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The game of checkers has roughly 500 billion billion possible positions (5 × 1020). The task of
solving the game, determining the final result in a game with no mistakes made by either player, is
daunting. Since 1989, almost continuously, dozens of computers have been working on solving
checkers, applying state-of-the-art artificial intelligence techniques to the proving process. This
paper announces that checkers is now solved: Perfect play by both sides leads to a draw. This is the
most challenging popular game to be solved to date, roughly one million times as complex as
Connect Four. Artificial intelligence technology has been used to generate strong heuristic-based
game-playing programs, such as Deep Blue for chess. Solving a game takes this to the next level by
replacing the heuristics with perfection.

Since Claude Shannon’s seminal paper on
the structure of a chess-playing program in
1950 (1), artificial intelligence researchers

have developed programs capable of challenging
and defeating the strongest human players in the
world. Superhuman-strength programs exist for
popular games such as chess [Deep Fritz (2)],
checkers [Chinook (3)], Othello [Logistello (4)],
and Scrabble [Maven (5)]. However strong these
programs are, they are not perfect. Perfection
implies solving a game—determining the final
result (game-theoretic value) when neither player
makes amistake. There are three levels of solving
a game (6). For the lowest level, ultraweakly
solved, the perfect-play result, but not a strategy
for achieving that value, is known [e.g., in Hex
the first player wins, but for large board sizes the
winning strategy is not known (7)]. For weakly
solved games, both the result and a strategy for
achieving it from the start of the game are known
[e.g., in Go Moku the first player wins and a
program can demonstrate the win (6)]. Strongly
solved games have the result computed for all
possible positions that can arise in the game [e.g.,
Awari (8)].

Checkers (8 × 8 draughts) is a popular game
enjoyed by millions of people worldwide, with
many annual tournaments and a series of
competitions that determine the world champion.
There are numerous variants of the game played
around the world. The game that is popular in
North America and the (former) British Com-
monwealth has pieces (checkers) moving for-
ward one square diagonally, kings moving
forward or backward one square diagonally, and
a forced-capture rule [see supporting online
material (SOM) text].

The effort to solve checkers began in 1989,
and the computations needed to achieve that
result have been running almost continuously
since then. At the peak in 1992, more than 200
processors were devoted to the problem simulta-
neously. The end result is one of the longest
running computations completed to date.

With this paper, we announce that checkers
has been weakly solved. From the starting po-
sition (Fig. 1, top), we have a computational proof
that checkers is a draw. The proof consists of an
explicit strategy that never loses—the program
can achieve at least a draw against any opponent,
playing either the black or white pieces. That
checkers is a draw is not a surprise; grandmaster
players have conjectured this for decades.

The checkers result pushes the boundary of
artificial intelligence (AI). In the early days of AI
research, the easiest path to achieving high
performance was believed to be emulating the
human approach. This was fraught with difficul-
ty, especially the problems of capturing and
encoding human knowledge. Human-like strat-
egies are not necessarily the best computational
strategies. Perhaps the biggest contribution of
applying AI technology to developing game-
playing programs was the realization that a
search-intensive (“brute-force”) approach could
produce high-quality performance using minimal
application-dependent knowledge. Over the past
two decades, powerful search techniques have
been developed and successfully applied to
problems such as optimization, planning, and
bioinformatics. The checkers proof extends this
approach by developing a program that has little
need for application-dependent knowledge and is
almost completely reliant on search. With ad-
vanced AI algorithms and improved hardware
(faster processors, larger memories, and larger
disks), it has become possible to push the limits
on the type and size of problems that can be
solved. Even so, the checkers search space (5 ×
1020) represents a daunting challenge for today’s
technology.

Computer proofs in areas other than games
have been done numerous times. Perhaps the

best known is the four-color theorem (9). This
deceptively simple conjecture—that given an
arbitrary map with countries, you need at most
four different colors to guarantee that no two
adjoining countries have the same color—has
been extremely difficult to prove analytically. In
1976, a computational proof was demonstrated.
Despite the convincing result, some mathema-
ticians were skeptical, distrusting proofs that had
not been verified using human-derived theorems.
Although important components of the checkers
proof have been independently verified, there
may be skeptics.

