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Algorithm Rf� 
I. Select a .risk measure and a risk tolerance 6. 

2. Order nodes on OPEN by increasing values of the cost threshold C,1(n ), 
given by the solution to Eq. (3.23). 

3. Form a sublist FOCAL of all nodes whose C8(n) deviates by at most ( 

from that of the leading node on OPEN, n0: 

FOCAL= {n: C�(n)-C�(n0)E;; £} 

ct (for expansion) a node from FOCAL that promises to facilitate the 
qui est search for the (optimal) completion part of the solution. 

5. Halt hen a node chosen for expansion is found to satisfy the goal condi-

THEOREM 5. Algorithm R6;, always finds a solution that does not exceed 

the cost thres Id of all nodes in OPEN by more than(. 

Proof: 

c�(n)+( \In qn OPEN • 

Exceeding the cost thres Id C6(n) by (results in only a small increase in the 

overall termination rislc.. A ditionally, we will show that for R 1 and R3 the 

choice £ = 6 would lead to a crmination risk of at most 6. Thus the speedup 

feature is obtained for free, wit ut deteriorating the termination risk. 

THEOREM 16. For risk meas :s R1 and R3, algorithm R6•a is 6-risk

admissible. 

Proof: Assume first that R 8": 6 ter 
obtained, for R1 and R3, 

g(t) < 
t being in FOCAL implies 

C�(I) < C6(no) +( < 

and therefore 

g(t)..:; C6(n)+<-8 

The choice E = 8 leads to 

which is the condition for 6-risk-admissibility. 

t. In Eq. (3.29) we 

Yn on OPEN 

• 

·vr 
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':°°I of R1* Terminalion with Risk Measures R1, R2, or R3. The proof con
sists of two steps. The first step shows that if a solution path exists, then at all 
times OPEN contains a node on this path for which R;(n) is bounded. The 
second step shows that any such node cannot remain unexpanded for all but a 
finite number of steps. The two steps of the proof are: 

I. From the definition of R 1 ( C) = C - g - h", it is clear that the equation 
R1(C) = 6 has a finite solution Cd= 6 + g + h •• and therefore, C6(n) is 
finite for all nodes on OPEN. Likewise, the .equation R2{C) = 8 has a 
s?lution C,1 

.
< I for all 0 < Ii <;; I. The finiteness of C8 for the expected 

nsk R3(C) 1s based on the assumption that the density p1,(x) possesses a 
finite expectation E(h) < oo for every node on a solution path. With this 
assumption, we can write 

R3(C) � C[I-P(f + > C)) - E(f +) 
and, using Tchebycheff's inequality 

RJ{C) > C - 2£(/+) = C - 2g - 2E(h) 

Clearly the equation R3(C) =: Ii also possesses a finite solution C8• 
2. The inequality C6(n) > g(n) holds for each node on OPEN since the de

cision to abandon n after finding a solution with cost C <: g(n) carries no 
risk �t al �. Now� since g( ·) was assumed to increase beyond .bounds along 
any infinite path {see proof of Theorem I), R8* must return after a finite 
number of expansions to those nodes on OPEN that, by virtue of their be
longing to some solution path, possess bounded cfi. 

3.3 SOME EXTENSIONS TO NONADDITIVE 
EVALUATION FUNCTIONS (BF* AND GDF*) 

Our discussions in this chapter have so far been limited to the additive cost 
measure g(n ') = g(n) +c (n, n ') and to additive evaluation functions such as 
f = ( 1- w )g + wh . In this section, our aim is to examine how the results esta
blished in Section 3.1 will change if we remove both restrictions. The minimi
zation objective is generalized to include nonadditive cost measures of solution 
paths such as multiplicative costs, the max-cost (i.e., the highest branch cost 
along the path), the mode (i.e., the most frequent branch cost along the path), 
the range {i.e., the difference between the highest and lowest branch cost along 
the path), the cost of the last node, and many others. Additionally, even in the 
usual case where the minimization objective is the additive cost measure, we 
now permit f (n) to take on a more general form and to employ more ela
borate evaluations of the promise featured by a given path from s to n. For 

