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Abstract. Bayesian networks became a popular framework for reason-
ing with uncertainty. Efficient methods have been developed for prob-
abilistic reasoning with new evidence. However, when new evidence is
uncertain or imprecise different methods have been proposed. The origi-
nal contribution of this paper are guidelines for the treatment of different
types of uncertain evidence, the rules for combining evidence from dif-
ferent sources, and the model revision with uncertain evidence.
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1 Introduction

One of rapidly developing areas of Artificial Intelligence is managing uncertainty.
It is not surprising that intelligent systems are expected to be able to exploit
uncertain or vague information since also humans often have to reason and decide
without having precise and certain information. One can distinguish between
two basic types of uncertainty: one caused by uncertain or vague information,
another by unknown, imprecise, or stochastic relations between variables that
are part of a model of a reality. Diverse frameworks were proposed to tackle
the challenging problem of reasoning with uncertain and vague information:
Dempster-Shafer theory of evidence [3, 11], theory of imprecise probabilities [14],
possibility theory [16], fuzzy set theory [15], etc.

In this paper we deal with the standard probabilistic inference. It means
that all uncertainties considered in this paper are treated in the sense of ran-
domness and will be quantified and processed by the means and tools of classical
probability. For updating we use the standard Bayes rule. The knowledge of a
modeled domain is represented by a probability distribution P(V') defined for all
combinations of values of variables from a set V. The initial probability model
P(V) is usually built using data measured for a population of individuals, re-
peated events, etc. The built model can be used for individual case analysis -
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for example in the role of an expert system. In this paper we deal mainly with
probability distributions defined by a Bayesian network. Among the first success-
ful applications of Bayesian networks in the role of expert systems in diagnosis
belong Munin [8] and the Quick Medical Reference (QMR) system [12]. For an
introduction to Bayesian networks we refer to [7].

One of the basic tasks in probabilistic modeling is belief revision with new
evidence e. For example, assume we have created a model describing certain
properties of a population of individuals. Than, we perform a number of obser-
vations and tests of one individual. Now, in the light of new information, we
would like to update our beliefs about the unobserved properties of that indi-
vidual. Assume we are interested in a variable A. In the probabilistic framework
this corresponds to computing conditional probability distribution of variable A
given the observed evidence e, P(A | e). The posterior probability is computed
using the Bayes rule. For each state a of A we compute

P(A=a,e) P(A=a,e)

P(A:a|e): P(e) :ZGP(AZG/,Q). (]‘)

However, in practice, observations or tests yield uncertain results. The question
we deal with in this paper is how should we revise our model in the light of
uncertain evidence.

Our main motivation is to provide a knowledge engineer appropriate methods
for updating a probability model in the light of uncertain evidence that can take
different forms. In contrast to different ad hoc approaches we stand firmly within
the standard probability framework. A knowledge engineer gets an evidential
statement and one or more numbers' specifying uncertainty about the provided
evidence. The fundamental question is: how should the model be updated and the
probabilities revised using the provided numbers. The handling of the provided
numbers depends on what they actually mean, i.e., on their semantics.

Two main methods for probabilistic reasoning with uncertain evidence were
proposed - the virtual evidence method [9] and Jeffrey’s rule [6]. In [10] the
fundamental difference between the methods is illustrated using an example. The
basic principle underlying Jeffrey’s rule is the principle of probability kinematics,
which can be viewed as a principle that aims at minimizing belief change in
the model. In [1] it is shown that also the method of virtual evidence commits
to this principle and that the difference between these two methods is in the
way uncertain evidence is specified. We will see that Pearl’s method is based on
sensitivity and specificity of a test (or of an observation) while when using the
Jeffrey’s rule we specify the resulting effect.

There is a fundamental difference between belief revision and model revision.
The posterior probabilities we get after belief revision inform about the proper-
ties of one tested individual, one performed event, etc. On the other hand the
posterior probabilities we get after model revision still correspond to the proper-
ties of the tested population of individuals, events, etc. We extend the analysis
from belief revision to model revision using a standard method from statistics -

! We assume they are real numbers from interval (0, 1).



the maximum likelihood estimation of probability distributions given observed
data.

