WHAS

Daniel Padé

Background Searches

Graphcal Models Optimizatio

AND/OR Search Graph Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Weighted Heuristic Anytime Search Flerova, Marinescu, and Dechter

Daniel Padé¹

¹University of South Carolina

April 24, 2017

Basic Heuristic Searches

WHAS

Daniel Padé

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Best-first Search Blindly follows the heuristic

■ Weighted *A*^{*} Search For *w* > 1

$$f(n) = g(n) + w \cdot h(n)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Larger w yields 'greedier' searches

Basic Heuristic Searches

WHAS

Daniel Padé

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Best-first Search
Blindly follows the heuristic

Weighted A* Search For w > 1

$$f(n) = g(n) + w \cdot h(n)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Larger w yields 'greedier' searches

Graphical Models

WHAS

Daniel Padé

Background Searches

Graphcal Models

> Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Definition (Graphical Model)

A tuple $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ where 1 $X = \{X_0, \dots, X_{n-1}\}$ is a set of variables 2 $D = \{D_0, \dots, D_{n-1}\}$ is a set of domains 3 $F = \{f_0(X_{S_0}), \dots, f_{r-1}(X_{S_{r-1}})\}$ is a set of scopes: • $X_{S_i} \subseteq X$ • $\forall i. f_i : X_{S_i} \to \mathbb{R}^+$

4 A combination operator $\bigotimes \in \{\sum, \prod\}$

The model $\ensuremath{\mathcal{M}}$ represents the function

$$C(X) = \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$

Graphical Models

WHAS

Daniel Padé

Background Searches

Graphcal Models

> Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Definition (Graphical Model)

A tuple $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ where 1 $X = \{X_0, \dots, X_{n-1}\}$ is a set of variables 2 $D = \{D_0, \dots, D_{n-1}\}$ is a set of domains 3 $F = \{f_0(X_{S_0}), \dots, f_{r-1}(X_{S_{r-1}})\}$ is a set of scopes: • $X_{S_i} \subseteq X$ • $\forall i. f_i : X_{S_i} \to \mathbb{R}^+$ 4 A combination operator $\bigotimes \in \{\Sigma, \Pi\}$

The model $\mathcal M$ represents the function

$$C(X) = \bigotimes_{i=0}^{r-1} f_i(X_{\mathcal{S}_i})$$

Graphical Models Optimization Problems

WHAS

Daniel Pad

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Given a model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$, the most common optimization task is either *most probable explanation* or *maximum a posteriori*

MPE Find the optimal value C^* :

$$C^* = C(\boldsymbol{x}^*) = \max_X \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$

MAP Find the optimizing configuration x^* :

$$x^* = \operatorname*{argmax}_X \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$

Graphical Models Optimization Problems

WHAS

Daniel Pad

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Given a model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$, the most common optimization task is either *most probable explanation* or *maximum a posteriori*

MPE Find the optimal value C^* :

$$C^* = C(\boldsymbol{x^*}) = \max_{\boldsymbol{X}} \bigotimes_{i=0}^{r-1} f_i(\boldsymbol{X}_{S_i})$$

MAP Find the optimizing configuration x^* :

$$x^* = \operatorname*{argmax}_X \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$

Graphical Models Optimization Problems

WHAS

Daniel Pad

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Given a model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$, the most common optimization task is either *most probable explanation* or *maximum a posteriori*

MPE Find the optimal value C^* :

$$C^* = C(\mathbf{x}^*) = \max_X \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$

MAP Find the optimizing configuration x^* :

$$x^* = \underset{X}{\operatorname{argmax}} \bigotimes_{i=0}^{r-1} f_i(X_{\mathcal{S}_i})$$

Graphical Models Optimization Problems: MPE/MAP \rightarrow WCSP

WHAS

Daniel Pade

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

MPE

$$C^*_{\mathsf{MPE}} = C(\mathbf{x}^*) = \max_{\mathbf{X}} \bigotimes_{i=0}^{r-1} f_i(\mathbf{X}_{S_i})$$

