Approximate inference - BNDG 4.8

Finn V. Jensen and Thomas D. Nielsen

Motivation

Because of the (worst-case) intractability of exact inference in Bayesian networks, try to find more efficient approximate inference techniques: instead of computing exact posterior

$$P(A \mid \mathbf{E} = \mathbf{e})$$

compute approximation

$$\hat{P}(A \mid \mathbf{E} = \mathbf{e})$$

with

$$\hat{P}(A \mid \mathbf{E} = \mathbf{e}) \sim P(A \mid \mathbf{E} = \mathbf{e})$$

Absolute/Relative Error

For $p, \hat{p} \in [0, 1]$: \hat{p} is approximation for p with absolute error $\leq \epsilon$, if

$$\mid p - \hat{p} \mid \leq \epsilon$$
, i.e. $\hat{p} \in [p - \epsilon, p + \epsilon]$.

Absolute/Relative Error

For $p, \hat{p} \in [0, 1]$: \hat{p} is approximation for p with absolute error $\leq \epsilon$, if

$$\mid p - \hat{p} \mid \leq \epsilon$$
, i.e. $\hat{p} \in [p - \epsilon, p + \epsilon]$.

 \hat{p} is approximation for p with *relative* error $\leq \epsilon$, if

$$\mid 1 - \hat{p}/p \mid \leq \epsilon$$
, i.e. $\hat{p} \in [p(1 - \epsilon), p(1 + \epsilon)]$.

Absolute/Relative Error

For $p, \hat{p} \in [0, 1]$: \hat{p} is approximation for p with absolute error $\leq \epsilon$, if

$$\mid p - \hat{p} \mid \leq \epsilon$$
, i.e. $\hat{p} \in [p - \epsilon, p + \epsilon]$.

 \hat{p} is approximation for p with *relative error* $\leq \epsilon$, if

$$\mid 1 - \hat{p}/p \mid \leq \epsilon$$
, i.e. $\hat{p} \in [p(1 - \epsilon), p(1 + \epsilon)]$.

This definition is not always fully satisfactory, because it is not symmetric in p and \hat{p} and not invariant under the transition $p \to (1-p)$, $\hat{p} \to (1-\hat{p})$. Use with care!

When \hat{p}_1, \hat{p}_2 are approximations for p_1, p_2 with absolute error $\leq \epsilon$, then no error bounds follow for \hat{p}_1/\hat{p}_2 as an approximation for p_1/p_2 .

When \hat{p}_1, \hat{p}_2 are approximations for p_1, p_2 with relative error $\leq \epsilon$, then \hat{p}_1/\hat{p}_2 approximates p_1/p_2 with relative error $\leq (2\epsilon)/(1+\epsilon)$.

Randomized Methods

Most methods for approximate inference are randomized algorithms that compute approximations \hat{P} from random samples of instantiations.

We shall consider:

- Forward sampling
- Likelihood weighting
- Gibbs sampling
- Metropolis Hastings algorithm

Forward Sampling

Observation: can use Bayesian network as random generator that produces full instantiations $\mathbf{V} = \mathbf{v}$ according to distribution $P(\mathbf{V})$.

Example:

- Generate random numbers r_1, r_2 uniformly from [0,1].
- Set A = t if $r_1 \leq .2$ and A = f else.
- Depending on the value of A and r_2 set B to t or f.

Generation of one random instantiation: linear in size of network.

Sampling Algorithm

Thus, we have a randomized algorithm S that produces possible outputs from $\operatorname{sp}(\mathbf{V})$ according to the distribution $P(\mathbf{V})$.

Define

$$\hat{P}(A = a \mid \mathbf{E} = \mathbf{e}) := \frac{|\{i \in 1, \dots, N \mid \mathbf{E} = \mathbf{e}, A = a \text{ in } S_i\}|}{|\{i \in 1, \dots, N \mid \mathbf{E} = \mathbf{e} \text{ in } S_i\}|}$$

Forward Sampling: Illustration

Sample with

$$\mathbf{E} = \mathbf{e}, A \neq a$$

$$\mathbf{E} = \mathbf{e}, A = a$$

Approximation for $P(A = a \mid \mathbf{E} = \mathbf{e})$:

Sampling from the conditional distribution

Problem of forward sampling: samples with $\mathbf{E} \neq \mathbf{e}$ are useless!