The main original contribution of this paper are guidelines for the treatment
of different types of uncertain evidence, the rules for the combination of evidence
from different sources, and the model revision with uncertain evidence.

We begin the paper with a discussion of criteria that can be used to evaluate
reliability of information sources (Section 2). We discuss belief revision based on
sources’ reliability in Section 3 and belief revision based on summary statistics
in Section 4. In Section 5 belief revision is applied to a complex probabilistic
model. The revision of model parameters is discussed in Section 6. It is gen-
eralized to model revision in Section 7. We conclude the paper with general
recommendations for dealing with uncertain evidence.

2 Reliability of information sources

For simplicity assume that a partially reliable source T' reports about an event
A that has two possible outcomes only: yes or no. The report can be also only
yes or no. Four situations are possible:

the source reports yes when event A actually happened,

— the source reports no when event A actually did not happen,
the source reports no when event A actually happened, and
— the source reports yes when event A actually did not happen.

To evaluate reliability of an information source we can count how often the four

situations discussed above happened. Generally we can create a 2 x 2 contingency
table, see Table 12.

Table 1. Values of n- P(A,T)

A=yes A=no

T =yes| tp Ip
T =no fn tn

Usually, these statistics are used to compute an evaluation criteria. The most
common criteria are defined in Table 2. Sometimes, in different domains the
criteria have different names. Note that these criteria can be generalized to
variables with more than two outcomes.

Remark 1. The values of sensitivity and specificity need not be based on rela-
tive frequencies. Within a subjective probability framework they are subjective
beliefs of an expert or a model designer.

2 tp stands for the number of true positive reports, fp for false positive, fn for false
negative, and tn for true negative.



Table 2

accuracy P(A=T)= %
positive predictive value (precision) P(A=vyes|T =yes) = tpfﬁ’fp
negative predictive value P(A=no|T =no) = fnztn
true positive rate (recall or sensitivity) P(T = yes| A =yes) = tp+fn
true negative rate (specificity) P(T =no| A=no) = fp“n
false positive rate P(T =yes | A=mno) = fpjifm
false negative rate P(T =no| A=yes)= tp/;"fn

3 Belief revision based on sources’ reliability

In this section we will use sensitivity and specificity to measure reliability of a
test or an information source. Observe that these two criteria (together with
their complements) define all values of the conditional probability distribution
P(T|A).

Let variable A denote the true state of a patient. It has only two states yes
(meaning that the patient has an illness A) and no (which is just the complement
to yes). Assume a prior probability of the illness A among the patients that are
tested is 0.2. Assume the result of a medical test T is positive (T} = yes)
and both the sensitivity and the specificity of test T3 is known to be 70%, i.e.,
P(Ty = yes | A = yes) = 0.7 and P(Th = no | A = no) = 0.7. Then we can
revise the probability of patient’s state using the Bayes rule. Thus we compute
the posterior probability as

P(A=yes| Ty =yes)=c-P(Ty =yes | A=uyes) - P(A=yes) (2)
P(A=no| Ty =yes)=c-P(Ty =yes| A=no)- P(A=no) , (3)

where ¢ is the normalization constant defined so that P(A = yes | T} = yes) +
P(A=no| T, =yes) = 1. In our example

7
P(A:yes|T1:yes):c-0.7-0.2:c~0.14:1—9 (4)

12
P(A=no| Ty =yes)=¢-03-08=c- 024—19. (5)

The method where the reported uncertainty is in the form of

— sensitivity of 77,
— specificity of 77, and
— an observed result T} = t;

is called wirtual evidence method. It was introduced by Pearl [9] as a method for
belief revision with uncertain evidence.



If we were to decide whether the patient is sick or not we would choose the
more probable value, i.e. A = no. Since there is quite uncertainty about A we
decide to do a second test T» that has quite low sensitivity P(T} = yes | A =
yes) = 0.6 but relatively high specificity P(T} = no | A = no) = 0.9. Assume
the test result is positive again.

