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Approximate Inference

Motivation

Because of the (worst-case) intractability of exact inference in Bayesian networks, try to find
more efficient approximate inference techniques:
instead of computing exact posterior

P (A | E = e)

compute approximation

P̂ (A | E = e)

with
P̂ (A | E = e) ∼ P (A | E = e)
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Approximate Inference

Absolute/Relative Error

For p, p̂ ∈ [0, 1]: p̂ is approximation for p with absolute error ≤ ǫ, if

| p − p̂ |≤ ǫ, i.e. p̂ ∈ [p − ǫ, p + ǫ].
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Approximate Inference

Absolute/Relative Error

For p, p̂ ∈ [0, 1]: p̂ is approximation for p with absolute error ≤ ǫ, if

| p − p̂ |≤ ǫ, i.e. p̂ ∈ [p − ǫ, p + ǫ].

p̂ is approximation for p with relative error ≤ ǫ, if

| 1 − p̂/p |≤ ǫ, i.e. p̂ ∈ [p(1 − ǫ), p(1 + ǫ)].

This definition is not always fully satisfactory, because it is not symmetric in p and p̂ and not
invariant under the transition p → (1 − p), p̂ → (1 − p̂). Use with care!

When p̂1, p̂2 are approximations for p1, p2 with absolute error ≤ ǫ, then no error bounds
follow for p̂1/p̂2 as an approximation for p1/p2.

When p̂1, p̂2 are approximations for p1, p2 with relative error ≤ ǫ, then p̂1/p̂2 approximates
p1/p2 with relative error ≤ (2ǫ)/(1 + ǫ).
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Approximate Inference

Randomized Methods

Most methods for approximate inference are randomized algorithms that compute

approximations P̂ from random samples of instantiations.

We shall consider:

◮ Forward sampling

◮ Likelihood weighting

◮ Gibbs sampling

◮ Metropolis Hastings algorithm
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Approximate Inference

Forward Sampling

Observation: can use Bayesian network as random generator that produces full
instantiations V = v according to distribution P (V).

Example:

A

B

A
t f

.2 .8

B
A t f

t .7 .3
f .4 .6

- Generate random numbers r1, r2

uniformly from [0,1].

- Set A = t if r1 ≤ .2 and A = f else.

- Depending on the value of A and r2 set B
to t or f .

Generation of one random instantiation: linear in size of network.
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Approximate Inference

Sampling Algorithm

Thus, we have a randomized algorithm S that produces possible outputs from sp(V)

according to the distribution P (V).

Define

P̂ (A = a | E = e) :=
|{i ∈ 1, . . . , N | E = e, A = a in Si}|

|{i ∈ 1, . . . , N | E = e in Si}|
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Approximate Inference

Forward Sampling: Illustration

#

#

Sample with

not E = e

E = e, A 6= a

E = e, A = a

∪
Approximation for P (A = a | E = e):
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Approximate Inference

Sampling from the conditional distribution

Problem of forward sampling: samples with E 6= e are useless!

Idea: find sampling algorithm Sc that produces outputs from sp(V) according to the
distribution P (V | E = e).
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Approximate Inference

Sampling from the conditional distribution

Problem of forward sampling: samples with E 6= e are useless!

Idea: find sampling algorithm Sc that produces outputs from sp(V) according to the
distribution P (V | E = e).

A tempting approach: Fix the variables in E to e and sample from the nonevidence variables
only!
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Approximate Inference

Sampling from the conditional distribution

Problem of forward sampling: samples with E 6= e are useless!

Idea: find sampling algorithm Sc that produces outputs from sp(V) according to the
distribution P (V | E = e).

A tempting approach: Fix the variables in E to e and sample from the nonevidence variables
only! Problem: Only evidence from the ancestors are taken into account!
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Approximate Inference

Likelihood weighting

We would like to sample from (pa(X)′′ are the parents in E)

P (U , e) =
Y

X∈U\E

P (X | pa(X)′, pa(X)′′ = e) ×
Y

X∈E

P (X = e | pa(X)′, pa(X)′′ = e),

but by applying forward sampling with fixed E we actually sample from:

Sampling distribution =
Y

X∈U\E

P (X | pa(X)′, pa(X)′′ = e).
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Approximate Inference

Likelihood weighting

We would like to sample from (pa(X)′′ are the parents in E)

P (U , e) =
Y

X∈U\E

P (X | pa(X)′, pa(X)′′ = e) ×
Y

X∈E

P (X = e | pa(X)′, pa(X)′′ = e),

but by applying forward sampling with fixed E we actually sample from:

Sampling distribution =
Y

X∈U\E

P (X | pa(X)′, pa(X)′′ = e).