This article describes the background behind
the effort to solve checkers, the methods used for
achieving the result, an argument that the result is
correct, and the implications of this research. The
computer proof is online (10).

Background. The development of a strong
checkers program began in the 1950swith Arthur
Samuel’s pioneering work in machine learning.
In 1963, his program played a match against a
capable player, winning a single game. This
result was heralded as a triumph for the fledgling
field of AI. Over time, the result was exagger-
ated, resulting in claims that checkers was now
“solved” (3).

The Chinook project began in 1989 with the
goal of building a program capable of challeng-
ing the world checkers champion. In 1990,
Chinook earned the right to play for the World
Championship. In 1992,WorldChampionMarion
Tinsley narrowly defeated Chinook in the title
match. In the 1994 rematch, Tinsley withdrew
part way due to illness. He passed away eight
months later. By 1996 Chinook was much
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Fig. 1. Black to play and draw. (Top) Standard
starting board. (Bottom) Square numbers used
for move notation.
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stronger than all human players, and with faster
processors this gap has only grown (3).

Tinsley was the greatest checkers player that
ever lived, compiling an incredible record that
included only three losses in the period from
1950 to 1991. The unfinished Tinsley match left
the question unanswered as to who was the better
player. If checkers were a proven draw, then a
“perfect” Chinook would never lose. As great as
Tinsley was, he did occasionally make losing
oversights. Hence, solving checkers would once
and for all establish computers as better checkers
players than all (fallible) humans.

Numerous nontrivial games have been
solved, including Connect Four (6, 11), Qubic
(6), Go-Moku (6), Nine Men’s Morris (12), and
Awari (8). The perfect-play result and a strategy
for achieving that result is known for these
games. How difficult is it to solve a game? There
are two dimensions to consider (6): (i) decision
complexity, the difficulty of making correct
move decisions, and (ii) space complexity, the
size of the search space.

Checkers is considered to have high deci-
sion complexity (it requires extensive skill to
make strong move choices) and moderate
space complexity (5 × 1020) (Table 1). All the
games solved thus far have either low decision
complexity (Qubic and Go-Moku), low space
complexity (Nine Men’s Morris, size 1011,

and Awari, size 1012), or both (Connect Four,
size 1014).

Solving checkers. Checkers represents the
most computationally challenging game solved
to date. The proof procedure has three algorithm/
data components (13): (i) Endgame databases
(backward search). Computations from the end
of the game back toward the starting position
have resulted in a database of 3.9 × 1013 positions
(all positions with ≤10 pieces on the board) for
which the game-theoretic value has been com-
puted (strongly solved). (ii) Proof-tree manager
(forward search). This component maintains a
tree of the proof in progress (a sequence ofmoves
and their best responses), traverses it, and
generates positions that need to be explored to
further the proof’s progress. (iii) Proof solver
(forward search). Given a position to search by
the manager, this component uses two programs
to determine the value of the position. These
programs approach the task in different ways,
thus increasing the chances of obtaining a useful
result. Figure 2 shows the forward and backward
search interactions in the checkers search space.

In the manager, the proof tree can be hand-
seeded with an initial line of play. From the
literature (14), a single “best” line of play was
identified and used to guide the initial foray of the
manager into the depths of the search tree.
Although not essential for the proof, this is an

important performance enhancement. It allows
the proof process to immediately focus its work
on the parts of the search space that are likely to
be relevant. Without it, the manager may spend
unnecessary effort looking for an important line
to explore. The line leads from the start of the
game into the endgame databases (Fig. 2).