WCSP Weighted Constraint Satisfaction Problem (MPE in negative log-space)

$$C^*_{\mathsf{WCSP}} \coloneqq C(\mathbf{x}^*) = \min_{X} \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$

Graphical Models Optimization Problems: MPE/MAP \rightarrow WCSP

WHAS

Daniel Pade

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

MPE

$$C^*_{\mathsf{MPE}} = C(\boldsymbol{x}^*) = \max_{\boldsymbol{X}} \bigotimes_{i=0}^{r-1} f_i(\boldsymbol{X}_{\mathcal{S}_i})$$

WCSP Weighted Constraint Satisfaction Problem (MPE in negative log-space)

$$C^*_{\mathsf{WCSP}} \coloneqq C(\mathbf{x}^*) = \min_{X} \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$

AND/OR Search Graphs Primal Graph

WHAS

Primal Graphs

Definition

The *primal graph* of a model is a graph where the vertices are the variables and edges connect variables within the same scope

$\underset{\mathsf{Primal Graph}}{\mathsf{AND}}/\mathsf{OR} \ \underset{\mathsf{Graph}}{\mathsf{Search Graphs}}$

WHAS

Daniel Padé

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Definition

The *primal graph* of a model is a graph where the vertices are the variables and edges connect variables within the same scope

Scopes

Figure: Primal

AND/OR Search Graphs Pseudotrees

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

AND/OR Search Graphs Pseudotrees

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Daniel Pade

Backgrounc Searches

Graphcal Models Optimizatio

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Figure: Context-Minimal AND/OR Graph For Pseudotree

:

.

٠

AND/OR Search Graphs Optimization Problems

WHAS

Daniel Padé

Background Searches

Graphcal Models

Problems AND/OR

Search Grap Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Assume a graphical model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ with primal graph *G*, pseudotree \mathcal{T} , and AND/OR search tree $S_{\mathcal{T}}$

Definition

The context-minimal AND/OR search graph, denoted $C_{\mathcal{T}}$, is the AND/OR search graph obtained after merging all identical subproblems.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\mathcal{C}_\mathcal{T}$ is exponential in the depth of $\mathcal T$

AND/OR Search Graphs Optimization Problems

WHAS

Daniel Padé

Background Searches

Graphcal Models

AND/OR Search Graph Primal Graphs

Pseudotrees Search Space Optimization Problems

AOBF Example Assume a graphical model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ with primal graph *G*, pseudotree \mathcal{T} , and AND/OR search tree $S_{\mathcal{T}}$

Definition

The context-minimal AND/OR search graph, denoted $C_{\mathcal{T}}$, is the AND/OR search graph obtained after merging all identical subproblems.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\mathcal{C}_\mathcal{T}$ is exponential in the depth of \mathcal{T}

WHAS

Daniel Pade

Background Searches

Graphcal Models Optimizatio

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Assume a graphical model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ with primal graph *G*, pseudotree \mathcal{T} , and AND/OR search tree $S_{\mathcal{T}}$

Definition

A solution tree T of C_T is a subtree satisfying the following conditions:

- **1** It contains the root of $C_{\mathcal{T}}$
- If an internal AND node n is in T, then all the children of n are in T
- if an internal OR node n is in T, then exactly one child of n is in T

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4 Every leaf in T is a terminal node

WHAS

Daniel Pade

Background Searches

Graphcal Models Optimizatio

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Assume a graphical model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ with primal graph *G*, pseudotree \mathcal{T} , and AND/OR search tree $S_{\mathcal{T}}$

Definition

A solution tree T of C_T is a subtree satisfying the following conditions:

- **1** It contains the root of $C_{\mathcal{T}}$
- 2 If an internal AND node *n* is in *T*, then all the children of *n* are in *T*
- if an internal OR node n is in T, then exactly one child of n is in T

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4 Every leaf in T is a terminal node

WHAS

Daniel Pade

Background Searches

Graphcal Models Optimizatio

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Assume a graphical model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ with primal graph *G*, pseudotree \mathcal{T} , and AND/OR search tree $S_{\mathcal{T}}$

