For the purpose of α-separating
- remove utility nodes
- remove the edges \((\text{informati외 links})\) into decision nodes

\[\begin{align*}
\{ T \} &< D_1 < \{ D_2 < \{ A, B, C \} \}
\end{align*} \]

Example: C is α-separated from T by B

C is α-separated from A by B

A and T are α-separated from D_2.

Proposition 10.1 Let $A \in \mathcal{F}_i$ and let D_j be a decision variable with $i < j$. Then

\[\text{...} \]
(i) A and D_j are d-separated, and hence

$$P(A \mid D_j) = P(A)$$

(ii) Let W be any set of variables prior to D_j in the temporal ordering. Then A and D_j are d-separated given W and hence

$$P(A \mid D_j, W) = P(A \mid W)$$

The Chain Rule for Influence Diagrams

Let ID be an influence diagram with universe $U = U_c \cup U_d$. Then

$$P(U_c \mid U_d) = \prod_{x \in U_c} P(x \mid pa(x))$$