
ARTIFICIAL INTELLIGENCE 193

Heuristic Search Viewed as
Path Finding in a Graph

Ira Pohl
I B M Thomas J. Watson Research Center, Yorktown Heights,
New York

Recommended by E. J. Sandewall

ABSTRACT

This paper presents a particular model of heuristic search as a path-finding problem
in a directed graph. A class of graph-searching procedures is described which uses a
heuristic function to guide search. Heuristic functions are estimates of the number o f
edges that remain to be traversed in reaching a goal node. A number of theoretical
results for this model, and the intuition for these results, are presented. They relate the
e])~ciency o f search to the accuracy o f the heuristic function. The results also explore
efficiency as a consequence of the reliance or weight placed on the heuristics used.

I. Introduction

Heuristic search has been one of the important ideas to grow out of artificial
intelligence research. It is an ill-defined concept, and has been used as an
umbrella for many computational techniques which are hard to classify or
analyze. This is beneficial in that it leaves the imagination unfettered to try
any technique that works on a complex problem. However, leaving the con.
cept vague has meant that the same ideas are rediscovered, often cloaked in
other terminology rather than abstracting their essence and understanding
the procedure more deeply. Often, analytical results lead to more emcient
procedures. Such has been the case in sorting [I] and matrix multiplication [2],
and the same is hoped for this development of heuristic search.

This paper attempts to present an overview of recent developments in
formally characterizing heuristic search. The model allows us to define
precisely measures of search efficiency in machine-independent terms. The
problems of when these techniques will work and how well they will work
are interpreted as questions of constructing accurate computable heuristic
functions. This formulation allows analytical results on how to construct
efficient heuristic search procedures.

Artificial Intelligence 1 (1970), 193-204

Copyright ~ 1970 by American Elsevier Publishinli Company, Inc.

194 . ~ , POHL

This paper does not attempt a history of developments in this area [3--6];
nevertheless, a few of the main accomplishments that shaped this viewpoint
are necessary for context. The heuristic search programs of Newell, Simon,
and Shaw starting with the logic theorist [7, 8] generated a large amount of
enthusiasm. They attempted to apply these techniques to a wide variety of
problem domains, empirically demonstrating the generality of heuristic
search. A more recent empirical attempt at generality coupled with an active
concern for efficiency has been the Graph Traverser programs [9~ 10] develo~d
principally by Doran and Michie. Here the search mechanism becomes
spe~ificaUy a graph-searching program guided b9 a heuristic function which
is an estimator of distances in the graph. The Graph Traverser program was
used to compare the efficiency of different heuristic functions for solving a
class of puzzles.

Another line of development was motivated by the need for a procedure
for guiding the SRI robot [11] around its world. In choosing to represent the
world as a directed graph, the problem of directing the robot was transformed
into a shortest-path problem. However, the robot had a means for estimating
Euclidean distances in his world. Hart, Nilsson, and Raphael [12] discovered
how to use this information to improve the efficiency of computing the
shortest path. They generalized this to the concept of heuristic estimation and
provided an algorithm which would use this information and still compute
shortest paths. They produced the first theorems on efficiency as a function
of accuracy of the heuristic function. The results above and related techniques
[13-16] in enumerative combinatorial computations have been responsible
for the development presented here.

An informal definition of a heuristic is any device that aids search efficiency
by either restricting the region searched or appropriately ordering the search.
Closely allied techniques of branch and bound, dynamic programming and
alpha-beta can be lumped together with heuristic search and called intelligent
computational enumeration. A sample of the problems tackled with these
methods includes puzzles [7, 9], theorem proving [8, 17], combinatorial
problems [13], and games [18]. The use of evaluation functions in guiding
search in a discrete problem space occurs in each procedure. The most efficient
evaluation functions rely on the semantics of a particular domain. To develop
a problem-solving program for performance in a particular complex area,
such as chess, requires a large investment in deriving and mechanizing
domain specific information. For example, recognizing when it is appropriate
to launch a king side attack by pawnstorm is not useful in any obvious way for
solving the traveling salesman problem. Regardless of the proportion of work
that must go into devising these domain-dependent heuristics versus improv-
ing the efficiency of the general search procedures, the pervasiveness of these
search procedures argue for the desirability of maximizing their efficiency-.
Artificial Intelligence I 0970), 193-204

HEURISTIC SEARCH AS PATH FINDING 195

2. The ~ "

To achieve an analysis, a narrow, well-defined point of view of heuristic
search as a problem of finding a path in a locally finite directed graph is
taken here. The reader interested in the development of these techniques
should consult references [3-6, 9, 13-15, 19]. Also alternative models exist
which are promising [20-23].

