Kong [1988], and Lauritzen and Spiegelhalter 
[1988] are just dynamic programming. 

Fourth, in this paper we describe some simple axioms for combination and marginaliza
tion that enable the use of dynamic programming for solving optimization problems. We believe 
these axioms are new. They are weaker than those proposed by Mitten [ 1962]. 

Fifth, the VBS described here can be easily adapted to represent propositional logic 
[Shenoy 1989a, 1990b] and constraint satisfaction problems [Shenoy and Shafer, 1988b]. 

An outline of this paper is as follows. In Section 2, we show how to represent an 
optimization problem as a VBS. In Section 3, we state some simple axioms that justify the use 
of local computation in solving VBSs. In Section 4, we show how to solve a VBS. Throughout 
the paper, we use one example to illustrate all definitions and the solution process. 

2. Representation of Optimization Problems 
A valuation-based representation of an optimization problem uses variables, frames, and 

valuations. We will discuss each of these in detail. We will illustrate all defmitions using an op
timization problem from Bertele and Brioschi [1972]. 

An Optimization Problem. There are five variables labeled as A, B, C, D, and E. Each 
variable has two possible values. Let a and -a denote the possible values of A, etc. The global 
objective function F for variables A, B, C, D, and E factors additively as follows: F(v,w,x,y,z) = 
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F1(v,x,z) + F2(v,w) + F3(w,y,z), where F1, F2, and F3, are as shown in Figure 1 below. The 
problem is to find the minimum value of F and a configuration (v,w,x,y,z) that minimizes F. 

Figure 1. The factors of the objective function, F�t F2, and F3. 
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Variables and Configurations. We use the symbol � x for the set of possible values of 

a variable X, and we call cur x the frame for X. We will be concerned with a fmite set X of vari

ables, and we will assume that all the variables in X have fmite frames. 
Given a finite non-empty set h of variables, we let cur h denote the Cartesian product of 

cur x for X in h, i.e., cur h =X { 'Uf x I Xe h } . We call cur h the frame for h. We call elements of 

cur h configurations of h. Lower-case bold-faced letters, such as x, y, etc., will denote configura

tions. If x is a configuration of g, y is a configuration of h, and gnh=0, then (x,y) will denote 

the configuration of guh obtained by concatenating x and y. 
It will be convenient to allow the set of variables h to be empty. We will adopt the con-

vention that the frame for the empty set 0 consists of a single element, and we will use the sym

bol • to name that element; cur 0 = { •}. If x is a configuration of g, then (x, •) is simply x. 
Values and Valuations. We will be concerned with a set 'V whose elements are called 

values. \Y may be finite or infinite. Given a set h of variables, we call any function 
H:cur h-+ W, a valuation for h. Note that to specify a valuation for 0, we need to specify only a 
single value, the value of H( • ). 

In our problem, the set \Y corresponds to the set of real numbers, and we have three val
uations F1, F2 and F3. F1 is a valuation for {A,C,E}, F2 is a valuation for {A,B} and F3 is a val
uation for {B,D,E}. Figure 2 shows a graphical depiction of the optimization problem, called a 
valuation network. In a valuation network, variables are shown as squares and valuations are 
shown as diamonds. Each valuation is linked to the variables it is defined for. 

We will let V h denote the set of all valuations for h, and V denote the set of all valua-

tions, i.e., V = u { V h I h!::X}. 
Projection and Extension of Configurations. Projection of configurations simply 

means dropping extra coordinates; if ( -a,b,-c,d,e) is a configuration of { A,B,C,D,E}, for exam
ple, then the projection of (-a,b,-c,d,e) to {A,C,E} is simply (-a,-c,e), which is a configuration 
of {A,C,E}. 

If g and h are sets of variables, h!::g, � x is a configuration of g, then we will let x-1-h de
note the projection of x to

J. 
h. The projection x h is always

.!. 
a configuration of h. If h=g and x is a 

configuration of g, then x b = x. If h=0, then of course x h = •. 
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Figure 2. The valuation network for the optimization problem. 

Combination. We assume there is a mapping ©:VxV � V called combination so 
that if u, v e V, then u©v is the value representing the combination of u and v. We defme a 
mapping E9 :VxV � V in terms of ©, also called combination, such that if G and Hare valua
tions for g and h respectively, then GE9 H is the valuation for guh given by 

(GE9H)(x) = G(ig)©H(x.l.h
) (2.1) 

for all xe cut g· We call GE9 H the combination of G and H. 
In our optimization problem, ©is simply addition. We can express the global objective 

function F as follows F = F1E9F2E9F3. 
Marginalization. We assume that for each h�X. there is a mapping 

.J,h:U ( V g I g:;2h} � V h· called marginalization to h, such that if G is a valuation for g and P-h, 
then aJ.h is a valuation for h. We call a.l.h the marginal of G for h. 

