
A Correction to the Algorithm in Reiter's Theory of DiagnosisRussell Greiner�Department of Computer ScienceUniversity of TorontoToronto, Ontario M5S 1A4 Barbara A. Smithy and Ralph W. WilkersonComputer Science DepartmentUniversity of Missouri at RollaRolla, Missouri 65401AbstractReiter [1987] has developed a general theoryof diagnosis based on �rst principles. His algo-rithm computes all diagnoses which explain thedi�erences between the predicted and observedbehavior of a given system. Unfortunately, Re-iter's description of the algorithm is incorrect inthat some diagnoses can be missed under cer-tain conditions. This note presents a revisedalgorithm and a proof of its correctness.1 IntroductionMany researchers have developed systems for diagnosiswhich use a \�rst principles approach" using a repre-sentation language generally based on �rst-order logic.Both Reiter [1987] and deKleer and Williams [1987] usethe concept of a conict set as the basis of their meth-ods. While Reiter's algorithm can make use of conictsets which are not minimal, de Kleer andWilliams's algo-rithm requires that minimal conict sets be determinedby the underlying inference mechanism.1 However, itis the application of a technique for handling the non-minimal conict sets that introduces a bug into Reiter'salgorithm.Section 2 presents a brief review of the pertinent def-initions and a statement of Reiter's algorithm for com-puting minimal hitting sets. For the sake of complete-ness, we reproduce these concepts and de�nitions fromReiter's paper essentially unchanged. Section 3 presentsan example where the Reiter's algorithm fails to �nd allof the minimal hitting sets. Section 4 contains a revisedalgorithm and a proof of correctness for this algorithm.2 De�nitionsA hitting set for a collection of sets C is a set H �SS2C S such that H \S 6= fg for each S 2 C. A hitting�Current address: Siemens Corporate Research, 755 Col-lege Road East, Princeton, NJ 08540-6632.yCurrent address: Computer Science Department, Uni-versity of Dayton, Dayton, OH 45469-2160.1Many others, including [Provan, 1987], have discussedmechanisms for handling only minimal conict sets. Thisnote reports on a slightly di�erent process, one which canaccommodate non-minimal conict sets as well.

set for C is minimal if and only if no proper subset of itis a hitting set for C.A system to be diagnosed is de�ned by a set ofcomponents, a system description sd, and a set of ob-servations, obs (the latter two are sets of propositions).A diagnosis for (sd, components, obs) is de�ned to bea minimal set � � components such thatsd [obs [f:ab(c) j c 2 components �� g[fab(c) j c 2 � gis consistent, where ab is a predicate indicating that acomponent is abnormal. The method of computing di-agnoses is based on the determination of minimal hittingsets, since a diagnosis can be de�ned in terms of minimalhitting sets.Reiter proposes a characterization of a diagnosis whichuses the concept of a conict set. A conict set for (sd,components, obs) is a set fc1; : : : ; ckg � componentssuch that sd [obs [f:ab(c1); : : ::ab(ck)g is inconsis-tent. A conict set for (sd, components, obs) is mini-mal if and only if no proper subset of it is a conict setfor (sd, components, obs).Two of the main results of Reiter's work are (1) thefollowing theorem which relates diagnoses, conict sets,and hitting sets and (2) a method for computingminimalhitting sets.Theorem 1 [Reiter, 1987; Theorem 4.4]� � components is a diagnosis for (sd, components,obs) if and only if � is a minimal hitting set for thecollection of conict sets for (sd, components, obs).The minimal hitting sets are computed by construct-ing a hitting set tree (HS-tree). An HS-tree is de�ned asfollows.De�nition 1 Let C be a collection of sets. An HS-treefor C, call it T , is a smallest edge-labeled and node-labeled tree with the following properties:1. The root is labeled by p if C is empty. Otherwisethe root is labeled by an arbitrary set of C.2. For each node n of T , let H(n) be the set of edgelabels on the path in T from the root node to n. Thelabel for n is any set � 2 C such that �\H(n) = fg,if such a set � exists. Otherwise, the label for n isp. If n is labeled by the set �, then for each � 2 �,n has a successor, n�, joined to n by an edge labeledby �.