A problem space is a locally finite directed graph Go

G: X = {x~, xz , . . . } , X is the set of nodes and can be infinite

E ffi {(x~, xj~lx~, xj ¢ X, x~ ¢ F(xi)}, E is the set of edges or arcs and
can be infinite if IX! is infinite (the cardinality or number of
objects in a set is denoted [set namel)

F is the successor mapping.

F: X - , 2 x the mapping of X into its power set, and F is finite, i.e., for
all x, JF(x)J ¢ N, the integers

In using directed graphs to specify domains, a data structure is stored with
each node which contains a problem description. The successor mapping
defines the structural character of the problem space, identifying for each
particular node its immediate neighbors. A problem consists of some node
(or set of nodes) which is to be the initial node, and another node (or set of
nodes) which is to be the terminal node. A solution of the problem is a path
from the (an) initial node to the (a~ lerminal node. There are man~ variants
[15] of this basic problem involving constraints on the paths acceptable as
solutions.

A path in a graph is written as p = (x~, x ~ , . . . , xk), where (xj, x~+1) ~ E.
The cardinality length of this path is l(p) = k - 1 , the number of edges
traversed in going from x l to x~,. Length or distance will be the cardinality
length, unless explicitly stated otherwise. The initial node of a problem will be
denoted s, and the terminal node will be denoted t. It is easy for an algorithm
to keep track of the length of a path from s to some node x which it has
reached, and this length, l(p~=), will be denoted O(X). Heuristic search algo-
rithms will attempt to estimate l~xt) by a function h(x) and use this informa-
tion to improve search efficiency. A search algorithm would begin with node
s and, applying the successor mapping, would produce an enumeration of
nodes in the graph until it encountered t or failed. Failure could come from
exhausting the computational resources available or from exhausting all
nodes reachable from s without finding t.

Exhaustive methods are impractical in large spaces. In these spaces the
number of nodes grows exponentially with distance from the initial node.
An algorithm's work is directly proportional to the number of nodes it must
enumerate, and for such an algorithm to find solution paths of great length
it must try nonexhaustive methods. In our model, the heuristics attempt to

Artificial Intelligence I (1970), 193-204

196 IRA POHL

get an efficient directed search by hopefully following some geodesic in our
discrete space. These heuristic functions use features of the problem descrip-
tion stored at a node to estimate the distance remaining to the terminal node.
Though an actual problem solver would compute h(x) by looking at the
features of the problem state stored there and comparing them to what is
desired, it is a convenient mathematical fiction to just think of h as a function
on the nodes.

Along with a graph model of problem solving, the class of algorithms
which will be used for pro.ducing solutions must be described. This class of
heuristic path algorithms (HPA) will conduct enumerative searches of graphs,
using the h and g functions to guide the search.

Heuristic Path Algorithm (HPA)

s = start node, t = terminal node, x = any node

g: X--, N, the number of edges from s to x enumerated by HPA- -
distance-to-date term

h: X - , R + (the nonnegative reals), an estimate of the number of edges on
a shortest path from x to t--heuristic function

f (x) = (1 - o~)g(x) + ~h(x) , 0 <~ co <~ l--evaluation function

S = set of nodes already visited and expanded

= set of nodes one edge removed from those in S, but not in S - -
candidate set

I. Place s in S and calculate Us), placing them in ~. If x ¢ F(s), then
g(x) = I and f (x) = (1 - co) + coh(x).

2. Select n ¢ ~' such that f (n) is a minimum.

3. Place n in S and F(n) in ~', discarding any nodes already in S u ~.
Calculate f for these nC~,v successors of n. If x ¢ F(n), then g(x) - 1 + g(n)
andf(x) = (i - co)O(x) + coh(x).