Backward search. Positions at the end of the
game can be searched and their win/loss/draw
value determined. The technique is called retro-
grade analysis and has been successfully used for
many games. The algorithm works backward by
starting at the end of the game and working
toward the start. It enumerates all one-piece posi-
tions, determining their value (in this case, a trivial
win for the side with the piece). Next, all two-
piece positions are enumerated and analyzed. The
analysis for each position eventually leads to a
one-piece position with a known value, or a re-
peated position (draw). Next, all the three-piece
positions are tackled, and so forth (SOM text). Our
program has computed all the positions with ≤10
pieces on the board. The endgame databases are
crucial to solving checkers. The checkers forced-
capture rule quickly results in many pieces being
removed from the board, giving rise to a position
with ≤10 pieces—and a known value.

The databases contain the win/loss/draw result
for a position, not the number of moves to a win/

Table 1. The number of positions in the game of
checkers. For example, the possible positions for
one piece include 32 squares for the Black king, 32
squares for the White king, 28 squares for a Black
checker, and 28 squares for a White checker, for a
total of 120 positions.

Pieces Number of positions

1 120
2 6,972
3 261,224
4 7,092,774
5 148,688,232
6 2,503,611,964
7 34,779,531,480
8 406,309,208,481
9 4,048,627,642,976
10 34,778,882,769,216
Total 1–10 39,271,258,813,439
11 259,669,578,902,016
12 1,695,618,078,654,976
13 9,726,900,031,328,256
14 49,134,911,067,979,776
15 218,511,510,918,189,056
16 852,888,183,557,922,816
17 2,905,162,728,973,680,640
18 8,568,043,414,939,516,928
19 21,661,954,506,100,113,408
20 46,352,957,062,510,379,008
21 82,459,728,874,435,248,128
22 118,435,747,136,817,856,512
23 129,406,908,049,181,900,800
24 90,072,726,844,888,186,880
Total 1–24 500,995,484,682,338,672,639
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Fig. 2. Forward and backward search. The number of pieces on the board are plotted (vertically) versus
the logarithm of the number of positions (Table 1). The shaded area shows the endgame database part of
the proof—i.e., all positions with ≤10 pieces. The inner oval area shows that only a portion of the search
space is relevant to the proof. Positions may be irrelevant because they are unreachable or are not
required for the proof. The small open circles indicate positions with more than 10 pieces for which a
value has been proven by a solver. The dotted line shows the boundary between the top of the proof tree
that the manager sees (and stores on disk) and the parts that are computed by the solvers (and are not
saved in order to reduce disk storage needs). The solid seeded line shows a “best” sequence of moves.
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loss. Independent research has discovered a 10-
piece database position requiring a 279-ply move
sequence to demonstrate a forcedwin (a ply is one
move by one player) (15). This is a conservative
bound; the win length has not been computed for
the more difficult (and more interesting) database
positions.

The complete 10-piece databases contain 39
trillion positions (Table 1). They are compressed
into 237 gigabytes, an average of 154 positions
per byte. A custom compression algorithm was
used that allows for rapid localized real-time
decompression (16). This means that the back-
ward and forward search programs can quickly
extract information from the databases.

The first databases, constructed in 1989, were
for less than or equal to four pieces. In 1994,
Chinook used a subset of the eight-piece database
for the Tinsley match (3). By 1996, the eight-
piece database was completed, giving rise to
hope that checkers could be solved. However, the
problem was still too hard, and the effort came to
a halt. In 2001, computer capabilities had in-
creased substantially, and the effort was restarted.
It took 7 years (1989 to 1996) to compute the
original eight-piece databases; in 2001 it took
only a month. In 2005, the 10-piece database
computation finished. At this point, all computa-
tional resources were focused on the forward
search effort.

Forward search. Development of the for-
ward search program began in 2001, with the
production version up and running in 2004. The
forward search consists of two parts: the proof-
tree manager, which builds the proof by identify-

ing positions that need to be assessed, and the
proof solvers, which search individual positions.

The manager maintains the master copy of
the proof and uses the Proof Number search
algorithm (6) to identify a prioritized list of po-
sitions that need to be examined. Typically, sev-
eral hundred positions of interest are generated at
a time so as to keep multiple computers busy.
Over the past year, we used an average of 50
computers simultaneously.