Reiter identi�es two properties of an HS-tree for a col-lection of sets C. First, for any node n labeled by p,H(n) is a hitting set for C. Second, every minimal hit-ting set for C is H(n) for some node n which is labeledby p. Reiter states these properties without proof.For the diagnostic problem, the sets in the collectionwhich are used as node labels are conict sets for (sd,components, obs). These sets are not explicitly knownand are calculated as needed by an underlying theoremprover. In the algorithm for the construction of an HS-tree, the set to be used as the label of a node is de-termined by an access to the collection C. However, indiagnosis, the set to be used as a label of a node is de-termined by a call to an underlying theorem prover. AsReiter points out, the computation of a conict set bythe theorem prover must be treated as computationallyexpensive.In order to (1) keep the HS-tree as small as possible,(2) calculate only minimal hitting sets, and (3) minimizethe number of calls to the underlying theorem prover,Reiter provides an algorithm for generating a prunedHS-tree. The method is:1. Generate the pruned HS-tree breadth �rst, gener-ating all nodes at any �xed level in the tree beforedescending to generate the nodes at the next level.2. Reusing node labels: If node n has already beenlabeled by a set S 2 C, and if n0 is a new node suchthat H(n0) \ S = fg, then label n0 by S. Such anode n0 requires no access to the theorem prover.(In our diagrams, we underline the label of node toindicate that this label is determined by reusing anexisting label.)3. Tree pruning:(a) If node n is labeled by p and node n0 is suchthat H(n) � H(n0), then close the node n0. Alabel is not computed for n0 nor are any suc-cessor nodes generated. (In our diagrams, �indicates a closed node.)(b) If node n has been generated and node n0 issuch that H(n0) = H(n), then close node n0.(c) If nodes n and n0 have been labeled by sets Sand S0 of C, respectively, and if S0 is a propersubset of S, then for each � 2 S � S0 mark asredundant the edge from node n labeled by �.A redundant edge, together with the subtreebeneath it, may be removed from the HS-treewhile preserving the property that the resultingpruned HS-tree will yield all minimal hittingsets for C.3 Problems with the algorithmIt should be clear that pruning by removing redundantedges (pruning rule 3c) is applicable only when there isat least one set in the collection which is a strict super-set of some other set in the collection. Recall that forthe problem of diagnosis, the minimal hitting sets of theconict sets are the diagnoses. As already pointed out,an advantage of Reiter's method is that the conict setsdetermined by the underlying theorem prover need not

n0 : fa; bg�� ������� a PPPPPPbn1 : fb; cg�� ���b @@cn3 : p�� �n4 : fb; dg�� ���b @@dn7 : ��� � n8 : fbg�� �bn9 : ��� � n2 : fa; cg�� ���a @@cn5 : ��� � n6 : p�� �Figure 1: HS-tree illustrating the problem with pruning.be minimal. However, this type of pruning can resultin an incomplete diagnostician, as it is possible to loseminimal hitting sets, and therefore, diagnoses.Consider the collection of sets: f fa; bg;fb; cg; fa; cg; fb; dg; fbg g. Without pruning by re-moving redundant edges, the HS-tree shown in Figure 1would be generated. Identifying node labels have beenadded. Note that nodes n5, n7, and n9 have been closedby the subset rule (pruning rule 3a) since n3 is labeledp,H(n3) � H(n5), H(n3) � H(n7), and H(n3) � H(n9).The set labeling node n8, fbg, is a proper subset ofthe sets labeling nodes n0, n1, and n4. If the redun-dant branches from n0, namely the branch labeled \a"is pruned, the remaining tree contains only the nodesn0, n2, n5, and n6. The minimal hitting set fa; bg is nolonger represented in the tree.The problem arises from the interaction of the pruningrule which removes redundant edges (rule 3c) and theclosing rules (rules 3a and 3b). A closing rule will closethe node n when it �nds another node n0 which