4. If n is the goal state, then halt, otherwise go to step 2.

H PA is a typical path-finding algorithm of the Moore maze finding variety
[16]. It would be the Moore algorithm for the cardinality metric if w = 0. '
If co = i, it would be the Graph Traverser algorithm [9, 10] or, if co = 0.5,
it would be Similar to the Hart, Nilsson, and Raphael algorithm [12]. The
distance-to-date term, which is ordinarily used in combinatorial problems,
and the heuristic estimator, which is ordinarily used in artificial intelligence
problems, are naturally combined into an evaluation function which is their
weighted sum. The combinatorial algorithms hesitate to use the heuristic
term because they may throw away shortest (optimal) solutions, and the
artificia,I intelligence algorithms hesitate to use the distance-to-date term
because it may exponentially broaden the search. However, an appropriate
Artificial Intelligence 1 (1970), 193-204

HEURISTIC SEARCH AS PATH FINDING 197

analysis in both instances leads to desirable gains in solving both styles of
problem.

~.-Theoretical Remits

The path problem in a directed locally finite graph being solved by HPA is
an explicit, well-defined model of heuristic search. A particular domain will
have a use for specific heuristic estimators, but some general results relating
the accuracy of the estimator to efficiency will be derived. The proofs are only
sketched, as the details are either available elsewhere [3, 12, 19] or are clear
from the sketch. The reader is advised to look at some of the other descrip-
tions of these algorithms and related results, especially the Hart, Nilsson
and Raphael paper [12] whose more general results are reinterpreted for our
model.

First, we make some preliminary remarks and more definitions:
hp(x) = min (l(/~xt)), over all paths from x to t, hp is the minimum length,

/Jxt

called the perfect estimator
h is in error e at node x, if lhp(x) - h(x)l =
h is of botmded error 8 when

hp - ~ ~< h ~< hp + e is satisfied throughout the graph

By "h is a computable total function from X to R ~-'' is meant that, for all
x E X, h(x) is the result of a program that always terminates with a value in
R' . Ordinarily, references to h and hp are to the class of computable total
functions.

The first concern in examining this algorithm is to describe when it will
find a solution path. As is the case with any sufficiently general proof pro-
cedure, HPA cannot always provide a decision procedure.
THEOREM 1. (Undecidability.) For some problem domains there does not

exist any total computable h~.
Proof The Herbrand search problem for the first-order predicate calculus

is undecidable. While there is some metric on this space, it could not be total
computable or else a decision procedure for the first-order predicate calculus
would exist.

Remark. Any finite space has a total computable hp, namely, enumerate the
space and make a table of the values found. This is impractical for large
problems without nice mathematical properties. The graph for the traveling
salesman problem for n cities has (i t - I)! nodes.

HPA, however, ooes provide a recursive enumeration of the nodes in its
domain. The only condition that must be insisted on is that the evaluation
function be not completely reliant on h, i.e., ¢o < 1.

THEOREM 2. (Recursively Enumerable.) I f some solution path exists, HPA
with oJ < 1 will f ind one.

Artificial Intelligence I (1970), 193-204

198 IRA POitL

Proof Let n - the length of the shortest path from s to t. G is locally
finite, so that within n edges of s there are only a finite number of nodes.
It is necessary to show that these nodes will be reached in some finite amount
of computation.

h: X --, R +, so that nodes in ~ with g(x) - 1 will have some maximum
value of f (x) bounded by M, an integer- Therefore HPA will either find a
solution path or will expand all nodes with O(X) ffi 1 before it grows any
path with

(' o) M o C x) > 1 - "

This argument can be applied inductively to show that an exhaustive search
will be carried out for any n. Q.E.D.

Remark. For ¢o = I, h - I/(I + hi,), HPA will not find solution paths in
an infinite graph.