P�l/Tu.l&. '1ec1n'>fic ;- [; ks� 
jtn_t� .s j-o-r to�r"'f'u fr-ob� SowL�, . .  �0 � -lf"e;� r, t <=rgy, 
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example, one may wish to consult the evaluation function/(n) = �,�
x{g(n') 

+ h (n ')}where n' ranges along the path from s ton . Alternatively, the class of 
evaluation functions may now include nonlinear combinations of g and h in 
f = f (g, h) and, as another example, the additive evaluation f"'" g I- h with 
h an arbitrary nonadmissible estimate of h • 

3.3.1 Notation and Preliminaries 

The computations required by some of these generalizations may no longer be 
executable by A• and we may have to employ more elaborate best-first algo
rithms (see Figure 2.10) such as BF* (in case of nonrecursh·e cost measure:;) or 
even GBF* (in case of cost measures that are not order-preserving as in Figure 
3.5). In the following discussion, we use the tenninology of the BF* algorithm 
( i.e., delayed tennination with irrevocable parent selection) and hope that the 
reader can infer the modifications needed if GBF* is employed. For comparis
on purposes, we assign to each new result an asterisk number (e.g., Theorem 
l *,Theorem 2") pointing to the corresponding topics in Section 3.1. 

The objective of BF* is to find an optimal or a near-optimal solution path in 
a directed locally finite graph, where each solution path 
P' = s, n" n2; • • •  , y, yEf, is assigned a cost measure C(P') which may be a 
complex function of all the nodes and the arcs along P·'. In principle, the cost 
measure C(P') need only be defined on complete solution paths in P., _1., as 
only these paths are returned by the search algorithm at termination. However, 
since every node may be proclaimed a goal node in some conceivable problem 
instance, the domain of C( ·) essent.ially spans all path-segments in G which be
gin at s. 

To each node n1 along a given path P = s, n 1, n2, • • •  , n1, • • •  we assign a 
nonnegative evaluation function fp(n1) that depends only on the portion of the 
path leading to that node. Thus, f p (n;) is a shorthand notation for 

f (s, n 1, n 2, • • •  , n; ). As the search progresses, a given node n may be assigned 
to different paths depending on the pointers used by BF• to trace back the path 
from s ton. However, at any given time the computation off p (n) is uniquely 
determined by the pointer-path assigned to n at that time, am:! so f (n) will 
denote an arbitrary element in the set {fp(n ): P EPP} where PP is the set of 
all pointer-paths constructed during the execution of the search. Moreover, 
BF* adjusts pointers along the path of lowest f. Hence, if P 1 and P2 are two 
paths leading to n from two distinct parents of n , we can write 
fp 1(n) =.;; jpz<n) if path P 1 was explicated after PJ. In particular, 
fp1 (n) ..;;; f (n) if P, is known to be the path assigned ton at termination. 

This is a convenient point to demonstrate why an adequate analysis of BF* 
on graphs that are not trees requires that/ be order-preserving. Relations such 
as fp (n) < f (n) would be very helpful if f (n) stood, not merely for the set of 
values attached to 11 during the execution of the search algorithm, but also for 
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Figure3.5 
An order-reversal pro_duced by using the range as the cost measure i e fp(n) stands for the difference between the highest and I d 

' · ., 
along the path .p leading to n. 

owest e ge values 
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the entire set of v�lues n may ;eceive along each one of the paths leading to n in the graph G, explicated
. 
by the algorithm. Figure 3.5 exemplifies the difference be

d
tween the �o sets usmg the cost-range measure as an f function that is not or er-preserving. 
In Figure 3 S(b) a ne th p · · · 