willlead to the same minimal hitting set(s). This, of course,assumes that the node n0 will remain in the HS-tree. Thepruning rule, however, may remove the node n0, meaningthat the path to any potential hitting sets will be totallylost|lost from the node n path when node n was closedand lost from the node n0 path when node n0 was pruned.Before presenting the solution to this problem, we �rstclarify one point in Reiter's original algorithm. Pruningby the removal of redundant edges also requires that thepruned node be relabeled. Consider the collection ofsets: f fa; bg; fag; fbg g. Without pruning, the HS-treein Figure 2 would be generated. As fbg � fa; bg, the \a"branch under n0 would be pruned. However, if n0 is notrelabeled by the set fbg, then the \b" branch under n0would be pruned as fag � fa; bg. The surviving HS-treewould contain the single node n0 which is not labeled byp.The pruning method is based on the argument (pre-sented in Reiter's paper) that when a node n is labeledby a set S0 and there is a set S 2 C where S � S0, thenn could be labeled by S rather than S0. This justi�esremoving the edges descending from n which are labeled

n0 : fa; bg�� ������� a PPPPPPbn1 : fbg�� � n2 : fag�� �Figure 2: HS-tree illustrating the need for node rela-belling.by the members of S0�S, leaving only the edges labeledby members of S. In the text of the paper, Reiter dis-cusses relabeling the node, but this point is not statedin the algorithm.4 Revised AlgorithmReiter's description (in the text) of the process for com-puting the minimalhitting sets is basically correct. How-ever, the algorithm did not accurately follow his text.The hs-dag algorithm, shown below, is more faithfulto that description. It involves using a directed acyclicgraph, dag, to compute the minimal hitting sets ratherthan a tree. To simplify the description, we assume thatthe collection of sets is ordered. This allows us to spec-ify the algorithm deterministically, as we can now selecta member of this collection rather than assume that amember is chosen arbitrarily.We begin by de�ning the hs-dag0 algorithm for con-structing the HS-dag for an ordered collection of sets,F .1. Let D represent the growing dag. Generate a nodewhich will be the root of the dag. This node will beprocessed in Step 2 below.2. Process the nodes in D in a breadth �rst order. Toprocess a node n:(a) De�ne H(n) to be the set of edge labels on thepath in D from the root down to node n.(b) If for all x 2 F; x\H(n) 6= fg then label n byp. Otherwise, label n by � where � is the �rstmember of F for which � \H(n) = fg.(c) If n is labeled by a set � 2 F , then for each� 2 �, generate a new downward arc labeledby �. This arc leads to a new node m withH(m) = H(n) [f�g. The new node m willbe processed (labeled and expanded) after allnodes in the same generation as n have beenprocessed.3. Return the resulting dag, D.This algorithm corresponds to Reiter's basic algorithmfor constructing the HS-tree algorithm, without pruning.It di�ers only by labeling a node by the �rst member ofF that quali�es, rather than by an arbitrary member.Note, also, that as a result of ordering the collectionof sets, the algorithm will reuse node labels whereverpossible.Following Reiter, we propose three pruning enhance-ments to the hs-dag0 algorithm in order to reduce the

size of the dag and also generate only the minimal hittingsets.1. Reusing Nodes: This algorithm will not always gen-erate a new node m as a descendant of node n.There are two cases to consider:(a) If there is a node n0 in D such that H(n0) =H(n)[f�g, then let the �-arc under n point tothis existing node n0. Hence, n0 will have morethan one parent.(b) Otherwise, generate a new node, m, at the endof this �-arc as described in the basic hs-dag0algorithm.2. Closing: If there is node n0 which is labeled by pand H(n0) � H(n), then close node n. A labelis not computed for n nor are any successor nodesgenerated.3. Pruning: If the set � is to label a node and it hasnot been used previously, then attempt to prune Das described in the following.