
ARTIFICIAL INTELLIGENCE 193 

Heuristic Search Viewed as 
Path Finding in a Graph 

Ira Pohl 
I B M  Thomas J. Watson Research Center, Yorktown Heights, 
New York 

Recommended by E. J. Sandewall 

ABSTRACT 

This paper presents a particular model of  heuristic search as a path-finding problem 
in a directed graph. A class of  graph-searching procedures is described which uses a 
heuristic function to guide search. Heuristic functions are estimates of  the number o f  
edges that remain to be traversed in reaching a goal node. A number of  theoretical 
results for this model, and the intuition for these results, are presented. They relate the 
e])~ciency o f  search to the accuracy o f  the heuristic function. The results also explore 
efficiency as a consequence of  the reliance or weight placed on the heuristics used. 

I. Introduction 

Heuristic search has been one of the important ideas to grow out of artificial 
intelligence research. It is an ill-defined concept, and has been used as an 
umbrella for many computational techniques which are hard to classify or 
analyze. This is beneficial in that it leaves the imagination unfettered to try 
any technique that works on a complex problem. However, leaving the con. 
cept vague has meant that the same ideas are rediscovered, often cloaked in 
other terminology rather than abstracting their essence and understanding 
the procedure more deeply. Often, analytical results lead to more emcient 
procedures. Such has been the case in sorting [I] and matrix multiplication [2], 
and the same is hoped for this development of heuristic search. 

This paper attempts to present an overview of recent developments in 
formally characterizing heuristic search. The model allows us to define 
precisely measures of search efficiency in machine-independent terms. The 
problems of when these techniques will work and how well they will work 
are interpreted as questions of constructing accurate computable heuristic 
functions. This formulation allows analytical results on how to construct 
efficient heuristic search procedures. 
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This paper does not attempt a history of developments in this area [3--6]; 
nevertheless, a few of the main accomplishments that shaped this viewpoint 
are necessary for context. The heuristic search programs of Newell, Simon, 
and Shaw starting with the logic theorist [7, 8] generated a large amount of 
enthusiasm. They attempted to apply these techniques to a wide variety of 
problem domains, empirically demonstrating the generality of heuristic 
search. A more recent empirical attempt at generality coupled with an active 
concern for efficiency has been the Graph Traverser programs [9~ 10] develo~d 
principally by Doran and Michie. Here the search mechanism becomes 
spe~ificaUy a graph-searching program guided b9 a heuristic function which 
is an estimator of distances in the graph. The Graph Traverser program was 
used to compare the efficiency of different heuristic functions for solving a 
class of puzzles. 

Another line of development was motivated by the need for a procedure 
for guiding the SRI robot [11] around its world. In choosing to represent the 
world as a directed graph, the problem of directing the robot was transformed 
into a shortest-path problem. However, the robot had a means for estimating 
Euclidean distances in his world. Hart, Nilsson, and Raphael [12] discovered 
how to use this information to improve the efficiency of computing the 
shortest path. They generalized this to the concept of heuristic estimation and 
provided an algorithm which would use this information and still compute 
shortest paths. They produced the first theorems on efficiency as a function 
of accuracy of the heuristic function. The results above and related techniques 
[13-16] in enumerative combinatorial computations have been responsible 
for the development presented here. 

An informal definition of a heuristic is any device that aids search efficiency 
by either restricting the region searched or appropriately ordering the search. 
Closely allied techniques of branch and bound, dynamic programming and 
alpha-beta can be lumped together with heuristic search and called intelligent 
computational enumeration. A sample of the problems tackled with these 
methods includes puzzles [7, 9], theorem proving [8, 17], combinatorial 
problems [13], and games [18]. The use of evaluation functions in guiding 
search in a discrete problem space occurs in each procedure. The most efficient 
evaluation functions rely on the semantics of a particular domain. To develop 
a problem-solving program for performance in a particular complex area, 
such as chess, requires a large investment in deriving and mechanizing 
domain specific information. For example, recognizing when it is appropriate 
to launch a king side attack by pawnstorm is not useful in any obvious way for 
solving the traveling salesman problem. Regardless of the proportion of work 
that must go into devising these domain-dependent heuristics versus improv- 
ing the efficiency of the general search procedures, the pervasiveness of these 
search procedures argue for the desirability of maximizing their efficiency-. 
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2. The ~ " 

To achieve an analysis, a narrow, well-defined point of view of heuristic 
search as a problem of finding a path in a locally finite directed graph is 
taken here. The reader interested in the development of these techniques 
should consult references [3-6, 9, 13-15, 19]. Also alternative models exist 
which are promising [20-23]. 