J: (n ') _ 1 < ; ( ') 2 �F�
a • . 1 ts discovered to n' and, since 

P1 -:- J P2 n = , rechrects the pointer of n' along p . N t when n is ge t d BF• · 1 ex • nera e , assigns to it a pointer back to n, that . al P - s n n' hil p , 1s, ong 1 - • !• • n • w e 2 = s, nz, n ', n is no longer considered However the value of (p1(n) at this point is 4, whereas the J value along p2 �ould hav� been lower smce J: (n) - 3 Th th h P2 - • us, even oug the two paths ton are part of the subgra�h G, explicated by BP with fp,(n) > fp,(n), we find that n is currently directed along the inferior path p Such d · 
nk' f I· an or er reversal m the ra t�g o P, and P2 wou!� not hav� occurred if f was an order-preservin function such as the additive mull.tplicative · g ' • or maximum-cost measures. 
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Likewise, the relation /p1 (n ) > fp2(n) would be recognized by GBF* which 

would have maintained both P1 = �, n 1, n ' ,  n and P2 = s, n 1, n ', n in the list 
of cancliclate solution bases and, as soon as n was generatecl, would have com
puted f p 1 (n) = 4 and and f p/n) = 3 and would have reassigned the pointer 

of n' back along P2• 

DEFINITION: Let P;P1 denote the concatenation of two paths in a graph, i.e., 
P1 is an extension of P; . An evaluation fanction f is said to be order -
presening if for any two paths P1 and P2 leading from s to n, and for any 
extension P3 of those paths, the following holds: 

/(Pi);;;. /(P2) "'9 f(P1P3) > f(P2P3) 

In terms of our f P (n) notation, order-preservation can be written 

Order-preservation is a version of the principle of optimality in dynamic pro
gramming (Dreyfus and Law, 1977), and it simply states that if a path P1 from 
s to n is judged to be more meritorious than another path P 2, also. from s to n, 
then no common extension of P 1 and P 1 may later reverse this judgment. In 
other words, the information that may be gathered by exploring node n has no 
bearing on the relative merit of candidate path-segments from s to n and hence 
BF*'s decision to irrevocably discard the less meritorious parent as soon as n is 
generated in duplicate is justified. The discarded parent cannot possibly offer a 
better path to any of n's descendants. Based on this property, we may state the 
following lemma. 

LEMMA O•: If f is order-preserving and P 1 and P2 are any two paths,such 
that n is currently directed along P1 and P2 has been explicated in the past 
(i.e., all arcs along P1 have been generated), then 

fp,(n)' fpi(n) 

In particular, if P, is known to be the path assigned to n at termination, then 

Y PEG,. • 

Note that for GBF* the lemma holds true even without the requirement that/ 
be order-preserving. 

&lations betwttn C and/. So far we have not specified any relation between 
the cost function C, defined on solution paths, and the evaluation function f, 
defined on partial paths or solution bases. Since the role of f ' is to guide the 
search toward the lowest cost solution path, we now impose the restriction that 
f be monotonic with C when evaluated on complete solution paths, that is, 

y E'f (3.31) 
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where l/t is an increasing function of its argument. No restriction, however, is 
imposed on t�e relati�n between C and f on nongoal nodes, that is, we may 
allow evaluauon functions that treat goal nodes preferentially, for example: 

{ iji[C(s , n i . n2 , . . .,n)) ifn E'f 
f(s,n1,n2, • •  .,n)= 

F(s,n1,n2, .•• , n) ifn fir 
where F( ·) is an arbitrary function of the path P = s, n 1, n 2, ... , n . The addi
tive evaluati

.
on function f = g + h used by A • is, in fact, an example of such 

goal-prefemng typeJ o� functions. The condition h (y) = O guaranteed the 
1denut� f "'.' C on solution paths, whereas on other paths f was not governed 
by C since, m general, h could take on arbitrary values. 