(a) If there is a node n0 which has been labeled bythe set S0 of F where � � S0, then relabel n0with �. For any � in S0 ��, the �-edge undern0 is no longer allowed. The node connected bythis edge and all of its descendants are removed,except for those nodes with another ancestorwhich is not being removed. Note that thisstep may eliminate the node that is currentlybeing processed.(b) Interchange the sets S0 and � in the collection.(Note that this has the same e�ect as eliminat-ing S0 from F .)Figure 3 shows a partial HS-dag for the collectionof sets used earlier, namely, f fa; bg; fb; cg; fa; cg;fb; dg; fbg g. When the set fbg is �rst used as a la-bel, the dag is pruned as shown in Figure 4. Note thatnode n3 still has a parent and so remains in the dag.Thus, the minimal hitting set fa; bg is not lost as wasthe case with the HS-tree algorithm.Let hs-dag refer to the overall algorithm with thepruning rules included. Note that the particular HS-dagwhich is returned by the algorithm depends on how F isordered. Using �(F) to refer to the � rearrangement ofF , hs-dag(F) and hs-dag(�(F)) will lead to di�erentHS-dags. We prove below that these two graphs willproduce the same minimalhitting sets where each hittingset is H(n) for some node n labeled by p.Theorem 2 (Correctness of hs-dag Algorithm)Given the ordered collection F , the hs-dag algorithmreturns a particular labeled dag.1. For all nodes n labeled by p, H(n) is a minimalhitting set.2. Every minimal hitting set for F is H(n) for somenode n whose label is p.Proof: It is su�cient to prove the following three points:(1) The basic hs-dag0 algorithm (without the pruningrules) will �nd all of the minimal hitting sets, (2) the

n0 : fa; bg�� �!!!!! a aaaaabn1 : fb; cg�� ���b @@cn3 : p�� �n4 : fb; dg�� ���b @@dn6 : ��� � n7 : fbg�� �n2 : fa; cg�� �((((((((((a @@cn5 : p�� �Figure 3: HS-dag before pruning.n0 : fbg�� �aaaaabn3 : p�� � n2 : fa; cg�� �((((((((((a @@cn5 : p�� �Figure 4: HS-dag after pruning.pruning rules will not eliminate any of the minimal hit-ting sets, (3) the pruning rules will eliminate all of thenon-minimal hitting sets.1. This claim is stated, without proof in [Reiter, 1987;p. 72]. The claim applies to Reiter's basic algorithmfor constructing an HS-tree without pruning. Ob-viously, if it is true when the members of F areselected arbitrarily, it must be true for any particu-lar ordering, that is, for our related basic hs-dag0algorithm. We prove it below in Lemma 1.2. It su�ces to show that none of the three pruningrules will remove any p-labeled node.(a) The process of reusing nodes does not removeany nodes. It is simply used to encode an HS-treeas a dag. Notice that we can recapture the tree in-formation by replicating each node that has multi-ple parents. For each node n with multiple parents:Assume that n is connected to its mi parent by the�i-labeled branch, that is, the �i branch of mi leadsdown to n for i = 1; : : : ; k. The sub-dag rooted atn can be replicated k times, with the �i branch ofmi pointing to the ith copy. We obtain a tree by ex-panding each such node. As this step has no e�ecton any of the p-labeled nodes, it does not interferewith either of the other pruning rules nor with otherapplications of itself.(b) The process of closing nodes does remove somenodes from an HS-dag. By construction, it onlyremoves a node n if there is a p-labeled node n0for which H(n0) is a proper subset of H(n). Notethat H(n0) is a hitting set since n0 is labeled p. Thebasic hs-dag0 algorithmwould have left node n and