The solvers get a position to evaluate from the
manager. The result of a position evaluation can
be proven (win, loss, or draw), partially proven
(at least a draw, at most a draw), or heuristic (an
estimate of how good or bad a position is).
Proven positions need no further work; partially
proven positions need additional work if the
manager determines that a proven value is
needed. If no proven information is available
then the solver returns a heuristic assessment of
the position. The manager uses this assessment to
prioritize which positions to consider next. The
manager updates the proof tree with the new
information, decideswhich positions need further
investigation, and generates newwork to do. This
process is repeated until a proven result for the
game is determined.

The solver uses two search programs to
evaluate a position. The first program (targeted
at 15 s, but sometimes much longer) uses
Chinook to determine a heuristic value for the
position (alpha-beta search to nominal search
depths of 17 to 23 ply). Occasionally, this search
determines that the position is a proven win or
loss. Chinook was not designed to produce a

proven draw, only a heuristic draw; demonstrat-
ing proven draws in a heuristic search seriously
degrades performance.

The alpha-beta search algorithm is the main-
stay of game-playing programs. The algorithm
does a depth-first, left-to-right traversal of the
search tree (17) (SOM text). The algorithm
propagates heuristic bounds on the value of a
position: the minimum value that the side about
to move can achieve and the maximum value that
the side about to move can be limited to by the
opponent. Lines of play that are provably outside
this range are irrelevant and can be eliminated
(cut off). A d-ply search with an average of b
moves to consider in every position results in a
tree with roughly bd positions. In the best case,
the alpha-beta algorithm only needs to examine
roughly bd/2 positions (16).

If Chinook does not find a proven result, then
a second program is invoked (100 s). It uses the
Df-pn algorithm (18), a space-efficient variant of
Proof Number search. The search returns a
proven, partially proven, or unknown result.

Algorithms based on proof numbers maintain
a measure of the difficulty of proving a position.
This difficulty is expressed as a proof number, a
lower bound on the minimum number of posi-
tions that need to be explored to result in the
position being proven. The algorithm repeatedly
expands the tree below the position requiring the
least effort to affect the original position (a “best-
first” approach). The result of that search is
propagated back up the tree, and a new best can-
didate to consider is determined. Proof number
search was specifically invented to facilitate the
proving of games. The Df-pn variant builds the
search tree in a depth-first manner, requiring less
computer storage.

Iterative search algorithms are commonplace
in the AI literature. Most iterate on search depth
(first 1 ply, then 2, then 3, etc.). Themanager uses
the new approach of iterating on the error in
Chinook’s heuristic scores (13). The manager
uses a threshold, t, and temporarily assumes that
all heuristic scores ≥t are wins and all scores ≤–t
are losses. It then proves the result given this as-
sumption. Once completed, t is increased to t+∆,
and the process is repeated. Eventually t reaches
the value of a win and the proof is complete. This
iterative approach concentrates the effort on
forming the outline of the proof with low values
of t, and then fleshing out the details with the rest
of the computation.

One complication is the graph-history inter-
action (GHI) problem. It is possible to reach the
same position through two different sequences of
moves. This means that some draws depend on
the moves played leading to the duplicated
position. In standard search algorithms, GHI
may cause some positions to be incorrectly
inferred as draws. Part of this research project
was to develop an improved algorithm for
addressing the GHI problem (19).

Correctness. Given a computation that has
run for so long on many processors, an important

Table 2. Openings solved. Shown are the opening moves (using the standard square number scheme in
Fig. 1, bottom), the result, the number of positions given to the solvers, and the position farthest from the
start of the game that was searched (Max ply). The last two columns give the size and ply depth of the
pruned minimal proof tree. Note that the total does not match the sum of the 19 openings. The combined
tree has some duplicated nodes, which have been removed when reporting the total.

