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Dynamic Bayesian Networks

* Modeling sequential data:
- Markov models

* In a Markov model, the state is directly visible to the
observer, and therefore the state transition probabilities
are the only parameters.



Dynamic Bayesian Networks

* Modeling sequential data:
- Hidden Markov models (HMMs)

* In a hidden Markov model, the state is not directly visible,
but output dependent on the state is visible.

A HMM is like a finite state machine in which not only
transitions are probabilistic but also output.

 E.g., speech recognition and bio-sequence analysis

— Kalman filter models (KFMs)

 E.g., tracking planes and missiles, predicting the economy

— Both are limited in their “expressive power.”



Dynamic Bayesian Networks

* Modeling sequential data:

— Hidden Markov models

 Factorial hidden Markov models (bottom-right) are
generalized HMMs (bottom-left) that use a single output
variable but have a distributed representation for the
hidden state. (the state is factored into multiple state
variables and is therefore represented in a distributed
manner.)
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Dynamic Bayesian Networks

* Modeling sequential data:

— Hidden Markov models

« Factorial HMMs and DBNs can be converted to a regular
HMM by creating a single “mega” variable, X, , whose state

space is the Cartesian product of the component state
spaces.



Dynamic Bayesian Networks

* Modeling sequential data:

- Dynamic Bayesian Networks (DBNs)
 DBNs are generalized factorial HMMs.

« For modeling in Bayesian networks it is common to use directed
graphical models, which can capture the forward direction in
sequence. Arcs within a sequence-frame can be directed or
undirected, since they model “instantaneous” correlation.

 If all arcs are directed, both within and between frames, the
model is called a dynamic Bayesian network.

* Note: The term “dynamic” means we are modeling a dynamic system, and does not
mean the graph structure changes over time.



Dynamic Bayesian Networks

* Modeling sequential data:

- Dynamic Bayesian Networks

A DBM is constructed using a fixed-length template (arcs within a

sequence-frame) which is unrolled in order to model a sequence of
any arbitrary length.

« A DBN is described using only a finite number of parameters, but can
describe a sequence of unbounded length.

* DBNs are easy to interpret and learn: because the graph is directed,

the conditional probability distribution of each node can be estimated
independently.



Tandem mass spectrometry and
peptide fragmentation
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Tandem Mass Spectrometry

 Tandem mass spectrometry (MS/MS) is a dominant
proteomics technique due to its ability to identify
proteins in a high throughput manner.

« MS/MS spectra are informative about the composition
and the order of amino acids in a peptide sequence.



Tandem Mass Spectrometry

« A peptide is ionized and the peptide bonds are
fragmented

 Fragment ions form peaks in the spectrum
corresponding to their mass-charge ratio.

« Peptide fragmentation differs between mass
spectrometers.
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Tandem Mass Spectrometry

 Approaches using MS/MS

- Database searching
- De novo sequencing

- Tagging
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Peptide Fragmentation
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Peptide Fragmentation

« Peptide fragmentation
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Peptide Fragmentation

« Peptide fragmentation

- y-, b-, and a-ions tend to be the most prominent
peaks in a spectrum.

- An ideal spectrum contains a peak for every y- and
b-ion.



Modeling peptide fragmentation with dynamic
Bayesian networks for peptide identification




Modeling peptide fragmentation with dynamic
Bayesian networks for peptide identification

« Motivation: Tandem mass spectrometry (MS/MS) is an
indispensable technology for identification of proteins from
complex mixtures. Proteins are digested to peptides that are
then identified by their fragmentation patterns in the mass
spectrometer. Thus, at its core, MS/MS protein identification
relies on the relative predictability of peptide fragmentation.



Modeling peptide fragmentation with dynamic
Bayesian networks for peptide identification

« Hypothesis

- The authors test two closely related hypotheses using
DBNs:

« An improved model of peptide mass spectrum
peak intensity, trained on actual MS/MS data,
detects both known and potentially novel trends in
peptide fragment intensity, and will provide insight
into the complex chemistry of protonated peptide
fragmentation.

« Such a model will be useful for improving
identification of unknown peptide fragmentation
spectra, especially in conjunction with a sequence
database search.