all of its descendants. Let c be any p-labeled nodein the sub-dag rooted at node n. Notice that H(c)must be a superset of H(n) and thus it would be astrict superset of H(n0). As H(n0) is a hitting set,H(c) cannot be a minimal hitting set.(c) Pruning transforms an HS-dag into anotherone. That is, it produces the dag associated withhs-dag(�(F)) for some rearrangement �, ratherthan the one begun for hs-dag(F). In general,when a node's label is changed from S to S0, then�(F) will interchange S and S0 in F . Note thatthere is always some permutation of the membersof F such that pruning will never apply.3. Recall that, by de�nition, for every non-minimalhitting set h there is a minimal hitting set hm suchthat hm � h. Suppose that there is a node n inthe unpruned HS-dag which the basic constructionalgorithm would have produced such that H(n) isthis non-minimal hitting set h. From point 2 above,we know that this HS-dag will include a node la-beled p whose H-set is hm. Call this node nm.Notice that nm will appear closer to the root of thedag than will node n. By virtue of the algorithm'sbreadth-�rst ordering, nm will be generated beforen. Enhancement (2) (Closing) of the hs-dag con-struction algorithm would prevent this node n frombeing generated and labeled as this rule would closenode n as soon as it was considered. This enhance-ment might actually close the ancestors of n. 2Lemma 1 The basic hs-dag0 algorithm, without any ofthe pruning enhancements, will �nd all of the minimalhitting sets. That is, let T be the HS-dag that it returnsand let h be any minimal hitting set. Then T will includea node n such that (1) H(n) is h and (2) the label for nis p.Proof: By induction on the cardinality of F :Base. If jF j = 0 then the only minimal hitting set forF is the empty set. Notice that the only HS-dag forF is the degenerate tree consisting of a single node n0labeled by p. As H(n0) = fg, every possible HS-dag forF includes all of the minimal hitting sets for F .Induction. Let T be any HS-dag for the collection Fwhere jF j = n + 1. Let its root node be labeled by f0where f0 2 F and f0 = fm1; : : : ;mkg. De�ne Fi to bethe members of F which do not include the element mi,i.e., Fi = ff 2 F jmi 62 fg. Notice that the sub-dagunder mi is an HS-dag for the collection Fi and thatjFij < jF j. By inductive assumption, the H-sets of thep-labeled nodes of the HS-dag for Fi include all of theminimal hitting sets for Fi. This means that the H-setsfor each of the p-labeled nodes in the HS-dag for F is ofthe form hi [fmig where hi is a minimal hitting set forFi. It su�ces to show that this accounts for all of theminimal hitting sets for F .Let h be any of the minimal hitting sets for F . Byde�nition, there is an element, call it mi, such that mi 2h and mi 2 f0. This mi is su�cient to account for everyfj 2 F for which mi 2 fj . The remaining elements of hmust (minimally) hit each of the remaining members of

F , that is, h � fmig must be a minimal hitting set forFi. This is true by construction. 25 ConclusionThis note demonstrates that Reiter's algorithm for com-puting minimal hitting sets fails under certain circum-stances: While the basic algorithm for constructing ahitting set tree is correct, the application of pruning tech-niques can result in the loss of minimal hitting sets. Wepresent a revised algorithm which uses a directed acyclicgraph rather than a tree structure and prove it is correct.AcknowledgementsBarbara Smith and Ralph Wilkerson were supported inpart under grants from McDonnell Douglas ResearchLaboratories (Independent Research and Development)and the Missouri Research Assistance Act. RussellGreiner was supported by a grant from Canada's Na-tional Science and Engineering Research Council. Wewould also like to thank Ruth Aydt for pointing out theneed for a clari�cation on node relabeling.References[deKleer and Williams, 1987] Johan deKleer and BrianC. Williams. Diagnosing multiple faults. Arti�cialIntelligence, 32(1):97{130, April 1987.[Provan, 1987] Gregory Provan. Complexity analysis ofmultiple-context TMSs in scene representation. InProceedings of the American Association for Arti�cialIntelligence, pages 173{177, 1987.[Reiter, 1987] Raymond Reiter. A theory of diagnosisfrom �rst principles. Arti�cial Intelligence, 32(1):57{96, April 1987.Received July 1988; revised version received Jan-uary 1989