3.3.2 Algorithmic Properties of Best-First Search BF* 

In locally finite graphs the set of solution paths is countable, so they can be 
enumerated: 

P\,P], .. ., P/ , . . .  
and correspondingly, we shall use the notation/; (n) to represent f p,(n ). Let 
M1 be the maximum of f on the solution path P/, that is, 

/ 

M1 = rnax(/1 (n )} (3.32) n EPj 
and let M be the minimum of M; : 

M =min {M} j 1 (3.33) 
Henceforth we will assume that both the max and the min functions are well 
defined. 

TerminaJion and Cmnpleteness 

LEMMA t •: At any time before BF* terminates, there exists on OPEN a 
node n' that is on some solution path and for which f (n ') < M. 
Proof: Let M = M1, i.e., the min-max is obtained on solution path P'. 
Then at some time before termination, let n' be the shallowest OPEN 
node on Pf, having pointers directed along P;' (possibly i = j). From the 
definition of M1 : 

M; = max{f, (n;)} 
iri �I'} 

therefore, 

/j(n')' M; = M 

.� ....... �:-� �' �-;,--· --�� ·�- . -
F-#11'"�:'-..... . . -..... . -· � . ' - . " • -',. ,. -:: • t 'I 

: . .. : ' , -: •:' -• • "'f � • •• • "-- • , ' -• - • 
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Moreover since all ancestors of n' on PJ are on CLOSED and BF* has 
decided t� assign its pointers along Pi, Lemma 0* states 

j,(n'),.;; /J{n') 

This implies 
f;(n') < M 

which proves Lemma I*. • 

LEMMA 2*: Let p be any pointer path established by BF* at termination 
time. Then any time before termination there is an OPEN node n on P for 
whichf(n) = fp(n). 
Proof: Let n be the shallowest OPEN node on P at some arbitra� time I 
before termination. Since all n's ancestors on P are closed at time t, P 
was explicated and, hence (Lemma 0"), n must be assigned a�/ at le.ast 
as cheap as fp(n) . Thus fp(n) > j(n) with s�ct inequahty holdmg 
only if, at time t, 11 is found directed alon_g a pa

.
th different than. P. How· 

ever since BF* eventually terminates with pomters along P, 1t must be 
that

.
BF* has never encountered another path to 11 with cost lower than 

fp(n). Thus/(n) =fp(n). • 

THEOREM t •. If there is a solution path and f is such that fp (11; � is 
unbounded along any infinite path P, then BF* terminates with a solutwn, 
i.e., BF* is complete. 

Proof: The proof is similar to that of Theorem I in Section 3. 1 .2, using 
the boundness ofj(n')< M, n' E OPEN. 11 

The importance of M lies not only in �uaranteeing �� termination of BF* 
on infinite graphs, but mainly in identifymg and appra1smg the solut10n path 
eventually found by BF*. 

Properties of the Final Solution Path 

THEOREM 2•. BF* is i1i-1(M)-admissible, that is, the cost of the solution 
pathfound by BF* is at most o/-1(M). 

Proof: Let BF* terminate with solution path PJ = s, . .. , t where t E f. 
From Lemma l * we learn that BF* cannot select for expansion any node 
n having /(n) > M. This includes the node t Er and, he�ce, 
j.(t).;;; M. But Eq. (3.31) implies that/j(t) = 1/;[C(Pj)] and so, smce J I . ifi and i1i- are monotomc, 

C(Pj') < V 1(M) 

which proves the theorem. • 
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Theorem 2 * can be useful in appraising the degree of suboptimality exhibit
ed by nonadmissible algorithms. For example, Pohl's dynamic weighting 
scheme (Section 3.2.2, Eq. (3.19)) can be easily shown to be •··admissible. 
Indeed, for the evaluation function 

!!JE.l /(n) = g(n) + h(n) +<[I - ] h(n) . . N .. -�. - ' · �h(y) = 0 and Eq. (3.3l)�dictate i/;(C) = C and we can bound M by considering max/p .(n) along any optimal path P*. Thus n 
M.;;;; max fp (n) 11 EP• 

,;;;; max [g•(n)+h*(n)+di*(n) [1-!!J.El ] J  
II<; I'* N 

=C* +<h*(s) 
= C*(I + <) 