Solution: Instead of letting each sample count as 1, use

w(x, e) =
Y

X∈E

P (X = e | pa(X)′, pa(X)′′ = e).

Approximate inference – p. 9/17



Approximate Inference

Likelihood weighting: example

A

B

A
t f

.2 .8

B
A t f

t .7 .3
f .4 .6

- Assume evidence B = t.

- Generate a random number r uniformly
from [0,1].

- Set A = t if r ≤ .2 and A = f else.

- If A = t then let the sample count as
w(t, t) = 0.7; otherwise w(f, t) = 0.4.
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Likelihood weighting: example

A

B

A
t f

.2 .8

B
A t f

t .7 .3
f .4 .6

- Assume evidence B = t.

- Generate a random number r uniformly
from [0,1].

- Set A = t if r ≤ .2 and A = f else.

- If A = t then let the sample count as
w(t, t) = 0.7; otherwise w(f, t) = 0.4.

With N samples (a1, . . . , aN ) we get

P̂ (A = t |B = t) =

PN
i=1

w(ai = t, e)
PN

i=1
(w(ai = t, e) + w(ai = f, e))

.
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Approximate Inference

Gibbs Sampling

For notational convenience assume from now on that for some l: E = Vl+1, Vl+2, . . . , Vn.
Write W for V1, . . . , Vl.

Principle: obtain new sample from previous sample by randomly changing the value of only
one selected variable.

Procedure Gibbs sampling
v0 = (v0,1, . . . , v0,l) := arbitrary instantiation of W
i := 1
repeat forever

choose Vk ∈ W # deterministic or randomized
generate randomly vi,k according to distribution

P (Vk | V1 = vi−1,1, . . . , Vk−1 = vi−1,k−1,
Vk+1 = vi−1,k+1, . . . , Vl = vi−1,l,E = e)

set vi = (vi−1,1, . . . vi−1,k−1, vi,k, vi−1,k+1, . . . , vi−1,l)
i := i + 1
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Approximate Inference

Illustration

The process of Gibbs sampling can be understood as a random walk in the space of all
instantiations with E = e:

Reachable in one step: instantiations that differ from current one by value assignment to at
most one variable (assume randomized choice of variable Vk).
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Approximate Inference

Implementation of Sampling Step

The sampling step

generate randomly vi,k according to distribution
P (Vk | V1 = vi−1,1, . . . , Vk−1 = vi−1,k−1,

Vk+1 = vi−1,k+1, . . . , Vl = vi−1,l,E = e)

requires sampling from a conditional distribution. In this special case (all but one variables
are instantiated) this is easy: just need to compute for each v ∈ sp(Vk) the probability

P (V1 = vi−1,1, . . . , Vk−1 = vi−1,k−1, Vk = v, Vk+1 = vi−1,k+1, . . . , Vl = vi−1,l,E = e)

(linear in network size), and choose vi,k according to these probabilities (normalized).
This can be further simplified by computing the distribution on sp(Vk) only in the Markov
blanket of Vk, i.e. the subnetwork consisting of Vk , its parents, its children, and the parents
of its children.

Approximate inference – p. 13/17



Approximate Inference

Convergence of Gibbs Sampling

Under certain conditions: the distribution of samples converges to the posterior distribution
P (W | E = e):

lim
i→∞

P (vi = v) = P (W = v | E = e) (v ∈ sp(W)).

Sufficient conditions are:

◮ in the repeat loop of the Gibbs sampler, variable Vk is randomly selected (with
non-zero selection probability for all Vk ∈ W), and

◮ the Bayesian network has no zero-entries in its cpt’s
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Approximate Inference

Approximate Inference using Gibbs Sampling

1. Start Gibbs sampling with some starting configuration v0.

2. Run the sampler for N steps (“Burn in”)

3. Run the sampler for M additional steps; use the relative frequency of state v in these M

samples as an estimate for P (W = v | E = e).

Problems:

◮ How large must N be chosen? Difficult to say how long it takes for Gibbs sampler to
converge!

◮ Even when sampling is from the stationary distribution, samples are not independent.
Result: error cannot be bounded as function of M using Chebyshev’s inequality (or
related methods).
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Approximate Inference

Effect of dependence

P (vN = v) close to P (W = v | E = e): probability that vN is in the red region is close to
P (A = a | E = e).

This does not guarantee that the fraction of samples in vN ,vN+1, . . . ,vN+M that are in the
red region yields a good approximation to P (A = a | E = e)!

v0

vN

vN

vN+M

vN+M
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Approximate Inference

Multiple starting points

In practice, one tries to counteract these difficulties by restarting the Gibbs sampling several
times (often with different starting points):

v0

v0

v0

vN

vN

vN

vN+M

vN+M

vN+M
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