For our optimization problem, we defme marginalization as follows: 
a.l.h(x) = MIN ( G(x,y) I ye cut g-h} (2.2) 

for all xe cut h· Thus, ifF is an objective function, then p.l-0( •) represents the minimum value of 
F. 

In an optimization problem, besides the minimum value, we are usually also interested in 
fmding a configuration where the minimum of the joint valuation is achieved. This motivates the 
following definition. 

Solution for a Valuation. Suppose H is a valuation for h. We will call xe cut h a solution 

for H if H(x) = HJ,0( + ). 

Solution for a Variable. As we shall see, computing a solution for a valuation is a mat
ter of bookkeeping. Each time we eliminate a variable from a valuation using minimization, we 
store a table of configurations of the eliminated variable where the minimums are achieved. We 
can think of this table as a function. We call this function "a solution for the variable." 

Formally, we define a solution for a variable as follows. Suppose X is a variable, suppose h is a 
subset of variables containing X, and suppose H is a valuation for h. We call a function 
'Px: cut h-{X} � cut x a solution for X (with respect to H) if 

HJ.(h-{X})(c) = H(c,'Px(c)) (2.3) 

for all CE CUf h-{X}· 
H X is a large set of variables, then a brute force computation of F and an exhaustive 

search of the set of all configurations of X to determine a solution for F is not possible. In the 
next section we will state axioms for combination and marginalization that make it possible to 
use local computation to compute the minimum value ofF and a solution for F. 
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3. The Axioms 
We will list three axioms. Axiom Al is for combination. Axiom A2 is for marginaliza-

tion. And Axiom A3 is for combination and marginalization. 

Al (Commutativity and associativity of combination): Suppose u, v, w are val
ues. Then u©w = v©u and u©(v©w) = (u©v)©w. 
A2 (Consonance of marginalization): Suppose G is a valuation for g, and 
kQI�. Then (GJ.h)J.k = oJ.k. 
A3 (Distributivity of marginalization over combination): Suppose G and H are 
valuations for g and h, respectively. Then (GESH).!.g = GEa(HJ.gnh). 

It follows from axiom Al that E9 is commutative and associative. Therefore, the combi
nation of several valuations can be written without using parentheses. For example, 
( ... {(FtE9F2)E9F3)Ea ... EaF��;) can be simply written as E9{Fit ... , F��;} without indicating the order in 
which to do the combination. 

If we regard marginalization as a reduction of a valuation by deleting variables, then ax
iom A2 can be interpreted as saying that the order in which we delete the variables does not 
matter. 

Axiom A3 is the crucial axiom that makes local computation of marginals and solution 
possible. Axiom A3 states that computation of (GESH).!.g can be done without having to compute 
GEaH. 

4. Solving a VBS Using Local Computation 

Suppose we are given a collection of valuations { F1, ••• , Fk} where each valuation Fi is 
for subset hi of X. The problem is (i) to find the minimum value ofF= E9{FI. ... , Fk} and (ii) to 
fmd a solution for F. We will assume that combination and marginalization satisfy the axioms. 

We will call the collection of subsets { h 1, ••• , h��;} for which we have valuations a hyper
graph and denote it by %. 

Solving a VBS proceeds in three phases. In phase one, we arrange the subsets of vari-
ables in% in a "rooted Markov tree." In the phase two, we "propagate" the valuations {Ft • ... , 
F n} in the rooted Markov tree using a local message-passing scheme resulting in the computation 

of the marginal F.!.0. In the phase three, we construct a solution for F again using a local mes
sage-passing scheme. 

4.1. Phase One: Finding a Rooted Markov Tree Arrangement 

A Markov tree is a topological tree, whose vertices are subsets of variables, with the 
propeny that when a variable belongs to two distinct vertices, then every vertex lying on the path 
between these two vertices contains the variable. 

A rooted Markov tree is a Markov tree with the empty subset 0 as the root and such that 
all edges in the tree are directed toward the root. 

First, note that the only information we need in phase one is the set %. Second, in 
arranging a set of subsets in a rooted Markov tree, we may have to add some subsets to the 
hypergraph %. Third, in general, there may be many rooted Markov tree arrangements of a 
hypergraph. Figure 3 shows a rooted Markov tree arrangement of the subsets { A,C,E}, { A,B}, 
and {B,D,E}. Subsets {A,E}, {B,E}, {A,B,E}, {A}, and 0 are added during the arrangement 
process. 