The question is how should we combine the results of two tests together. The
problem is simplified if we can make the assumption of conditional independence
of two tests given the patient’s state, i.e. if there are no other interactions between
the tests than those given by the presence or the absence of the tested illness.
In such a case for all (t1,t2,a) € {yes,no}>:

P(A = a,Tl = tl,TQ = tg)
:P(letl,ngtQ|A:a)-P(A:a)
:P(T1:t1|A:a)P(Tg:t2|A:a)P(A:a) (6)

This relation can be visualized using a Bayesian network with structure given in

Figure 1.

Fig. 1. Two sources report about A.

Using the Bayes rule and the assumption of conditional independence of tests
given the patient’s state we can compute the posterior probability as
P(A =vyes | T\ = yes, Tr = yes)
=c- P(T) = yes, T = yes, A = yes)
=c-P(A=uyes) - P(Th =yes | A =yes)  P(To = yes| A=yes) (7)
P(A=no| T\ =yes, To = yes)
=c- P(Ty = yes, T = yes, A = no)
=c-P(A=no) - P(Ty =yes | A=mno)- P(T, =yes | A =no) , (8)

where ¢ is again the normalization constant. In our example

P(A=yes| Ty =yes, Tr =yes) =c¢-0.7-0.6-0.2 =c-0.084 = 9)

P(A=no| Ty =yes, To =yes) =¢-0.3-0.1-0.8 =¢c-0.024 = (10)

O O~



If we are to decide then we choose A = yes since P(A = yes | T1 = yes, T =
yes) > P(A = no | Th = yes, To = yes). Note that the uncertainty about the
states of A has substantially decreased.

4 Belief revision based on summary statistics

If in the example from the previous section all tests have the same sensitivity

P(T; = yes | A = yes) and specificity P(T; = no | A = no) then we can use

n(a),a € {yes,no} - the number of tests with result a - as a summary statistics.
Let n =), n(a). The revised beliefs in A are (for a = yes, no)

P{T;=a|A=a)™

P(A=alt)=c-P(A=aqa)- _ .o(11

( a/| ) c ( a) ((I_P(T1:G|A:a))n ’I’L(a) ( )

Now we will regard several experts E;,7 = 1,...,(¢ and assume that each ex-
pert E; performed tests 77,7 = 1,...,n; with observed results ¢; = (¢!,...,t]")
and reports P(E; = yes | t;) what she believes should be the final belief about A
after her report is taken into account. Further assume that each expert E; used
the virtual evidence method (discussed in Section 3) to combine the observed
results using the sensitivity and the specificity of each test by computing

_ P(T! =a| A=
P(Ei=alt) ci-P(A=a)- iesco E f|_ a)_ , (12)
.HjeJi\Ji(a)l P(T) =a|A=aqa)

where J; = {1,...,n;}, Ji(a) ={j € J; : t{ = a}, P(T} = yes | A = yes) is the
sensitivity of T/, P(TY = no | A = no) is the specificity of test T/, and ¢; is the
normalization constant.

Assume that all tests performed by all experts are independent given the
state of A. An example of a Bayesian network model corresponding to tests
made by two experts Fy and Es is given in Figure 2.

If we want to combine reports from experts Fy,..., Ey then, first, we must
discard the prior information® P(A = a) included (-times and then we can simply
multiply the terms altogether with the prior information:

(13)

5 Belief revision in a complex probabilistic model

Quite often, we are interested not only in one variable, but in a whole set of
variables V' that are interdependent. Within the probability framework the de-
pendency is represented by a probabilistic model. If all variables are finite-valued

3 We assume that all experts use the same prior information.



Fig. 2. Two experts report test results.

then the probabilistic model is a discrete probability distribution P(V') that de-
fines probability values for all combinations of states of variables from V.