In order that HPA will be a decision procedure for a given domain, criteria
on the accuracy of h as a distance estimator give the following necessary and
sufficient conditions.

THEOREM 3. (Decidability.) I f there exists a total computable h of bounded
error for some domain, then HPA provides a decision procedure for this domain.
Conversely, any problem domain for which there exists a decision procedure has
a computable h ofboundederror.

Proof If the error is bounded, then hp(s) <~ h(s) + 8. So HPA enumerating
the nodes within cardinality distance h(s) + ~ of s will have searched the
finite subgraph which contains any solution path. If t is not found within
this subgraph, it must not be connected to s and the search can terminate with
the answer that no path exists.

If a decision procedure D exists for the domain, then it can be turned into
an algorithm for a total computable function of bounded error.

false--halt with oo
D (t) - true-execute HPA with co = 0 and use the

length of the path found

By Theorem 2, the true alternative provides a finite algorithm for finding
hp, certainly bounded in error. Q.E.D.

Corollary 1. Some infinite domains exist for which the error on any comput-
able heuristic term is unbounded for an infinite number of nodes.

Proof Use Theorem 3 and the fact that domains exist which have no
decision procedure. Q.E.D.

Quite often the solution path is used as a schedule or plan that will be
repeatedly executed at a cost proportional to its length. At these times it
is desirable or mandatory that the shortest solution path be found. It was for
this case that Hart, Nilsson, and Raphael worked out their results.
Artificial Intelligence I (1970), 193-204

HEURISTIC SEARCH AS PATH FINDING 199

The Hart, Nilsson, and Raphael algorithm handled the more general
metric where an edge length could be any positive real. It also required a
different handling of step 3 of HPA to guarantee minimal path length. The
algorithm with this change will be called HPA+.

HPA + is HPA modified in step 3 to read:
Place n in $ and check ag x ¢ F(n) for the following possibilities. If

x ¢ F(n) fa ~ and the new value off(x) is smaller than its old value, replace the
old value by the new value. If x ~ F(n)f~ $ and the new value of f (x) is
smaller than its old value, remove x from $ and place it in ~. Otherwise
place x in ~.

THEOREM 4. (Hart, Nilsson, and Raphael.) HPA + using as its ev~uation
function f (x) - O(x) + h(x) (or equivalently co = 0.5), where h <~ hi,, finds a
shortest solution path i f one exists [12].

Proof When the goal node is incorporated in S, it must have the current
minimum value off(x) over all x e ~. Call this value It and assume that it
is not the real minimum. Let the minimum path be p so that It > I(/0. Some
node y along/z must be in ~ at some time in the computation (by induction).

f (y) = g(y) + h(y) <. g(y) + hp(y) <~ l(p) < I,.
Contradiction: y was in ~ when t was chosen by HPA + with value It.

Heuristic functions satisfying boundedness were already known in branch
and bound applications [13]. They allow the branch and bound enumeration
to halt before enumerating the whole search space.

Since the evaluation function is a distance estimator, it is natural to think
of heuristic estimators satisfying a form of the triangle inequality. This is the
idea of the "'consistency assumption" of Hart, Nilsson, and Raphael.

hp(x, y) = the minimum cardinality distance over the paths from x to y
Then the consistency assumption is

h (x, y) + h(y) h(x)
A heuristic function satisfying this condition never returns nodes to set ~.
This condition certifies that HPA will behave as HPA +.

THEOREM 5. (Hart, Nilsson, and Raphael.)Given hi and h2 as heuristic
functions satisfying consistency, and h2 < h t < hp throughout the domain, then
HPA using f t - g + h t will only expand some subset (possibly proper) of
nodes that are expanded using f , = 0 + hz [12].

Proof It is sufficient to show that, if HPA with ht visits a node, then HPA
with hz visits the same node. A node will not be expanded if its value exceeds
i(/~), where # is the shortest path. If I(p) < g + h=, then l(p) < g -t- hr.
By the inductive use of the consistency assumption the g valuet of the same
node are the same for ht and hz. Any node with

100 > (g + h,)(x) > (g +
which is connected to s will be reached and expanded. Q.E.D.