The computational efficiency of phase two depends on the sizes of the frames of the ver
rices of the Markov tree constructed in the phase one. Finding an optimal rooted Markov tree (a 
rooted Markov tree whose largest frame is as small as possible) has been shown to be a NP-com
plete problem [Amborg et al., 1987]. Thus we have to balance the computational efforts in the 
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two phases. We should emphasize, however, that this is strictly a computational effort question. 
If computational effort is not an issue, then it does not matter which rooted Markov tree is used 
for propagating the valuations. All rooted Markov trees give the same final answer, i.e., the 
marginal of the joint valuation for the empty set. We will describe a heuristic called "one-step
look-ahead" due to Kong [1986] to find a good rooted Markov tree. 

Figure 3. A rooted Markov tree for the optimization problem. 

The method described below for arranging a hypergraph in a rooted Markov tree is due to 
Kong [1986] and Mellouli [1987]. 

Suppose % is a hypergraph on X. To arrange the subsets in % in a Markov tree, we first 
pick a sequence of variables in X. As we shall see, each sequence of the variables gives rise to a 
Markov tree arrangement. Mellouli [ 1987] has shown that an optimal Markov tree arrangement 
can be found by picking some sequence. Of course, since there are an exponential number of se
quences, finding an optimal sequence is, in general, a difficult problem. 

Consider the following set of instructions in pseudo-Pascal: 
u :=X {Initialization} 
%0 := % {Initialization} 
V := 0 {Initialization} 
E := 0 {Initialization} 
for i = 1 to n do 

begin 
Pick a variable from set u and call it Xi 
u :=u- {Xi} 
gi := u{he %i_11 Xieh}. 
fi :=gi- {Xd. 
V := V u {he %i_11 �eh} u {fJ u {gJ 
E := E u { (h, gi) I he %i-1, h*gi, Xie h} u { (gi, fi)} 
%i :={he %i-11 �eh} u {fd 

end {for} 
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After the execution of the above set of instructions, it is easily seen that the pair (V, E) is 
a rooted Markov tree arrangement of % where V denotes the set of vertices of the rooted Markov 
tree and E denotes the set of edges directed toward the root. Note that at each iteration of the 
above sequence of instructions, we add subsets gi and fi to the set of subsets if they are not al
ready members of %. 

We shall say that in the ith iteration of the for-loop in the above set of instructions, the 
variable� that is picked from set u is marked. Note that the subsets in ?Ci contain only un
marked variables. 

Kong [1986] has suggested a heuristic called one-step-look-ahead for finding a good 
Markov tree. This heuristic tells us which variable to mark next. As the name of the heuristic 
suggests, the variable that should be marked next is an unmarked variable � such that the cardi-

nality of CUf r- is the smallest. Thus, the heuristic attempts to keep the sizes of the frames of the 
1 

added vertices as small as possible by focussing only on the next subset added. In the optimiza
tion problem, a sequence selected by the one-step-look-ahead procedure is C,D,E,B,A. Figure 3 
shows the resulting rooted Markov tree. See Zhang [1988] for other heuristics for good Markov 
tree construction. 

4.2. Phase Two: Finding the Marginal of the Joint Valuation 

Suppose we have arranged the hypergraph % in a rooted Markov tree. Let %' denote the 
set of subsets in the Markov tree. Clearly %':;2%. To simplify the exposition, we will assume 
that there is exactly one valuation for each non-empty subset he%'. If h is a subset that was 
added during the rooted Markov tree construction process, then we can associate the vacuous 
valuation (the valuation whose values are all 0) with it. On the other hand, if subset h had more 
than one valuation defmed for it, then we can combine these valuations to obtain one valuation. 

First, note that the rooted Markov tree defines a parent-child relation between adjacent 
vertices. If there is an edge (hi,hj) in the rooted Markov tree, we will refer to hi as hj 's parent 

and refer to hj as hi's child. Let ho = 0 denote the root of the Markov tree. Let Pa(h) denote h's 
parent and let Ch(h) denote the set of h 's children. Every non-root vertex has exactly one parent. 
Some vertices have no children and we will refer to such vertices as leaves. Note that the root 
has exactly one child. 

In describing the process of finding the marginal of the joint valuation for the empty set, 
we will pretend that there is a processor at each vertex of the rooted Markov tree. Also, we will 
assume that these processors are connected using the same architecture as the Markov tree. In 
other words, each processor can directly communicate only with its parent and its children. 