In such a model a change of beliefs about one variable, say A, has an impact
on beliefs about all variables dependent on A. If an expert E; reports P(E}),
which she believes should be the probability of A after her report is taken into
account, then the formula used for updating the whole model P(V') to P'(V)
is called Jeffrey’s rule [6]. Let V' = V' \ {A}, v" be a combination of values of
variables from V', and a a value of A. The Jeffrey’s rule is (for all combinations
of v',a):

P(E1 = a)

P’(V’:’UI,A:(I):P(V’:’UI,A:(I)'m .

(14)

The basic principle underlying this rule is the principle of probability kinematics,
which can be viewed as a principle that aims at minimizing belief change in
the model?. In [1] it is shown that also the method of virtual evidence commits
to this principle and that the difference between these two methods is the way
uncertain evidence is specified. In the virtual evidence method we specify sensi-
tivity, specificity, and an observed outcome, while when using the Jeffrey’s rule
we specify the resulting effect.

We will exploit this correspondence when we have a complicated situation
when several experts have different opinion on what the values of P'(A) should be
after the revision. We will assume that each expert opinion P(E;), i =1,...,(
about A is based on a (possibly only virtual) test and combined with prior
probability P(A) as described in Section 4. Then we can follow the approach
discussed in Section 4 and proceed using formula 13 in the following way:

* Note that it holds that P'(V' | A) = P(V' | A) while P'(A) = P(FEx).



— discard the influence of the prior probability from the experts opinions, i.e.
for i =1,...,¢ and for all states a of A

P(E; =a) = % and (15)

— use the modified distribution to compute for all combinations of v, a

¢
P(V'=v,A=a)x P(V' =0, A=a) [[P'(Ei=a) . (16)
i=1
This method can be used even if the expert reports are only partially over-
lapping or not overlapping at all, e.g. when E; and Es report about two different

variables A and B. Now, let V' = V'\ {4, B}. Then the formula for the updated
model is

P (V' =v,A=a,B=0) (17)
P(El :a)P(E2:b)

OCP(V’:U”AZO,,B:b). P(A:a)P(B:b)

(18)

If A and B are dependent in the probabilistic model P(V') then it may happen
that P'(A) # P(E;) and P'(B) # P(E:). It is all right since, typically, the
experts can not take the information from the other experts into account (for
example, because the experts report at the same time).

6 Revision of model parameters

Now, assume the variables of interest are parameters of a probabilistic model
- for example, sensitivity R = P(T = yes | A = yes) of a test T of an illness
A and specificity S = P(T = no | A = no) of the same test®. Note that these
variables are continuous with states r,s € (0,1). Now P(R = r) and P(S = s)
are probability density functions, which means that fol P(R=r)dr =1 and
fol P(S=s)ds=1.

Assume two experts independently evaluated one test T' - both of them per-
formed several tests on patients with known diagnosis (on both - sick and non-
sick patients) with the observed results being ¢; for expert i. They report their
estimates of r and s computed as relative frequencies (i = 1, 2):

ni(T = yes, A = yes)

Ai:pT: A: a i) = ’ 1
7 ( yes | yes, t;) (A = yes) (19)
O B + _ ni(T =no, T =no)

3, =P(T =no| A=no,t;) = nA=no) (20)

where n;(t,a) denotes the number of occurrence of T = t,A = a observed
by expert E;, ni(A = a) = Y ,ni(T = t,A = a), and n; = ), ni(A = a).

5 We assume that the test properties are stable.



Again assume that results of performed tests are independent given the illness A.
Experimental data t = {¢;,t>} satisfying the assumptions given above are called
identically independently distributed (i.i.d.) data. The posterior probability

2
P(R =7 | t) =cp - P(R — T‘) . H rn;(T:yes,A:yes) . (1 _ T,)ni(T:no,A:yes) (21)

=1
2

P(S =3 | t) =cs- P(S — 5) . H Tni(T:no,A:no) . (1 _ T)n,:(T:yes,A:no) ) (22)
i=1

A task is to estimate most probable values 7, § of variables R and S given the
data t, i.e. to find

7 =argmax P(R=r|1) (23)
§=argmax P(S = s|t) (24)

These parameters are then called mazimum likelihood estimates of r and s.
In our example after little algebra® we get that

. ni(A = yes) 4 na(A = yes) P
~ ny(A = yes) + ny(A = yes) ! ny (A = yes) + na(A = yes) ?
= wy(yes) - 1 + (1 —wy(yes)) - 72 . (25)

Thus, we combined expert information using a weighted arithmetic average.
Similarly, we can get the formula for the mazimum likelihood estimate of s.