A problem space is a locally finite directed graph Go 

G: X = {x~, xz , . . . } ,  X is the set of nodes and can be infinite 

E ffi {(x~, xj~lx~, xj ¢ X, x~ ¢ F(xi)}, E is the set of edges or arcs and 
can be infinite if IX! is infinite (the cardinality or number of 
objects in a set is denoted [set namel) 

F is the successor mapping. 

F: X - ,  2 x the mapping of X into its power set, and F is finite, i.e., for 
all x, JF(x)J ¢ N, the integers 

In using directed graphs to specify domains, a data structure is stored with 
each node which contains a problem description. The successor mapping 
defines the structural character of the problem space, identifying for each 
particular node its immediate neighbors. A problem consists of some node 
(or set of nodes) which is to be the initial node, and another node (or set of 
nodes) which is to be the terminal node. A solution of the problem is a path 
from the (an) initial node to the (a~ lerminal node. There are man~ variants 
[15] of this basic problem involving constraints on the paths acceptable as 
solutions. 

A path in a graph is written as p = (x~, x ~ , . . . ,  xk), where (xj, x~+1) ~ E. 
The cardinality length of this path is l(p) = k - 1 ,  the number of edges 
traversed in going from x l to x~,. Length or distance will be the cardinality 
length, unless explicitly stated otherwise. The initial node of a problem will be 
denoted s, and the terminal node will be denoted t. It is easy for an algorithm 
to keep track of the length of a path from s to some node x which it has 
reached, and this length, l(p~=), will be denoted O(X). Heuristic search algo- 
rithms will attempt to estimate l~xt) by a function h(x) and use this informa- 
tion to improve search efficiency. A search algorithm would begin with node 
s and, applying the successor mapping, would produce an enumeration of 
nodes in the graph until it encountered t or failed. Failure could come from 
exhausting the computational resources available or from exhausting all 
nodes reachable from s without finding t. 

Exhaustive methods are impractical in large spaces. In these spaces the 
number of nodes grows exponentially with distance from the initial node. 
An algorithm's work is directly proportional to the number of nodes it must 
enumerate, and for such an algorithm to find solution paths of great length 
it must try nonexhaustive methods. In our model, the heuristics attempt to 
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get an efficient directed search by hopefully following some geodesic in our 
discrete space. These heuristic functions use features of the problem descrip- 
tion stored at a node to estimate the distance remaining to the terminal node. 
Though an actual problem solver would compute h(x) by looking at the 
features of the problem state stored there and comparing them to what is 
desired, it is a convenient mathematical fiction to just think of  h as a function 
on the nodes. 

Along with a graph model of problem solving, the class of algorithms 
which will be used for pro.ducing solutions must be described. This class of 
heuristic path algorithms (HPA) will conduct enumerative searches of graphs, 
using the h and g functions to guide the search. 

Heuristic Path Algorithm (HPA) 

s = start node, t = terminal node, x = any node 

g: X--, N, the number of edges from s to x enumerated by HPA- -  
distance-to-date term 

h: X - ,  R + (the nonnegative reals), an estimate of the number of edges on 
a shortest path from x to t--heuristic function 

f ( x )  = (1 - o~)g(x) + ~h(x) ,  0 <~ co <~ l--evaluation function 

S = set of nodes already visited and expanded 

= set of nodes one edge removed from those in S, but not in S - -  
candidate set 

I. Place s in S and calculate Us), placing them in ~. If x ¢ F(s), then 
g(x) = I and f ( x )  = (1 - co) + coh(x). 

2. Select n ¢ ~' such that f (n )  is a minimum. 

3. Place n in S and F(n) in ~', discarding any nodes already in S u ~. 
Calculate f for these nC~,v successors of n. If x ¢ F(n), then g(x)  - 1 + g(n) 
andf(x)  = (i - co)O(x) + coh(x). 