Idea: find sampling algorithm S_c that produces outputs from $\operatorname{sp}(\mathbf{V})$ according to the distribution $P(\mathbf{V} \mid \mathbf{E} = \mathbf{e})$.

Sampling from the conditional distribution

Problem of forward sampling: samples with $\mathbf{E} \neq \mathbf{e}$ are useless!

Idea: find sampling algorithm S_c that produces outputs from $\operatorname{sp}(\mathbf{V})$ according to the distribution $P(\mathbf{V} \mid \mathbf{E} = \mathbf{e})$.

A tempting approach: Fix the variables in ${\bf E}$ to ${\bf e}$ and sample from the nonevidence variables only!

Sampling from the conditional distribution

Problem of forward sampling: samples with $\mathbf{E} \neq \mathbf{e}$ are useless!

Idea: find sampling algorithm S_c that produces outputs from $\operatorname{sp}(\mathbf{V})$ according to the distribution $P(\mathbf{V} \mid \mathbf{E} = \mathbf{e})$.

A tempting approach: Fix the variables in **E** to **e** and sample from the nonevidence variables only! Problem: Only evidence from the ancestors are taken into account!

Likelihood weighting

We would like to sample from (pa(X)'') are the parents in \mathbf{E})

$$P(\mathcal{U}, \mathbf{e}) = \prod_{X \in \mathcal{U} \setminus \mathbf{E}} P(X \mid \mathrm{pa}(X)', \mathrm{pa}(X)'' = \mathbf{e}) \times \prod_{X \in \mathbf{E}} P(X = e \mid \mathrm{pa}(X)', \mathrm{pa}(X)'' = \mathbf{e}),$$

but by applying forward sampling with fixed ${f E}$ we actually sample from:

Sampling distribution =
$$\prod_{X \in \mathcal{U} \setminus \mathbf{E}} P(X \mid \operatorname{pa}(X)', \operatorname{pa}(X)'' = \mathbf{e}).$$

Likelihood weighting

We would like to sample from (pa(X)'') are the parents in **E**)

$$P(\mathcal{U}, \mathbf{e}) = \prod_{X \in \mathcal{U} \setminus \mathbf{E}} P(X \mid \mathrm{pa}(X)', \mathrm{pa}(X)'' = \mathbf{e}) \times \prod_{X \in \mathbf{E}} P(X = e \mid \mathrm{pa}(X)', \mathrm{pa}(X)'' = \mathbf{e}),$$

but by applying forward sampling with fixed \mathbf{E} we actually sample from:

Sampling distribution =
$$\prod_{X \in \mathcal{U} \setminus \mathbf{E}} P(X \mid \operatorname{pa}(X)', \operatorname{pa}(X)'' = \mathbf{e}).$$

Solution: Instead of letting each sample count as 1, use

$$w(\mathbf{x}, \mathbf{e}) = \prod_{X \in \mathbf{E}} P(X = e \mid \operatorname{pa}(X)', \operatorname{pa}(X)'' = \mathbf{e}).$$

Likelihood weighting: example

- Assume evidence B=t.
- Generate a random number r uniformly from [0,1].
- Set A = t if $r \le .2$ and A = f else.
- If A=t then let the sample count as w(t,t)=0.7; otherwise w(f,t)=0.4.

Likelihood weighting: example

- Assume evidence B=t.
- Generate a random number r uniformly from [0,1].
- Set A = t if $r \le .2$ and A = f else.
- If A=t then let the sample count as w(t,t)=0.7; otherwise w(f,t)=0.4.

With N samples (a_1, \ldots, a_N) we get

$$\hat{P}(A=t \mid B=t) = \frac{\sum_{i=1}^{N} w(a_i=t,e)}{\sum_{i=1}^{N} (w(a_i=t,e) + w(a_i=f,e))}.$$

Gibbs Sampling

For notational convenience assume from now on that for some l: $\mathbf{E} = V_{l+1}, V_{l+2}, \dots, V_n$. Write \mathbf{W} for V_1, \dots, V_l .