Definition

A solution tree T of C_T is a subtree satisfying the following conditions:

- **1** It contains the root of $C_{\mathcal{T}}$
- 2 If an internal AND node *n* is in *T*, then all the children of *n* are in *T*
- 3 if an internal OR node *n* is in *T*, then exactly one child of *n* is in *T*

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4 Every leaf in T is a terminal node

WHAS

Daniel Pade

Background Searches

Graphcal Models Optimizatio

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example Assume a graphical model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ with primal graph *G*, pseudotree \mathcal{T} , and AND/OR search tree $S_{\mathcal{T}}$

Definition

A solution tree T of $C_{\mathcal{T}}$ is a subtree satisfying the following conditions:

- **1** It contains the root of $C_{\mathcal{T}}$
- 2 If an internal AND node *n* is in *T*, then all the children of *n* are in *T*
- if an internal OR node n is in T, then exactly one child of n is in T
- 4 Every leaf in T is a terminal node

WHAS

AOBF

State-of-the-art A^* for AND/OR search space.

- Input: Graphical Model $\mathcal{M} = \langle X, D, F, \Sigma \rangle$
 - Initial weight w_0
 - Pseudotree \mathcal{T} rooted at X_1
 - heuristic h_i (precalculated)

WHAS

AOBF

State-of-the-art A^* for AND/OR search space. Too complicated to fit on a slide

- Input: Graphical Model $\mathcal{M} = \langle X, D, F, \Sigma \rangle$
 - Initial weight w_0
 - Pseudotree \mathcal{T} rooted at X_1
 - heuristic h_i (precalculated)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

WHAS

Daniel Pade

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF

Example

State-of-the-art A^* for AND/OR search space. Too complicated to fit on a slide

Highlights

Input:

- t: Graphical Model $\mathcal{M} = \langle X, D, F, \Sigma \rangle$
 - Initial weight w₀
 - Pseudotree \mathscr{T} rooted at X_1
 - heuristic h_i (precalculated)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Output: Optimal solution to M

AND/OR Best First Search Example

WHAS

- Example

- Let $\mathcal{M} = \{X, D, F, \Sigma\}$ where
 - $X = \{A, B, C, D\}$
 - $D = \bigcup \{0, 1\}_{s}$ $s \in X$
 - *F* is given by the following tables:

A B f(A,B)	B C f(B,C)
0 0 4	0 0 3
$0 \ 1 \ 1$	$0 \ 1 \ 2$
$1 \ 0 \ 3$	$1 \ 0 \ 2$
$1 \ 1 \ 1$	1 1 1
B f(B)	A B f(A,B)
0 1	$0 \ 0 \ 4$
1 9	$0 \ 1 \ 1$
	$1 \ 0 \ 3$
	1 1 1
	< ロ > < 国 > < < < <

AND/OR Best First Search $_{\mbox{\sc Example}}$

Daniel Padé

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Scopes

$F = \{ f(A, B), f(B, C), f(A, D), f(B) \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

AND/OR Best First Search $_{\mbox{\sc Example}}$

Daniel Padé

Background Searches

Graphcal Models

Optimization Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Scopes

$F = \{ f(A, B), f(B, C), f(A, D), f(B) \}$

Figure: Primal Graph

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

AND/OR Best First Search Example

・ロト ・四ト ・ヨト ・ヨト

æ

WHAS

Daniel Padé

Background Searches

Graphcal Models

Problems

AND/OR Search Graphs Primal Graphs Pseudotrees Search Spaces Optimization Problems

AOBF Example

Algorithm Sketch

Down Pass: Expand nodes and mark terminal nodes solved Up Pass: Update v(n) for each node according to the following rules:

> OR Nodes: $v(n) = \min_{\substack{k \in \text{succ}(n)}} w(n, k) + v(k)$ AND Nodes: $v(n) = \sum_{\substack{k \in \text{succ}(n)}} v(k)$

> > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

AND/OR Best First Search Example

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