4. If n is the goal state, then halt, otherwise go to step 2. 

H PA is a typical path-finding algorithm of the Moore maze finding variety 
[16]. It would be the Moore algorithm for the cardinality metric if w = 0. '  
If co = i, it would be the Graph Traverser algorithm [9, 10] or, if co = 0.5, 
it would be Similar to the Hart, Nilsson, and Raphael algorithm [12]. The 
distance-to-date term, which is ordinarily used in combinatorial problems, 
and the heuristic estimator, which is ordinarily used in artificial intelligence 
problems, are naturally combined into an evaluation function which is their 
weighted sum. The combinatorial algorithms hesitate to use the heuristic 
term because they may throw away shortest (optimal) solutions, and the 
artificia,I intelligence algorithms hesitate to use the distance-to-date term 
because it may exponentially broaden the search. However, an appropriate 
Artificial Intelligence 1 (1970), 193-204 
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analysis in both instances leads to desirable gains in solving both styles of 
problem. 

~.-Theoretical Remits 

The path problem in a directed locally finite graph being solved by HPA is 
an explicit, well-defined model of heuristic search. A particular domain will 
have a use for specific heuristic estimators, but some general results relating 
the accuracy of the estimator to efficiency will be derived. The proofs are only 
sketched, as the details are either available elsewhere [3, 12, 19] or are clear 
from the sketch. The reader is advised to look at some of the other descrip- 
tions of these algorithms and related results, especially the Hart, Nilsson 
and Raphael paper [12] whose more general results are reinterpreted for our 
model. 

First, we make some preliminary remarks and more definitions: 
hp(x) = min (l(/~xt)), over all paths from x to t, hp is the minimum length, 

/Jxt 

called the perfect estimator 
h is in error e at node x, if lhp(x) - h(x)l = 
h is of botmded error 8 when 

hp - ~ ~< h ~< hp + e is satisfied throughout the graph 

By "h is a computable total function from X to R ~-'' is meant that, for all 
x E X, h(x) is the result of a program that always terminates with a value in 
R' .  Ordinarily, references to h and hp are to the class of computable total 
functions. 

The first concern in examining this algorithm is to describe when it will 
find a solution path. As is the case with any sufficiently general proof pro- 
cedure, HPA cannot always provide a decision procedure. 
THEOREM 1. (Undecidability.) For some problem domains there does not 

exist any total computable h~. 
Proof The Herbrand search problem for the first-order predicate calculus 

is undecidable. While there is some metric on this space, it could not be total 
computable or else a decision procedure for the first-order predicate calculus 
would exist. 

Remark. Any finite space has a total computable hp, namely, enumerate the 
space and make a table of the values found. This is impractical for large 
problems without nice mathematical properties. The graph for the traveling 
salesman problem for n cities has ( i t -  I)! nodes. 

HPA, however, ooes provide a recursive enumeration of the nodes in its 
domain. The only condition that must be insisted on is that the evaluation 
function be not completely reliant on h, i.e., ¢o < 1. 

THEOREM 2. (Recursively Enumerable.) I f  some solution path exists, HPA 
with oJ < 1 will f ind one. 
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Proof Let n - the length of the shortest path from s to t. G is locally 
finite, so that within n edges of s there are only a finite number of nodes. 
It is necessary to show that these nodes will be reached in some finite amount 
of computation. 

h: X --, R +, so that nodes in ~ with g(x) - 1 will have some maximum 
value of f (x)  bounded by M, an integer- Therefore HPA will either find a 
solution path or will expand all nodes with O(X) ffi 1 before it grows any 
path with 

( ' o )  M o C x ) >  1 -  " 

This argument can be applied inductively to show that an exhaustive search 
will be carried out for any n. Q.E.D. 

Remark. For ¢o = I, h - I/(I + hi,), HPA will not find solution paths in 
an infinite graph. 