On the other hand, Theorem 2* states that the search terminates with cost 
C, < M. Hence 

C, ..,;; C*( l + <) 

This example demonstrates that any evaluation function of the form 

f(n) = g(n) + h(n)[I +<Pp(?)] 
will also be <-admissible, as long as p P (n) ..,;; 1 along some optimal path P *. 
In more elaborate cases where it is impossible to guarantee an ·upperbound to 

M, the statistical properties of M may be used to assess the average degree of suboptimality, E(C, -C*); see exercise 5.4. 
Theorem 2* can also be used to check for ordinary admissibility, i.e., 

C, = C*;all we needto do is to verify the equalityi/;-1(M) = C*. This, how
ever: is mote conveniently accomplished with the help of the next corollary. It 
makes direct use of the facts that 

I. An upperbound on f along any solution path constitutes an upperbound 
onM. 

2. The relation between fp(n) and C* is more transparent along an optimal 
path. (For example, in the case of A • with h .;;;; h *, the relation 
f p .( n ) < C * is self-evident.) 

COROLLARY 1: If in every graph searched by BF* there exists at least one 
optimal solution path along which f attains its maximal value on the goal 
node, then BF* is admissible . 



- .. , 
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Proof: Let BF* terminate with solution path P) = s • ... , t and let 
p • = s , ... , y be an optimal solution path such that 

max /1• {n) �J,. (y). 
,, E p· 

By Theorem 2* we know thatf;(t) < M. Moreover, from the definition 
of M we have 

M < max /;(n) 
n 'S Pl 

for every solution path Pf. In particular, taking P;' = P •,we obtain 
fi(t) < M < .�a;f P (n) = /p•(y) 

However, from Eq. (3.31) we know that f is monotonic in C when 
evaluated on complete solution paths, thus 

C(Pf) � C* 

which means that BF* tenninates with an optimal-cost path. • 

The admissibility condition for Pohl's weighted heuristic 
f,, = ( 1 _ w )g + wh (Section 3.2.1) can be obtained directly from Corollary 
l � Here 1/-(C) = (1 - w)C which complie� with Eq. (3 .3l)·fo·r w <

.
l.  It 

remains to examine what values of w < l will force f.., to attam tts maximum 
at the end of some optimal path p• = s, . .. , y. Writing 

fp•(n) < fp.(y) 

we obtain 
(l - w)g*(n) + wh(n) < (l - w)g*(y) = (1 - w)[g*(n) + h*(n)] 

or 

� > .J!J!D_ w h *(n) 

Clearly, if the ratio h (n )lh *(n) is kno�n to. be bo��dcd fro.m above by a con
stant 13, then setting 1 - w /w > fJ will satisfy this rnequahty . Therefore, the 
condition 

1 w<� 

delineates the range of admissibility of A• and, for h (n) < h *(n ). (/J = 1), it 
simply becomes w ;;:;; Yi. Note, howev�r. that the use o'. w > Yz may also be 
admissible if h is known to consistently underestimate h • such that 
h(n).'h*(n),.;; fJ < 1. Conversely, if h is known �o .be nona�missib�c wit

.
h 

p > 1, the use of w = 1 ,'(1 + /3) will tum A * adm�ss1ble. Thi� techmque .1s 
called debiasing and its effect on the average run-lime of A• 1s analyzed m 
Chapter 7. 

. • 
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Another useful application of Corollary I is to check whether a given combi
nation of g and h ,f = f (g, h), would constitute an admissible heuristic in the 
usual task of minimizing an additive cost measure. ff h < h • and/ is mono
tonic in both arguments, then Corollary 1 states that f (g, h) is guaranteed to 
be admissible as long as 

f(g, C - g) < f(C, 0) for 0 � g < C 

Thus, for example,/ = '/g" + h2 is admissible while/== (g''; + h'')2 is not. 
In general, any combination of the form/ = cfl[cfl-1(g) + cfl-1(h )] will be ad
missible if <fl is monotonic nondecreasing and concave. 

