The exact method for constructing Bayesian networks

Let \(V \) be a finite set of finite propositional variables, \((\Omega, F, P)\) be their joint probability distribution, and \(G = (V, E) \) be a dag.

For each \(v \in V \), let \(c(v) \) be the set of all parents of \(v \) and \(d(v) \) be the set of all descendents of \(v \). Furthermore, for \(v \in V \), let \(a(v) \) be \(V \setminus \{d(v) \cup \{v\}\} \), i.e., the set of propositional variables in \(V \) excluding \(v \) and \(v \)'s descendents.

Suppose for every subset \(W \subseteq a(v) \), \(W \) and \(v \) are conditionally independent given \(c(v) \); that is, if \(P(c(v)) > 0 \), then

\[
P(v \mid c(v)) = 0 \text{ or } P(W \mid c(v)) = 0 \text{ or } P(v \mid W \cup c(v)) = P(v \mid c(v)).
\]

Then, \(C = (V, E, P) \) is called a Bayesian network [Neapolitan, 1990].
The method \[\text{[Russell & Norvig, Ch. 14]} \]

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics.

1. Choose an ordering of variables \(X_1, \ldots, X_n \)
2. For \(i = 1 \) to \(n \)
 add \(X_i \) to the network
 select parents from \(X_1, \ldots, X_{i-1} \) such that
 \[P(X_i|\text{Parents}(X_i)) = P(X_i|X_1, \ldots, X_{i-1}) \]

This choice of parents guarantees the global semantics:

\[
P(X_1, \ldots, X_n) = \Pi_{i=1}^n P(X_i|X_1, \ldots, X_{i-1}) \quad \text{(chain rule)}
\]
\[
= \Pi_{i=1}^n P(X_i|\text{Parents}(X_i)) \quad \text{(by construction)}
\]

An example \[\text{[Russell & Norvig, Ch. 14]} \]

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a burglar?

Variables: \textit{Burglar}, \textit{Earthquake}, \textit{Alarm}, \textit{JohnCalls}, \textit{MaryCalls}

Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call
Suppose we choose the ordering M, J, A, B, E.

1. $P(JohnCalls) = P(JohnCalls | MaryCalls)$?
 - No

2. $P(Alarm) = P(Alarm | MaryCalls)$?
 - No
 - $P(Alarm | JohnCalls)$
 - No
 - $P(Alarm | JohnCalls, MaryCalls) = P(Alarm | MaryCalls)$?
 - No

3. $P(Burglary | Alarm) = P(Burglary | Alarm, MaryCalls, JohnCalls)$?
 - Yes

4. $P(Earthquake | Alarm) ≠ P(Earthquake | JohnCalls, A, B) = P(Earthquake | A, B)$.

Choose instead (B, E, A, M, J).

An order in which the edges are directed causally always results in a sparser network.

Empirical observation
Result with CPTs.
Bad, b/c the state space of Word is too large.