No. Opening Proof Searches Max ply Minimal size Max ply

1 09-13 22-17 13-22 Draw 736,984 56 275,097 55
2 09-13 21-17 05-09 Draw 1,987,856 154 684,403 85
3 09-13 22-18 10-15 Draw 715,280 103 265,745 58
4 09-13 23-18 05-09 Draw 671,948 119 274,376 94
5 09-13-23-19 11-16 Draw 964,193 85 358,544 71
6 09-13 24-19 11-15 Draw 554,265 53 212,217 49
7 09-13 24-20 11-15 Draw 1,058,328 59 339,562 58
8 09-14 23-18 14-23 ≤Draw 2,202,533 77 573,735 75
9 10-14 23-18 14-23 ≤Draw 1,296,790 58 336,175 55
10 10-15 22-18 15-22 ≤Draw 543,603 60 104,882 41
11 11-15 22-18 15-22 ≤Draw 919,594 67 301,310 59
12 11-16 23-19 16-23 ≤Draw 1,969,641 69 565,202 64
13 12-16 24-19 09-13 Loss 205,385 44 49,593 40
14 12-16 24-19 09-14 ≤Draw 61,279 45 23,396 44
15 12-16 24-19 10-14 ≤Draw 21,328 31 8,917 31
16 12-16 24-19 10-15 ≤Draw 31,473 35 13,465 35
17 12-16 24-19 11-15 ≤Draw 23,803 34 9,730 34
18 12-16 24-19 16-20 ≤Draw 283,353 49 113,210 49
19 12-16 24-19 08-12 ≤Draw 266,924 49 107,109 49
Overall Draw Total

15,123,711
Max
154

Total
3,301,807

Max
94
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question to ask is “Are the results correct?” Early
on in the computation, we realized that there
were many potential sources of errors, including
algorithm bugs and data transmission errors.
Great care has been taken to eliminate any pos-
sibility of error by verifying all computation
results and doing consistency checks. As well,
some of the computations have been indepen-
dently verified (SOM text).

Even if an error has crept into the calcula-
tions, it likely does not change the final result.
Assume a position that is 40 ply away from the
start is incorrect. The probability that this er-
roneous result can propagate up 40 ply and
change the value for the game of checkers is
vanishingly small (20).

Results. Our approach to solving the game
was to determine the game-theoretic result by
doing the least amount of work. In tournament
checkers, the standard starting position (Fig. 1,
top) is considered “boring,” so the first three
moves (ply) of a game are randomly chosen at the
start. The checkers proof consisted of solving 19
three-move openings, leading to a determination
of the starting position’s value: a draw. Although
there are roughly 300 three-move openings, more
than 100 are duplicates (move transpositions).
The rest can be proven to be irrelevant by an
alpha-beta search.

Table 2 shows the results for the 19 openings
solved to determine the perfect-play result for
checkers. (Other openings have been solved but
are not included here.) After an opening was
proven, a postprocessing program pruned the tree
to eliminate all the computations that were not
part of the smallest proof tree. In hindsight, the
pruned work was unnecessary, but it was not so
at the time when it was assigned for evaluation.
Figure 3 shows the proof tree for the first 3 ply.

The leftmost move sequence in Fig. 3 is as
follows: Black moves from 09 to 13 (represented
using the standard checkers notation 09-13),
White replies with 22-17, and then Black moves
13-22. The resulting position has been searched
and shown to be a draw (opening line 1 in Fig. 3).

That means the position after 22-17 is also a draw,
given that there is only one legal move available
(13-22) and it is a proven draw.What is the value
of the position after Black moves 09-13? To
determine this, all possible moves forWhite have
to be considered. The move 22-17 guarantees
White at least a draw (at most a draw for Black).
But it is possible that this position is a win for
White (and a loss for Black). The remaining
moves (21-17, 22-18, 23-18, 23-19, 24-19, and
24-20; opening lines 2 to 7 in Fig. 3) are all
shown to be at least a draw for Black. Hence,
White prefers themove 22-17 (noworse than any
other move). Thus, 09-13 leads to a draw (White
will move 22-17 in response).