It can be shown, however, that of all functions f (g, h ),f == g + h results 
in the least number of nodes expanded (Dechter and Pearl, 1983) and, in this 
sense, A• can be termed optimal. If, in addition, h is consistent, then A• large
ly dominates every admissible algorithm (see exercise 3.7), even those outside 
the best-first class. 

Conditions for Node Expansion 

LEMMA 3*: Let Pf be the solution palh with which BF* terminates, then M 
is obtained on Pf, i.e., M == �. 
Proof: Suppose BF* terminates on P1', but Mj > M, and let n • E PJ be 
such that/; (n *) == Mj. At the time that n • is last chosen for expansion its 
pointer must already be directed along Pj" and, therefore, n • is assigned 
the value/(n *) = f;(n *) > M. At that very time there exists an OPEN 
node n 1 having/ (n ') < M (Lemma l *), and so 

/(n') < /(n*) 

Accordingly, n' should be expanded before n •, which contradicts our 
·��� . 

COROLLARY 2: BF* chooses for expansion at least one node n such that at 
the time of this choice,/ (n) = M. 
Proof: Let BF* terminate . with PJ and let n * EPi such that 

/;(n*) = M;. From Lemma 3*, M1 = M. Moreover, at the time that 
n • is last expanded, it is pointed along P}. Hence, 

f(n*)=fj(n*)=� = M  • 

THEOREM 3*. Any node expanded by BF* has f(n) < M immediately 
before its expansion. 

Proof: Follows directly from Lemma 1 •. • 

THEOREM 4•:•. Let n • be the first node with f (n *) = M which is expanded 



108 Formal Properties of Hc11rislic Methods CHAP.3 

by BF• (there is at least one). Any node which prior to the expansion of n '' 
resides in OPEN with f (n) < M will be selected for expansion before n •. 

Proof: / (n) can only decrease through the redirection of pointers. 
Therefore; once 11 satisfies f (n) < M, it will continue to satisfy this ine
quality as long as it is in OPEN. Clearly, then, it should be expanded be
fore n *. • 

Note the difference between Theorems 3* and 4• and Theorems 3 and 4 in 
Section 3.1. First, M plays the role of C • on the right-hand side of the inequal
ities. Second, the sufficient condition for expansion in Theorem 4* must also 
include the provision that n enters OPEN before the expansion of n •. This 
provision was not necessary in Theorem 4 because C* is always obtained on 
the terminal node t and so, if a node n ever resides on OPEN, it automatically 
enters OPEN before t 's expansion. When f is nonadditive (or even ;.dditive 
with nonadmissible h). it is quite possible that M will be obtained on a non
terminal node n • and then, a descendant n of 11 * may .enter OPEN satisfying 
/(n) < f(11 *)=M and still will not be expanded. 

We will now show that such an event can only occur to descendants of nodes 
n * for which f (n *) = M, i.e., it can only happen to a node n reachable by an 
M -bounded path but not by a strictly M-bounded path. 

THEOREM 5*. Any node reachnbfe .from s by a strictly M-bounded path will 
be expanded by BF* 

Proof: Consider a strictly M-bounded path P from s to n (M cannot be 
obtained on s ) . We can prove by induction from s to n that every node 
along P enters OPEN before n • is expanded and hence, using Theorem 
4*, n will be expanded before n *. • 

The final results we wish to establish are necessary and sufficient conditions 
for node expansion which are superior to The·orems 4* and s• in that they also 
determine the fate of the descendants of n •. 