Artificial Intelh'gence i (1970), 193-204

200 tP, A POttL

Remarks. Some nodes may have (g + h,Xx) > i~) > (g + h2Xx); HPA
with ht will then only expand a proper subset of the nodes that HPA with
h2 expands.

The inner loop of HPA does the basic work of the algorithm. It is executed
once for each node expanded, and thus the work of solving a problem is
proportional to the number of nodes expanded. This provides a convenient
machine-independent measure of work. In Theorem 5, the efficiency of the
use of one function which is a uniformly better estimator throughout the
domain dominates the efficiency of the poorer estimator. This result applies
to functions guaranteed to find a shortest path. In artificial intelligence, most
often one is only too glad to get any solution path. This is the difference
between an optimal solution and a feasible solution. In looking for feasible
solutions cheaply, the constraints on the heuristic functions of Theorem 5 may
be abandoned. Many heuristics do not satisfy these constraints, and co # 0.5
may also be of benefit. Remember that the Graph Traverser [9] has done well
with co := 1.

In relating the efficiency of search to the accuracy of the heuristic estimator
the first question is: "What if hp, the perfect estimator, is used ?"

THEOREM 6. HPA search with hp is optimal, i.e., expands only the nodes
along the shortest path for I I> co >I 0-5 [19].

Proof.
f = (1 - co)(g + h) + (2¢o - l)h

Along the shortest path p, g + hp - I(p) and (2(o - l)hp is monotonic
decreasing. At any time the candidate along the shortest path can be seen to
have the smallest f. Q.E.D.

Remark. For co < 0.5 the search tends toward a breadth first search. A
pure breadth first search is HPA with co - 0. Then each node is expanded in
order of its distance from s. With co < 0.5 nodes off, the shortest path may
be expanded since (2(o - l)h~ <~ 0 is now monotonic, increasing along the
shortest path.

As the accuracy of the heuristic function declines, the number of nodes
expanded by HPA can be expected to increase. The search can be inefficient
because it can expand nodes very distant from the terminal node or because
it is exhaustive within the search radius. The search radius is defined as the
maxx,s(g(x)) and must be at least hp(t) when t is expanded. The search
radius in finding a node at distance k from s with HPA, using o~ = 0, is just k.
This search is exhaustive within this radius because all nodes x with g(x) < k
will have been expanded. When using h and nonzero values of co, the algorithm
possibly increases the search radius but hopefully gains by being non-
exhaustive within that larger radius.

The relation between the weighting on the heuristic term and search
Artij~cial Intelligence I (1970), 193-204

HEURISTIC SEARCH AS PATH FINDING 201

efficiency was examined in Theorem 6 for the perfect estimator. This is the
specific case of a heuristic function of bounded error (8 = 0). More generally,
the heuristic functions of nonzero bounded error are of interest. The
characterization of efficiency will be in terms of the worst possible behavior
allowable for HPA, using an h of bounded error. This idea has its parallel in
the worst case error [24] for numerical computations. There a particular
single step is executed with a limited amount of precision. Each step of the
computation may introduce a certain amount of error. The maximum
conceivable error in performing some computation is the worst case error.
Though achievable, it is very unlikely that this would be attained in a par-
ticular computation, but it does provide bounds. In the same spirit, a worst
case analysis of the number of nodes HPA will expand with respect to a
heuristic of given error bound can be performed. In order to achieve concrete
results in a nontrivial case, the infinite undirected binary graph is used.

Let B be the infinite undirected binary graph:

X = {1, 2, 3 , . . . }

F. = { (i , j) [j eF(i)= {2i, 2i + 1, [i/2J}}, [aJ ~- thelargestinteger
less than a

THEOREM 7. Let k be the distance from the root node (x = 1 in the binary
tree) to the ooal node in B and let h be of bounded error 8 (an integer). Then,
for oJ - ½, the worst case search will expand:

2"k + 1 nodes [19]

Proof Theorem 6 gives the case for 8 = 0, which is k + 1. In the tree case,
it is proved [19] that labeling nodes on the solution path hv + 8 and off the
solution path h p - 8 gives the worst efficiency for HPA with an h having
bounded error e. Then the count of nodet expanded gives

k + l + k + 2 k + 2 2 k + . . . + 2 ~ - t k
8 = 0 8 - 1 8 = 2 8 - 3

= 1 + 2"k Q.E.D.