Given that 09-13 is a draw, it remains to
demonstrate that the other opening moves cannot
win for Black. Note that some openings have a
proven result, whereas for others only the partial
result that was necessary for the proof was
computed. The number of openings is small
because the forced-capture rule was exploited.
Opening lines 13 to 19 in Fig. 3 are needed to
prove that the opening 12-16 is not a win. Ac-
tually, one opening would have sufficed (12-16,
23-19, and 16-23). However, human analysts
consider this line to be a win for Black, and the
preliminary analysis agreed. Hence, the seven
openings beginning with the moves 12-16 and
24-19 were proven instead. This led to the least
amount of computing.

There is anecdotal evidence that the proof tree
is correct. Main lines of play were manually
compared to human analysis (14), with no errors
found in the computer’s results (unimportant
errors were found in the human analysis).

The proof tree shows the perfect lines of play
needed to achieve a draw. If one side makes a
losingmistake, the proof tree may not necessarily
show how to win. This additional information is
not necessary for proving the draw result.

The stored proof tree is only 107 positions.
Saving the entire proof tree, from the start of the
game so that every line ends in an endgame
database position, would require many tens of

terabytes, resources that were not available.
Instead, only the top of the proof tree, the
information maintained by the manager, is stored
on disk. When a user queries the proof, if the end
of a line of play in the proof is reached, then the
solver is used to continue the line into the
databases. This substantially reduces the storage
needs, at the cost of recomputing (roughly 2 min
per search).

The longest line analyzed was 154 ply. The
position at the end of this line was analyzed
by the solver, and that analysis may have gone
20 or more ply deep. At the end of this analysis
is a database position, which could be the result
of several hundred ply of analysis. This
provides supporting evidence of the difficulty
of checkers—for computers and humans.

How much computation was done in the
proof? Roughly speaking, there are 107 positions
in the stored proof tree, each representing a
search of 107 positions (relatively small because
of the extensive disk operations). Hence, 1014 is a
good ballpark estimate of the forward search
effort.

Should we be impressed with “only” 1014

computations? At one extreme, checkers could
be solved using storage—build endgame data-
bases for the complete search space. This would
require 5 × 1020 data entries. Even an excellent
compression algorithm might only reduce this to
1018 bytes, impractical with today’s technology.
This also makes it unlikely that checkers will
soon be strongly solved.

An alternative would be to use only
computing—i.e., build a search tree using the
alpha-beta algorithm. Consider the following un-
reasonably optimistic assumptions: number of
moves to consider is eight in noncapture posi-
tions, a game lasts 70 ply, all captures are of a
single piece (23 capture moves), and the alpha-
beta search does the least possible work. The
assumptions result in a search tree of 8(70–23) =
847 states. The perfect alpha-beta search will
halve the exponent, leading to a search of roughly
847/2 ≈ 1024. This would take more than a lifetime
to search, given current technology.

Conclusion. What is the scientific signifi-
cance of this result? The early research was
devoted to developing Chinook and demonstrat-
ing superhuman play in checkers, a milestone
that predated the Deep Blue success in chess. The
project has been a marriage of research in AI and
parallel computing, with contributions made in
both of these areas. This research has been used
by a bioinformatics company; real-time access of
very large data sets for use in parallel search is as
relevant for solving a game as it is for biological
computations.

The checkers computation pushes the bound-
ary of what can be achieved by search-intensive
algorithms. It provides compelling evidence of
the power of limited-knowledge approaches to
artificial intelligence. Deep search implicitly
uncovers knowledge. Furthermore, search algo-
rithms are well poised to take advantage of the

Fig. 3. The first three moves of the checkers proof tree. Move sequences are indicated using the
notation from Fig. 1B, with the from-square and to-square of the move separated by a hyphen. The
result of each position is given for Black, the first player to move (=D, a proven draw; =L, a proven
loss; <=D, loss or draw; and >=D, draw or win). In some positions, only one move needs to be
considered; the rest are cut off, as indicated by the rotated “T”. Some positions have only one legal
move because of the forced-capture rule.
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increase in on-chip parallelism that multicore
computing will soon offer. Search-intensive
approaches to AI will play an increasingly
important role in the evolution of the field.