THEOREM 6*. Let Ij be the solution path eventually found by BF* and let 
n1 be the depth-i nbde along Pj, i = 0, 1, . . .. A necessary condition for 
expanding an arbitrary node n in the graph is that for some n; E:.PJ there 
exists an L; -bounded path Pn; _ n where 

L; = max fj(nd. k>i 
In other words, there should exist a path P., _. along which 

f(n')' maxfj(nd Vn'EP,,; _,, 
k > i 

(3.34) 

Moreover, a sufficient condition for expanding n is that (3.34) be satisfied 
with strict inequality. 

l 
J 

. ., 
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Proof: Assume t�at n. is expanded by BF* and let n, be the shallowest 
OPEN

.
node ?� PJ at time t,, when n is selected for expansion (see Figure 

3.6). Since Pi is th
•
e solution

. 
path eventually found by BF* we know (see 

proof of Lemma 2 ) that at tJme 11 n4 is along Pf and, therefore, 

/(n) � /(n.) =/j(n·) 
We are now ready to iden�fy  the node n; on PJ that satisfies (3.34). Let 
P, -11 be the path along which n's pointers are directed at time t,,, and let 
n; . be the deepest common ancestor �f n and nk along their respective 
pointer-paths P, -n and Pf. Since n, 1s an ancestor of n, we have i < k 
and so, f(n) � Jj(nd implies 

/(n) < T��f1(nd 

We now repeat this argument for every ancestor n' of n along the p 
segment of P, -n . At the time it was last expanded, each such ancest�� �", 

p� J 
I 

n 

. . Fleure3.6 The cond1t1on for expanding n given that path Pf is eventually found by the search. 11 will be expanded if all the J values along path p 
I h •·-• are ower t an the maximal/value between n; and y (along Pj). 

' 
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may have encountered a different nk' on OPE�, b�t each s�ch nk' must 

have been a descendant of n; along PJ satisfying /(n) < /;(nd. 
Hence, Eq. (3.34) mtL�t he satisfied for all nodes n' along the Pn, -n seg-

ment of P, _ 11 which proves the necessary·part of Theorem 6* · 
Sufficiency is proven by assuming that ��f1(nd occurs at some node 

nk' e PJ. k' > i. Both n, and nk' are eve�tuaIIy expa�ded by BF* and 

50 if n is not already expanded al the time t' when nk. 1s last selected for 

ex
,
pansion then p . _ should contain at least one OPEN node. We now ' "• " h' h 

identify n' as the shallowest OPEN node on P,,1 _11 at time t ', for w 1c 

we know that 
f(n') <IP. _,,(n') 

I 

However, since Eq. (3.34) is assumed to hold with strict inequality for any 
n' along P we must conclude 11,-11, 

f(n') < f p01_,(n') < f(nk) 

implying that n', not nk, should h��e been chosen fo� expansion at time 

1' thus contradicting our suppos1t1on that n remains unexpanded at 
' . time t'. 

The expansion condition of Theorem 6* plays a
. �

ajor rote. in Chapte� 7 
where we analyze the average complexity ofnonadm1ss1ble algonthms, treating 

f as a random variable. 
This condition is rather complex for general graphs since many path� may 

stem from pf toward a given node n, all of which must be tested acc�rding to 

Theorem 6� The test is simplified somewhat in the case of trees smce Eq. 

(3.34) need only be tested for one node, n;d'j, which is the deepe�t common 

ancestor of n and y. Still, the condition stated in Theorem 6 *  
.
requires th�t �e 

know which path will eventually be found by the search algonth� and th
.
•�· in 

general, may be a hard task to detennine a pri�ri . . An alternative cond1t1on, 

involving only the behavior off across the tree, 1s g1v�n by Dechter a�d Pearl 

(1983), but it is of a rather complex form 
.
when f 1s �onmonotomc. For

tunately the model we analyze in Chapter 7 ts a tree having �nly one �luuon 

path and so, since the identity of Pj is gi�en, the expansion cond1uon of 

Theorem 6* becomes extremely simple (see Figure 7.1). 

3.4 BIBLIOGRAPHICAL AND HISTORICAL 
REMARKS 

A formal description of A• and many of its properties were presented in a paper
. 

by 
Hart Nilsson and Raphael ( 1968). The fact that the performance of A • cannot 1m
prov� by making h tower (Theorem 7) was originally thought to depend on the con-

� f' 
! 
\ 1 

! 