In the propagation process, each subset (except the root ho) transmits a valuation to its 
parent. We shall refer to the valuation transmitted by subset hi to its parent Pa(hi) as a valuation 

message and denote it by v�-+Pa(hi>. Suppose%'= {ho, h1, ... , hk} and let Fi denote the valuation 
associated with non-empty subset hi. Then, the valuation message transmitted by a subset hi to 
its parent Pa(hJ is given by 

Vhi-+Pa(hi) = (Ea{ Vh-+hi I he Ch(hi)} EaFi).l.(hinPa(hi)) (4.1) 
In words, the valuation message transmitted by a subset to its parent consists of the combination 
of the valuation messages it receives from its children plus its own valuation suitably marginal-
ized. Note that the combination operation that is done in (4.1) is on the frame CUf hi" 

Expression (4.1) is a recursive formula We need to stan the recursion somewhere. Note 
that if subset hi has no children, then Ch(hi) = 0 and the expression in ( 4.1) reduces to 

Vhi-+Pa(hi) = (Fi).l.(hinPa(hi)) ( 4.2) 
Thus the leaves of the Markov tree (the subsets that have no children) can send valuation mes
sages to their parents right away. The others wait until they have heard from all their children 
before they send a valuation message to their parent. 
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The following theorem states that the valuation message from ho's child is indeed the de
sired marginal. 

Theorem 1. The marginal of the joint valuation for the empty set is equal to the 
message received by the root, i.e., J.0 (FtE9 ... $Fk) = yh�ho. 

The essence of the propagation method described above is to combine valuations on 
smaller frames instead of combining all valuations on the global frame associated with X. To 
ensure that this method gives us the correct answers, the smaller frames have to be arranged in a 
rooted Markov tree. 

Figure 4 shows the propagation of valuations in the optimization problem. Figure 5 
shows the details of the valuation messages. As is clear from Figure 5, the minimum value of the 
function F is 2. 

Figure 4. The propagation of valuations in the optimization problem. The valua-
tion messages are shown as rectangles overlapping the corresponding edges. The 
valuations associated with the vertices are shown as diamonds linked to the corre
sponding vertices by dotted lines. 

0 

4.3. Phase Three: Finding a Solution 

In phase two, each time we marginalize a variable, assume that we store the correspond
ing solution for that variable at the vertex where we do the marginalization. For example, in the 
optimization problem, we store a solution for C at vertex { A,C,E} , we store a solution for D at 
vertex {B,D,E} , we store a solution forE at vertex {A,B,E} , we store a solution for B. at vertex 
{A,B} , and we store a solution for A at vertex {A} (see Figures 4, 5, and 6). 

In this phase, each vertex of the rooted Markov tree sends a configuration to each of its 
children. We shall call the configuration transmitted by vertex hi to its child hjE Ch(hi) as a con-
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figuration message and denote it by chi-Htj. chi-+hj will always be an element of CUI h·nh·· As in 
phase two, we will give a recursive defmition of configuration messages. 

1 1 

The messages start at the root and travel toward the leaves. The configuration message 
from vertex 0 to its child, say h1, is given by 

c0-+hl = +. (4.3) 
. Pa(h·)-+h· fr · In general, consider vertex �· It receives a configuranon message c 1 1 om Its par-

ent Pa(hi)· Let hj be a child of hi. The configuration message from hi to h.i depends on whether hi 
has a solution for a variable stored at its location. (Remember that vertex hi has a solution for X 

stored with it if hi-Pa(hi) = {X}). 
If hi has a solution for a variable stored at its location, then 

chi-+hj = (cPa(bi)-Mi, 'Px(l•(hi)-+hi))J,(binhj) (4.4) 

where X is such that {X} = hi-Pa(hi). 

If hi has no solution for a variable stored at its location, then 
chi4hj = cl•(hj)-+hi)J,(hjnhj). (4.5) 

We stop the message passing process when each vertex that has a solution stored at its lo
cation has received a configuration message. 

Theorem 2. Suppose hx denotes the vertex that has the solution for X stored at its 
location. Then ZE CUf X given by 

z.J.{X} = 'l'x(la<hx)4hX) 
for every Xe $ is a solution for F1EJL.ffiFk. 

(4.6) 

Figure 6 illustrates the message passing scheme for the optimization problem. As per 

Theorem 2, a solution for F is given by('¥ A(c0-+{Al),'¥8(ciAl41A.B}), 'l'c(ciA.E}-+(A.C.El), 
'¥0(c{B.E}-+(B,D.El),'¥E(c{A.B}-+(A.B.El)). From Figures 5 and 6, it is clear that configurations 
(-a,b,c,d,e) and (-a,b,-c,d,e) are both optimal for F. 
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Figure 5. The details of the valuation messages for the optimization problem. 
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