Modeling peptide fragmentation with dynamic
Bayesian networks for peptide identification

« Hypothesis

- The author's fragmentation model, Riptide, consists of a
collection of DBNSs that capture physical properties of
peptide fragmentation.



Modeling peptide fragmentation with dynamic
Bayesian networks for peptide identification

 Experimental overview

- Start with a collection of high-
confidence peptide-spectrum
matches (PSMs)

- These PSMs are used to train the

Training Testing Scored
PSMs PSMs PSMs

Riptide model (collection of DBNSs)
that model the probability

distributions governing peptide
fragment ion intensities.

- Riptide is used to evaluate testing
PSMs to produce a vector of features
for each PSM

Riptide Feature
- These feature vectors can be Model Vectors

analyzed by additional algorithms
(e.g., SVMs) to produce scores for
the test PSMs




Riptide Training

« Riptide training overview

- For each of the spectra from the PSMs, their respective positive
PSMs (matching peptide) is also associated with a randomly
generated peptide to create a set of negative PSMs.

- These two classes of PSMs are used to train a set of DBNs.

- Testing Vectors store probabilities for each PSM given positive and
negative models.
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Riptide Training

« Bayesian networks

- At the core of the Riptide algorithm are two types of

DBNs that model the probability distributions governing
spectrum ion intensities.

- One section of a DBN template is called a frame.



Modeling peptide fragmentation with dynamic

Bayesian networks
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Nodes in the model represent random variables, solid edges signify potential dependencies
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Using Riptide to evaluate PSMs

The final Riptide model consists of 66 dynamic Bayesian networks,
including a positive and negative model for each of 18 single-ion series
and 15 pairs of ion series.

Once these networks have been trained, they can be used to assign a
probability to the ion series from any given PSM.

Evaluating a PSM using one of the models described yields the joint
probability of the observed values for a particular ion series intensity
pattern i and peptide p given the trained model M, Pr(i,p/M). Each ion
series has two probabilities assigned to it: one for positive PSMs and one
for negative PSMs. A log odds ratio for each ion series is used as a final
measure of how well a PSM ion series matches expectation

LOR(i,p)=log( Pr(i,p/M?*) / Pr(i,p/M) ),

where M* and M are the positive and negative models, respectively.



Results

« The authors give results for two primary applications of
Riptide

- Validation with a sequence database search

 Three stage computational pipeline using a third party database
searching tool (Seaquest) for PMS candidate generation.

 The authors achieve an improvement of 12.4% with a 1% increase
in false discovery.

- Analysis of learned fragmentation probabilities



(A) displays the mean
peak intensities for
different residues and
ion types learned using
Riptide single-ion
models.

(B) displays the 2D
Gaussian distributions
of peak intensities for
pairs of ions learned
using Riptide paired-
ion models.

Learned parameters of the Riptide model




Conclusion

« The authors present Riptide, which models peptide
fragmentation chemistry using a collection of DBNs trained
from high-quality PSMs.

« Riptide can provide insights into fragmentation
biochemistry, and feature vectors produced by Riptide can
be used as input to further machine learning algorithms to
improve peptide identification.



Questions?






Dynamic Bayesian Networks

e Hidden Markov models

- Factorial hidden Markov models are a generalization of
HMMs that use a single output variable but have a distributed
representation for the hidden state. (the state is factored into
multiple state variables and is therefore represented in a
distributed manner.)

» Note: although all the chains are a priori independent, once we condition
on the evidence, they all become coupled; this is due to the explaining
away phenomenon. This makes inference intractable if there are too many
chains.

- Factorial HMMs and DBNs can be converted to a regular
HMM by creating a single “mega” variable, X, , whose state

space is the Cartesian product of the component state spaces.

» Note: since the resulting “flat” representation is hard to interpret,
inference in the flat model will be exponentially slower and learning will
be harder because there may be exponentially many more parameters.



from HMMs to DBNs

* The key generalization is to represent the hidden state in terms
of a set of random variables, instead of a single random variable.
Similarly we can represent the observations in a factorized or
distributed manner. We can then use graphical models to
represent conditional indepencies between these variables, both
within and across positions in the sequence.
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