With checkers finished, the obvious question
is whether chess is solvable. Checkers has
roughly the square root of the number of
positions in chess (somewhere in the 1040 to
1050 range). Given the effort required to solve
checkers, chess will remain unsolved for a long
time, barring the invention of new technology.
The disk-flipping game of Othello is the next
popular game that is likely to be solved, but it will
require considerably more resources than were
needed to solve checkers (7).
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Some Toll and Toll-like receptors (TLRs) provide immunity to experimental infections in animal
models, but their contribution to host defense in natural ecosystems is unknown. We report a
dominant-negative TLR3 allele in otherwise healthy children with herpes simplex virus 1 (HSV-1)
encephalitis. TLR3 is expressed in the central nervous system (CNS), where it is required to
control HSV-1, which spreads from the epithelium to the CNS via cranial nerves. TLR3 is also
expressed in epithelial and dendritic cells, which apparently use TLR3-independent pathways to
prevent further dissemination of HSV-1 and to provide resistance to other pathogens in
TLR3-deficient patients. Human TLR3 appears to be redundant in host defense to most microbes
but is vital for natural immunity to HSV-1 in the CNS, which suggests that neurotropic viruses have
contributed to the evolutionary maintenance of TLR3.

The contribution of Toll and Toll-like re-
ceptors to immunity has been studied ex-
tensively in the past decade. Toll-deficient

Drosophila were shown to be susceptible to ex-
perimental infections with certain fungi in 1996
(1), and a Toll-like receptor 4 (TLR4) null muta-
tion in mice resistant to lipopolysaccharide (LPS)
but susceptible to certain Gram-negative bacte-
ria was identified in 1998 (2). Mice deficient
for individual TLRs have since been generated
and shown to have diverse infectious pheno-
types, from susceptibility to resistance, depending
on the TLR-pathogen combination (3). How-
ever, it remains unclear whether TLRs play
nonredundant roles—beneficial or detrimental—
in natural, as opposed to experimental, infections.
This biological question is important, because

natural selection acts on a given species in the
setting of natural (rather than experimental) eco-
systems. The human model is particularly suit-
able for analyses of the relevance of genes such
as those of TLRs to host defense in natural eco-
systems (4). Nevertheless, although many studies
have suggested that TLR genes are involved in
human infectious diseases, this has not been un-
ambiguously demonstrated (5). In particular, no
primary immunodeficiency involving TLRs has
been identified.

The discovery of inherited interleukin 1 receptor-
associated kinase-4 (IRAK-4) deficiency in
children with bacterial diseases implicated hu-
man TLRs, interleukin-1 receptors (IL-1Rs), or
both in host defense (6, 7). However, the narrow
range of infections documented in such patients

indicates that IRAK-4–dependent, TLR-mediated
immunity is redundant for protective immunity to
most microbes. In particular, IRAK-4–deficient
patients are not susceptible to herpes simplex
virus 1 (HSV-1) encephalitis (HSE). In HSE,
HSV-1 infects epithelial cells in the oral and nasal
mucosa and progresses to the central nervous
system (CNS) via the trigeminal or olfactory
nerves (8). A genetic etiology of HSE was found
in two children who lacked functional UNC-93B
(9), an endoplasmic reticulum protein required
for TLR3, TLR7, TLR8, and TLR9 signaling
(10). Both UNC-93B– and IRAK-4–deficient
patients fail to signal through TLR7, TLR8, and
TLR9, but unlike IRAK-4–deficient patients (7),
UNC-93B–deficient patients display impaired
TLR3-dependent interferon-a (IFN-a) -b, and -l
production (9). Moreover, HSV-1 is a double-
stranded DNA virus with double-stranded RNA
(dsRNA) intermediates (11), and TLR3 recog-
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