4'
+ t 8 >I 1 [19]

The values ¢o - ½ and oJ = i were ~elected because they are the extremum
and the behavier at the intermediate values is monotonic. If co < ½, then a
problem of sufficient length k could be found such that the broadening of
the search would make it more expensive then for oJ i> ½ regardless of the
error bound. The spirit of the result above is the same for general problem

Artifwial ~.'nteiligenc¢ 1 (1970), 193-204

Similarly the worst case can be found for ¢o = 1.

THEOREM 8. As in Theorem 7, except that ¢o - I. Then the worst case search
will expand:

k + l e = 0

202 IRA POre

graphs with a unique solution path of interest; only the counting would be
more difficult.

THV.OR~M 9. I f HPA is searchino a graph G with a unique solution path, then

(i) f o r any given h, co = ½ will visit at most the same number o f nodes as
¢o = 1 in the worst case;

(ii) i f hl and he are o f bounded error et, ee with ee > el, then, in the worst
case for a given ¢o, hz will visit at most the same number o f nodes as he [19].

4. Some Final Observations

The last results refer to unique solution paths, but most problem spaces have
many alternative solution paths. It is also not clear how reasonable are the
results that bound the worst case. The latter question has its parallel in
statistical error analysis versus worst case in numerical algorithms. The
problem in characterizing statistical error in a graph space is very difficult
insofar as the metrics are not well behaved and graph counting problems are
difficult. Nevertheless, the model remains as a useful guide in developing
heuristic procedures. Empirical performance measures can be collected to
decide on appropriate we.ightings and features. Consider for a given heuristic
function and problem the variables

N,~ = number of nodes expanded

k,~ -- length of the solution path found

~,~ = branch rate of the search tree [3]

The branch rate is a derived quantity which gives the average degree of a tree
of N nodes and diameter ko,:

N'~ = ~ , - I o , - 1

Empirically for the 15 puzzle with several heuristic functions used, increasing
¢o increases the path length of solutions and decreases the branch rate. In the
ideal case using h = hp the exhaustive search (w - 0) finds the shortest path
by expanding all nodes within that radius. As oJ increases, the number of
nodes decreases until at co = ½ only the nodes along the shortest path are
visited. This remains the case for ½ < oJ ~< 1. Where h is a less than perfect
function, o~ = 0 still finds the shortest path. This is guaranteed to continue
if [~o/(1- 00)]h ~< hp, the lower bound condition, is satisfied. However,
when larger values of o~ are used, more confideflce is placed in the heuristic
term. The searches continue to greater depth before being abandoned. The
paths found can be quite circaitous and long. This type of search is very
narrow in branching rate. As is seen in (4.1), the path length comes into the
exponent of the branching rate. In either case, if one is halved the other can
be approx;mately doubled, maintaining the same search performance.
Arti~cial Intelligence I (1970), 193-204

HEURISTIC SEARCH AS PATH FINDING 203

Empirically ~o can be varied and its performance checked on sample problems
within a domain for a particular h. In general, automatic learning of the
Samuel's type [10, 18] can be performed with respect to w.

The evaluation function can be extended to a general linear form or
convex combination,

f (x) = I - o, g(x) + E
i = I iml

k

i = l

with even the w~ as functions on the nodes. This would allow a learning
system to measure performance of each term as a contribution to the accuracy
ofdistance estimation. When the heuristics provide a lower bound to guarantee
a shortest path, the weights could be adjusted to effect this; or, alternatively,
a function of the form

f (x) --- g(x) + max (h~(x))
i

where each h~(x) ~ hj,(x) could be used.
It remains to try more experiments that use these ideas in theorem proving,

combinatorial problems, and general problem solving.