Principle: obtain new sample from previous sample by randomly changing the value of only one selected variable.

```
Procedure Gibbs sampling \begin{aligned} \mathbf{v}_0 &= (v_{0,1}, \dots, v_{0,l}) := \text{arbitrary instantiation of } \mathbf{W} \\ i &:= 1 \\ \text{repeat forever} \\ \text{choose } V_k \in \mathbf{W} & \text{\# deterministic or randomized} \\ \text{generate randomly } v_{i,k} \text{ according to distribution} \\ P(V_k \mid V_1 = v_{i-1,1}, \dots, V_{k-1} = v_{i-1,k-1}, \\ V_{k+1} &= v_{i-1,k+1}, \dots, V_l = v_{i-1,l}, \mathbf{E} = \mathbf{e}) \\ \text{set } \mathbf{v}_i &= (v_{i-1,1}, \dots, v_{i-1,k-1}, v_{i,k}, v_{i-1,k+1}, \dots, v_{i-1,l}) \\ i &:= i+1 \end{aligned}
```

Illustration

The process of Gibbs sampling can be understood as a *random walk* in the space of all instantiations with ${\bf E}={\bf e}$:

Reachable in one step: instantiations that differ from current one by value assignment to at most one variable (assume randomized choice of variable V_k).

Implementation of Sampling Step

The sampling step

generate randomly
$$v_{i,k}$$
 according to distribution
$$P(V_k \mid V_1 = v_{i-1,1}, \dots, V_{k-1} = v_{i-1,k-1}, \\ V_{k+1} = v_{i-1,k+1}, \dots, V_l = v_{i-1,l}, \mathbf{E} = \mathbf{e})$$

requires sampling from a conditional distribution. In this special case (all but one variables are instantiated) this is easy: just need to compute for each $v \in \operatorname{sp}(V_k)$ the probability

$$P(V_1 = v_{i-1,1}, \dots, V_{k-1} = v_{i-1,k-1}, V_k = v, V_{k+1} = v_{i-1,k+1}, \dots, V_l = v_{i-1,l}, \mathbf{E} = \mathbf{e})$$

(linear in network size), and choose $v_{i,k}$ according to these probabilities (normalized). This can be further simplified by computing the distribution on $\operatorname{sp}(V_k)$ only in the *Markov blanket* of V_k , i.e. the subnetwork consisting of V_k , its parents, its children, and the parents of its children.

Convergence of Gibbs Sampling

Under certain conditions: the distribution of samples converges to the posterior distribution $P(\mathbf{W} \mid \mathbf{E} = \mathbf{e})$:

$$\lim_{i \to \infty} P(\mathbf{v}_i = \mathbf{v}) = P(\mathbf{W} = \mathbf{v} \mid \mathbf{E} = \mathbf{e}) \quad (\mathbf{v} \in \operatorname{sp}(\mathbf{W})).$$

Sufficient conditions are:

- in the repeat loop of the Gibbs sampler, variable V_k is randomly selected (with non-zero selection probability for all $V_k \in \mathbf{W}$), and
- the Bayesian network has no zero-entries in its cpt's

Approximate Inference using Gibbs Sampling

- 1. Start Gibbs sampling with some starting configuration v_0 .
- **2.** Run the sampler for N steps ("Burn in")
- 3. Run the sampler for M additional steps; use the relative frequency of state \mathbf{v} in these M samples as an estimate for $P(\mathbf{W} = \mathbf{v} \mid \mathbf{E} = \mathbf{e})$.

Problems:

- ► How large must N be chosen? Difficult to say how long it takes for Gibbs sampler to converge!
- Even when sampling is from the stationary distribution, samples are not independent. Result: error cannot be bounded as function of M using Chebyshev's inequality (or related methods).

Effect of dependence

 $P(\mathbf{v}_N = \mathbf{v})$ close to $P(\mathbf{W} = \mathbf{v} \mid \mathbf{E} = \mathbf{e})$: probability that \mathbf{v}_N is in the red region is close to $P(A = a \mid \mathbf{E} = \mathbf{e})$.

This does not guarantee that the fraction of samples in $\mathbf{v}_N, \mathbf{v}_{N+1}, \dots, \mathbf{v}_{N+M}$ that are in the red region yields a good approximation to $P(A=a \mid \mathbf{E}=\mathbf{e})!$

Multiple starting points

In practice, one tries to counteract these difficulties by restarting the Gibbs sampling several times (often with different starting points):