In order that HPA will be a decision procedure for a given domain, criteria 
on the accuracy of h as a distance estimator give the following necessary and 
sufficient conditions. 

THEOREM 3. (Decidability.) I f  there exists a total computable h of bounded 
error for some domain, then HPA provides a decision procedure for this domain. 
Conversely, any problem domain for which there exists a decision procedure has 
a computable h ofboundederror. 

Proof If the error is bounded, then hp(s) <~ h(s) + 8. So HPA enumerating 
the nodes within cardinality distance h(s) + ~ of s will have searched the 
finite subgraph which contains any solution path. If t is not found within 
this subgraph, it must not be connected to s and the search can terminate with 
the answer that no path exists. 

If a decision procedure D exists for the domain, then it can be turned into 
an algorithm for a total computable function of bounded error. 

false--halt with oo 
D ( t )  - true-execute HPA with co = 0 and use the 

length of the path found 

By Theorem 2, the true alternative provides a finite algorithm for finding 
hp, certainly bounded in error. Q.E.D. 

Corollary 1. Some infinite domains exist for which the error on any comput- 
able heuristic term is unbounded for an infinite number of  nodes. 

Proof Use Theorem 3 and the fact that domains exist which have no 
decision procedure. Q.E.D. 

Quite often the solution path is used as a schedule or plan that will be 
repeatedly executed at a cost proportional to its length. At these times it 
is desirable or mandatory that the shortest solution path be found. It was for 
this case that Hart, Nilsson, and Raphael worked out their results. 
Artificial Intelligence I (1970), 193-204 
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The Hart, Nilsson, and Raphael algorithm handled the more general 
metric where an edge length could be any positive real. It also required a 
different handling of step 3 of HPA to guarantee minimal path length. The 
algorithm with this change will be called HPA+. 

HPA + is HPA modified in step 3 to read: 
Place n in $ and check ag x ¢ F(n) for the following possibilities. If 

x ¢ F(n) fa ~ and the new value off(x) is smaller than its old value, replace the 
old value by the new value. If x ~ F(n)f~ $ and the new value of f (x)  is 
smaller than its old value, remove x from $ and place it in ~. Otherwise 
place x in ~. 

THEOREM 4. (Hart, Nilsson, and Raphael.) HPA + using as its ev~uation 
function f ( x )  - O(x) + h(x) (or equivalently co = 0.5), where h <~ hi,, finds a 
shortest solution path i f  one exists [ 12]. 

Proof When the goal node is incorporated in S, it must have the current 
minimum value off(x) over all x e ~. Call this value It and assume that it 
is not the real minimum. Let the minimum path be p so that It > I(/0. Some 
node y along/z must be in ~ at some time in the computation (by induction). 

f ( y )  = g(y) + h(y) <. g(y) + hp(y) <~ l(p) < I,. 
Contradiction: y was in ~ when t was chosen by HPA + with value It. 

Heuristic functions satisfying boundedness were already known in branch 
and bound applications [13]. They allow the branch and bound enumeration 
to halt before enumerating the whole search space. 

Since the evaluation function is a distance estimator, it is natural to think 
of heuristic estimators satisfying a form of the triangle inequality. This is the 
idea of the "'consistency assumption" of Hart, Nilsson, and Raphael. 

hp(x, y) = the minimum cardinality distance over the paths from x to y 
Then the consistency assumption is 

h (x, y) + h(y) h(x) 
A heuristic function satisfying this condition never returns nodes to set ~. 
This condition certifies that HPA will behave as HPA +. 

THEOREM 5. (Hart, Nilsson, and Raphael.)Given hi and h2 as heuristic 
functions satisfying consistency, and h2 < h t < hp throughout the domain, then 
HPA using f t  - g + h t will only expand some subset (possibly proper) of  
nodes that are expanded using f ,  = 0 + hz [ 12]. 