REFERENCES

I. Frazer, W. D., and McKeller, A. C. Samplesort: A sampling approach to
minimal storage tree sorting. TR 74, Depart. of Electrical Engineering,
Princeton University, Nov. 1968.

2. Winograd, S. On the number of multiplications required to compute certain
functions. Proc. Natl. Acad. Sci. (5) 58 (Nov. 1967), 1840-1842.

3. Nilsson, N. Problem-solving methods in artificial intelligence, McGraw.Hill,
New York (in preparation, Spring, 1971).

4. Newell, A., and Ernst, G. The Search for Generality. Proceedings 1965 IFIP
Congr. Spartan Books, New York, 1965, pp. 17-24.

5. Michie, D. Heuristic search. Experimental Programming Reports: 1'4o. 19,
Dept. of Machine Intelligence and Perception, University of Edinburgh,
Edinburgh, Scotland, Dec. 1969.

6. Sandewall, E. Concepts and methods for heuristic search. Proc. Internat. Joint
Conf. Artificial Intelligence (Walker, D., and Norton, L. exls.). MITRE Cor-
poration, Bedford, Mass., 1969, pp. 199-218.

7. Newell, A., and Simon, H. GPS, a program that simulates human thought.
Computers and Thought (Feigenbaum, E., and Feidman, J., eds.). McGraw-Hill,
New York, 1963, pp. 279-293.

8. Neweil, A., Shaw, J. C., and Simon, H. Empirical explorations with the logic
theory machine. Proc. Western Joint Computer Conf. 11 (1957), 318-239.

9. Doran, J., Michie, D. Experiments with the Graph Traverser program. Proe.
Roy. Soc. A (1437) 294 (Sept. 1966), 235-259.

Artificial Intelligence I (1970), 193-204

204 IRA POHL

10. Michie, D., and Ross, R. Experiments with the adaptive graph traverser
Machine lntelh'gence 5 (I 969), 301-318.

11. Nilsson, N. A mobile automation: An application of artificial intelligence
techniques. Prec. IJCAI (Walker, D., and Norton, L., eds.). MITRE Corpora-
tion, Bedford, Mass., 1969, pp. 509-520.

12. Hart, P., Nilsson, N., and Raphael, B. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. System Sci. Cybernetics (2) 4 (July
1968), 100-t07.

13. Lawler, E., and Wood, D. Branch.and-bound methods: A survey. Operations
Research (4) 14 (July-August 1966), 699-719.

14. Pohl, I. A theory of bi-directional search in path problems. RC 2713, IBM
Research Center, Yorktown Heights, N.Y., Nov. 1969.

15. Dreyfus, D. An appraisal of some shortest path algorithms. Operations Research
(3) 17 (May-June 1969),' 395-412.

16. Moore, E. The shortest path through a maze. Prec. InternatL Syrup. Theory
of Switching, Part II, April 1957. Harvard University Press, Cambridge, Mass.,
1959, pp. 285-292.

17. Kowalski, R. Search strategies for theorem-proving. Machine Intelligence 5
(1969), 181-202.

18. Samuel, A. Some studies in machine learning using the game of checkers.
Computers and Thought (1963), 71-105.

19. Pohl, I. First results on the effect of error in heuristic search. Machine Intelligence
S (1969), 219-236.

20. Sandewall, E. A planning problem solver based on look-ahead in stochastic
game trees. J. ACM (3) 16 (July 1969), 364-383.

21. Slagle, J., and Bursky, P. Experiments with a multipurpose theorem-proving
heuristic program. Jr. ACM (1) 15 (Jan. 1968), 85-99.

22. Quinlan, J., and Hunt, E. A formal deductive problem solving system. J. ACM
(4) 15 (Oct. 1968), 625-646.

23. Ernst, G. Sufficient conditions for the success of GPS. J. ACM (4) 16 (Oct.
1969), 517-533.

24. Wilkinson, J. Rounding Errors in Algebraic Processes, Pren-:ice-Hall, Englewood
Cliffs, N.J., 1963.

Accepted June, 1970

Artificial Intelligence I (1970), 193--204