I 
l 
1 
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si,tency property of Ir. This error was corrected in Hart. Nilsson and Raphael ( 1972) 
and in Nilsson ( l 980). Our treatment. using the concepl of c-bounded paths. renders 
the proof of Theorem 7 simpler than in earlier works. The property of monotonicity 
w.:is introduced by Pohl ( 1977) to replace that of consistency. Surprisingly. the 
equirnlence of the 1wo (Theorem 8). as well as Theorem 9 (that consistency implies 
admissibili1y). have not previously been noted in the literature. 

The optimality of A ·. in the sense of expanding the least number of distinct nodes. 
has been a subject of some confusion. Theorem 7 has often been interpreted to reflect 
some supremacy of A · over other search algorithms of equal information. and. conse
quently. several authors have assumed that A ··s optimality is an established fact (e.g .. 
Nilsson 1971. Mero 1981. Barr and Feigenbaum. 1981). In fact. all Theorem 7 says is 
that some A• algorithms are better than other A" algorithms. It does not indicate 
\'.'hether - the additive rule f = g +Ir is the best way of combining g and h, neither 
docs it assure us that expansion policies based on�r on g and h can do as well as more 
sophisticated policies using the entir� information gather:d along each path. These 
two conjectures have been examined by Gelperin ( 1977) and Dech1er and Pearl ( 1983) 
and were finally given a qualified confirmation using the results of Section 3.3. 

Gelperin ( 1977) has correctly pointed out that in any discussion of the optimality of 
A · one should compa1e 1f to a wider class of equally informed algorithms, not merely 
those guided by f = g +It. and that the comparison class should include, for example, 
algorithms which adjust their h in accordance \"ith the information gathered during the 
search. His an;:lysis, unfortunate!;·. falls short of considering the entirety of this elt
tended class. having to follow an over-restricti·1e definition of equat�r informed. 
Gelperin's interpretation of "an algorithm B is never more informed than A" not only 
restricts B from using information unavailable to A • but also forbids B from processing 
common information in a better way th;:n A does. For Cltample, if B is a best-first al
gorithm guided by f 8, then in order to qualify for Gclperin's definition of"ne·:er more 
informed th�P.1, '.'. .B.· is restricted from ever assigning to a node n '.J..n-f 8 (11) value 
higher than �4� W.01tk!·. even if the information gathered along the path to n justifies 
such an assignment. 

Dechter and Pearl ( 1983) used the more natural interpretation of "equally in
formed," allowing the algorithms compared to have access to the same heurislic infor
mation while placing no restriction on the way they use it. They considered the class of 
all search algorithms seeking a lowest (additive) cost path in a graph Y:here the nodes 
are assigned an arbitrary heuristic function h, and assumed that h (n) is made :ivailable 
to nn�· algorithm that generates node n. Within thi• class. they first showed that A • is 
optimal over all those algorithms which. for all h 'l!;are guaranteed to find a solution at 
least as good as A •. Second. they considered the wider class of algorithms which like 
A .. are only admissible whenever h .;, h · and showed that on this class A is not op
timal and that no optimal algorithm exists unless h is also restricted to be consistent 
(exercise 3.7a and 3.7b). Finally. they showed that A· is optimal over the subclass of 
best-first algorithms (i.e .. BF*) which are admissible when h � h •. 

Seclion 3.2 is b;:sed on Pearl and Kim ( 1982); other methods of relaxing the admissi· 
bility requirement to gain speed are reported by Harris ( 1974). Pohl ( 1973). and Ghal
lab ( 1982). Section 3.3 is based on Dechter and Pearl ( 1983), although some of the 
results were also reported by Bagchi and Mahanti ( 1983). Improvements in A · which 
reduce the number of node reopenings in the case of nonmonotone h were introduced 
by Martelli ( 1977). J\1i:ro ( 198 l), and Bagchi, et al. ( 1983); see exercise .Js: • . .-_!· 