Proof It is sufficient to show that, if HPA with ht visits a node, then HPA 
with hz visits the same node. A node will not be expanded if its value exceeds 
i(/~), where # is the shortest path. If I(p) < g + h=, then l(p) < g -t- hr. 
By the inductive use of the consistency assumption the g valuet of the same 
node are the same for ht and hz. Any node with 

100 > (g + h,)(x) > (g + 
which is connected to s will be reached and expanded. Q.E.D. 
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Remarks. Some nodes may have (g + h,Xx) > i~)  > (g + h2Xx); HPA 
with ht will then only expand a proper subset of the nodes that HPA with 
h2 expands. 

The inner loop of HPA does the basic work of the algorithm. It is executed 
once for each node expanded, and thus the work of solving a problem is 
proportional to the number of nodes expanded. This provides a convenient 
machine-independent measure of work. In Theorem 5, the efficiency of the 
use of one function which is a uniformly better estimator throughout the 
domain dominates the efficiency of the poorer estimator. This result applies 
to functions guaranteed to find a shortest path. In artificial intelligence, most 
often one is only too glad to get any solution path. This is the difference 
between an optimal solution and a feasible solution. In looking for feasible 
solutions cheaply, the constraints on the heuristic functions of Theorem 5 may 
be abandoned. Many heuristics do not satisfy these constraints, and co # 0.5 
may also be of benefit. Remember that the Graph Traverser [9] has done well 
with co := 1. 

In relating the efficiency of search to the accuracy of the heuristic estimator 
the first question is: "What if hp, the perfect estimator, is used ?" 

THEOREM 6. HPA search with hp is optimal, i.e., expands only the nodes 
along the shortest path for I I> co >I 0-5 [19]. 

Proof. 
f =  (1 - co)(g + h) + (2¢o - l)h 

Along the shortest path p, g + hp - I(p) and (2(o - l)hp is monotonic 
decreasing. At any time the candidate along the shortest path can be seen to 
have the smallest f. Q.E.D. 

Remark. For co < 0.5 the search tends toward a breadth first search. A 
pure breadth first search is HPA with co - 0. Then each node is expanded in 
order of its distance from s. With co < 0.5 nodes off, the shortest path may 
be expanded since (2(o - l)h~ <~ 0 is now monotonic, increasing along the 
shortest path. 

As the accuracy of the heuristic function declines, the number of nodes 
expanded by HPA can be expected to increase. The search can be inefficient 
because it can expand nodes very distant from the terminal node or because 
it is exhaustive within the search radius. The search radius is defined as the 
maxx,s(g(x)) and must be at least hp(t) when t is expanded. The search 
radius in finding a node at distance k from s with HPA, using o~ = 0, is just k. 
This search is exhaustive within this radius because all nodes x with g(x) < k 
will have been expanded. When using h and nonzero values of co, the algorithm 
possibly increases the search radius but hopefully gains by being non- 
exhaustive within that larger radius. 

The relation between the weighting on the heuristic term and search 
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efficiency was examined in Theorem 6 for the perfect estimator. This is the 
specific case of a heuristic function of bounded error (8 = 0). More generally, 
the heuristic functions of nonzero bounded error are of interest. The 
characterization of efficiency will be in terms of the worst possible behavior 
allowable for HPA, using an h of bounded error. This idea has its parallel in 
the worst case error [24] for numerical computations. There a particular 
single step is executed with a limited amount of precision. Each step of the 
computation may introduce a certain amount of error. The maximum 
conceivable error in performing some computation is the worst case error. 
Though achievable, it is very unlikely that this would be attained in a par- 
ticular computation, but it does provide bounds. In the same spirit, a worst 
case analysis of the number of nodes HPA will expand with respect to a 
heuristic of given error bound can be performed. In order to achieve concrete 
results in a nontrivial case, the infinite undirected binary graph is used. 