Second order probabilities

Observe that there would be no difference if both experts performed ten or
ten thousand experiments and got the same values of 71 and 7». Intuitively,
results based on more experiments should be more reliable. In order to be able to
represent uncertainty about the values of R we would need (instead of computing
only the most likely value #) to update a prior distribution P(R) using the
Bayes rule. This is the basic idea of Bayesian statistics [5], where probability
distributions of model parameters are used instead of their single values. It is
convenient to assume that the prior distribution has the form

P(R — 7,) =cp- rng(T:ye&A:yes) . (1 _ T)no(T:nmA:yes) . (26)

Observe that if no(T = yes, A = yes) = no(T = no, A = yes) = 0 we have a
uniform distribution. In Figure 3 the posterior distributions for n; (A = yes) =
na(A = yes) = 2 and for ni(A = yes) = ny(A = yes) = 10 are displayed. In
both cases 7y = 0.7 and 72 = 0.8 and the prior distribution is uniform. Observe
that in both cases # = 0.75 but the probability mass is distributed differently.
We can see that the probability mass is concentrated more around the value 0.75
in the latter case.

6 For simplicity we assume a uniform priors P(R =r) and P(S = s).
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Fig. 3. Posterior probabilities for the sensitivity R of a test T

Comparisons with belief revision

Assume again a simple example where two experts performed several times a
test T of an illness A (both variables have only two states yes and no).

Next we will show that it is important to distinguish whether we use expert
reports to update our belief about a variable (Section 4) or whether we want to
revise a parameter of our model (this section).

In the former case each expert E; perform tests on the same individual and
report the number of positive results n;(T" = yes) and the number of negative
results n;(T = no). We define n; = n,(T = yes) + n;(T = no). We use the
known sensitivity and specificity P(T = a | A = a),a € {yes,no} to combine
information from two experts using formula 13. In case of uniform P(A) the
formula reduces (for a € {yes,no}) to

PA=a|t)x P(T=a|A=a)"T=" . (1-P(T =a| A = a))m m=)
P(T=a|A=a)*"=9 . (1-P(T =a|A=q))nnl=2)
ocP(E1:a|t1)~P(E2:a|t2) 5

which means we combine the information using multiplication. Note that in this
case P(A = a | t) provides information about the tested individual.

In the latter case each expert E; perform test T on several different in-
dividuals. Each expert counts the number n;(T" = yes, A = yes) of positive
results for the sick individuals, the number n;(T" = no, A = no) of negative re-
sults for the non-sick individuals, and total number of tested sick n;(4 = yes)
and non-sick n;(A = no) individuals. This information is used to estimate
P(T =a| A =at)ie {1,2},a € {yes,no} using formulas 19 and 20. If
the priors P(T' | A) are uniform then the maximum likelihood estimates of sen-
sitivity (formula 25) and specificity are for a € {yes,no}

wi(a)-P(T=a|A=a,ty)

Pr=ald=at < O b aiamaty D



which means we combine the information using addition. Note that in this case
P(T = a | A = a,t) is the parameter estimate for the whole population of tested
individuals.

The difference in handling the information provided by experts is theoret-
ically well founded. In the area of artificial intelligence different methods for
fusing expert information are studied, in some of the proposals only intuitive
reasons for the use of a kind of average are given.

7 Model revision

We will use a simple example to illustrate the method that can be used to revise
original model Py(V), where V = {4, B,C} and A, B, and C' are three variables
whose relations we would like to model in a model P(V'). For example A is age,
B religion, and C' is political orientation. We conduct a small survey and get
data about ng individuals. We use the data to create the original model

Py(a,b,c) = %’OILC) .