Let B be the infinite undirected binary graph: 

X =  {1, 2, 3 , . . . }  

F. = { ( i , j ) [ j eF( i )=  {2i, 2i + 1, [i/2J}}, [aJ ~- thelargestinteger 
less than a 

THEOREM 7. Let k be the distance from the root node (x = 1 in the binary 
tree) to the ooal node in B and let h be of  bounded error 8 (an integer). Then, 
for oJ - ½, the worst case search will expand: 

2"k + 1 nodes [19] 

Proof Theorem 6 gives the case for 8 = 0, which is k + 1. In the tree case, 
it is proved [19] that labeling nodes on the solution path hv + 8 and off the 
solution path h p -  8 gives the worst efficiency for HPA with an h having 
bounded error e. Then the count of nodet expanded gives 

k + l  + k + 2 k + 2 2 k + . . . + 2 ~ - t k  
8 = 0  8 - 1  8 = 2  8 - 3  

= 1 + 2"k Q.E.D. 

4' 
+ t 8 >I 1 [19] 

The values ¢o - ½ and oJ = i were ~elected because they are the extremum 
and the behavier at the intermediate values is monotonic. If co < ½, then a 
problem of sufficient length k could be found such that the broadening of 
the search would make it more expensive then for oJ i> ½ regardless of the 
error bound. The spirit of the result above is the same for general problem 
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graphs with a unique solution path of interest; only the counting would be 
more difficult. 

THV.OR~M 9. I f  HPA is searchino a graph G with a unique solution path, then 

(i) f o r  any given h, co = ½ will visit at most the same number o f  nodes as 
¢o = 1 in the worst case; 

(ii) i f  hl and he are o f  bounded error et, ee with ee > el, then, in the worst 
case for  a given ¢o, hz will visit at most the same number o f  nodes as he [19]. 

4. Some Final Observations 

The last results refer to unique solution paths, but most problem spaces have 
many alternative solution paths. It is also not clear how reasonable are the 
results that bound the worst case. The latter question has its parallel in 
statistical error analysis versus worst case in numerical algorithms. The 
problem in characterizing statistical error in a graph space is very difficult 
insofar as the metrics are not well behaved and graph counting problems are 
difficult. Nevertheless, the model remains as a useful guide in developing 
heuristic procedures. Empirical performance measures can be collected to 
decide on appropriate we.ightings and features. Consider for a given heuristic 
function and problem the variables 

N,~ = number of nodes expanded 

k,~ -- length of the solution path found 

~,~ = branch rate of the search tree [3] 

The branch rate is a derived quantity which gives the average degree of a tree 
of N nodes and diameter ko,: 

N'~ = ~ , -  I o , - 1  

Empirically for the 15 puzzle with several heuristic functions used, increasing 
¢o increases the path length of solutions and decreases the branch rate. In the 
ideal case using h = hp the exhaustive search (w - 0) finds the shortest path 
by expanding all nodes within that radius. As oJ increases, the number of 
nodes decreases until at co = ½ only the nodes along the shortest path are 
visited. This remains the case for ½ < oJ ~< 1. Where h is a less than perfect 
function, o~ = 0 still finds the shortest path. This is guaranteed to continue 
if [~o/(1- 00)]h ~< hp, the lower bound condition, is satisfied. However, 
when larger values of o~ are used, more confideflce is placed in the heuristic 
term. The searches continue to greater depth before being abandoned. The 
paths found can be quite circaitous and long. This type of search is very 
narrow in branching rate. As is seen in (4.1), the path length comes into the 
exponent of the branching rate. In either case, if one is halved the other can 
be approx;mately doubled, maintaining the same search performance. 
Arti~cial Intelligence I (1970), 193-204 
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Empirically ~o can be varied and its performance checked on sample problems 
within a domain for a particular h. In general, automatic learning of the 
Samuel's type [10, 18] can be performed with respect to w. 

The evaluation function can be extended to a general linear form or 
convex combination, 

f ( x )  = I -  o, g(x) + E 
i = I  iml 

k 

i = l  

with even the w~ as functions on the nodes. This would allow a learning 
system to measure performance of each term as a contribution to the accuracy 
ofdistance estimation. When the heuristics provide a lower bound to guarantee 
a shortest path, the weights could be adjusted to effect this; or, alternatively, 
a function of the form 

f (x)  --- g(x) + max (h~(x)) 
i 

where each h~(x) ~ hj,(x) could be used. 
It remains to try more experiments that use these ideas in theorem proving, 

combinatorial problems, and general problem solving. 
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