Since the population that participated in our survey was only a small sub-
sample of the whole population we would like to revise our model so that it fits
the whole population. The information available about the whole population is
provided by a census bureau that have made a census or a opinion poll, each
of them containing only a two-dimensional subset of {4, B, C}. For example, a
census provided information about relation between age and religion, an opin-
ion poll provided information about age and political orientation, and another
opinion poll about religion and political orientation. Only the small survey we
conducted provided information about all three variables at the same time. The
data patterns are illustrated in Figure 4.

1 b 117 b
a : C PO o : C P2
no| - : : Nol| : :
? ?
He b tlip He bocllp
nyl : : ns| : :

Fig. 4. Data patterns

We can represent the data from the census bureau by probability distributions
Py (A, B), P,(B,C), and P3(A,C) computed as:

ns(a,c)

nl(a,b)7 }32(]5,70):112(670)7 P3(A,C) =

Pl (A7 B) =
ny n2 ns



To each probability distribution P;,7 = 0,1,2,3 we assign a weight w;, defined
as w; = =+, where n =ng +ny + na +ns.

Now the task is to find a probability distribution P that is the maximum
likelihood estimate given all available data. Under the multinomial model the
likelihood of a probability distribution P given data D is

L(P|D) =
[T (Pla,b,c)@9 . P(a,by @0 - P(b,)=0) . Pla, (), (25)
a,b,c

where P(a,b), P(b,c), and P(a,c) are marginal distributions of P(a, b, ¢).
It is a consequence of a result proven by Sundberg [13] that for a distribution
P that maximizes the likelihood it holds that

Plahe) = 0 Pola o plerg +wi - Pula,b) - s 29
(av €)= . Py(b . P(ab,c) P . P(ab,e) ( )
+wsy - Py(b, ) Pl T Wws 3 (a, ¢) o)

wo - Py(a,b,c) +wq - Pi(a,b) - P(a,b,c)

= Pla.b) : (30)
twy - Py(b, ) - G2 w - Py(a, c) - Bl

This formula can be used to define an iterative procedure that converges to
a distribution satisfying the necessary condition for the probability distribution
maximizing the likelihood. The iterative procedure starts with the original dis-
tribution Py computed from a complete sample, if it is available, otherwise, the
uniform probability distribution is often used as the starting point. In every step
i of the procedure we use the probability distribution P~1) from the previous
step ¢ — 1 to compute new probability distribution P(®):

(i—1) ab,c
wo - Po(a,b,c) +wy - Pi(a,b) - i) (31)
PU=Y(ab,e)

P(i’l)(a,b7c)
P (e s P(e.0) - prmie ey

P9 (a,b,c) =
+ws - PQ(b7 C) !

This procedure is a special case of the EM-algorithm [4].

Similarly as in Section 6, instead of computing most likely values of model
parameters we could use a posterior probability distribution over the space of all
possible model parameters. We will not go into details here. For more information
see [2, Chapter 9].

8 Conclusions

In this paper we discussed belief and model revision with uncertain evidence.
We conclude by summarizing the lessons we have learned.

First, when dealing with an uncertain evidence we should clarify what the
information sources actually report about: is it their reliability and an observed
value or is it what they believe should be the final value of a variable of interest.
In the first case we should use the virtual evidence method, while in the second
case we should revise the beliefs using the Jeffrey’s rule.



Second, we must make a clear distinction whether the information sources
provide their beliefs about an individual or about a parameter of a general model,
which typically is the value of an entry in a conditional probability distribution.
The first case corresponds to belief revision while the second to model revision.

Third, it is important to realize whether we are interested in the most likely
value of a variable or a model parameter or whether we prefer to know the prob-
ability distribution over their values. This difference is reflected by the methods
we use: mazimum likelihood estimation or Bayesian statistics.

Finally, in Section 7 we gave an example of how we should revise a model
when new information is provided in the form of probability distributions defined
on different subsets of variables from the model.
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