Weighted Heuristic Anytime Search
Flerova, Marinescu, and Dechter

Daniel Padé

1University of South Carolina

April 24, 2017
Basic Heuristic Searches

- **Best-first Search**
 Blindly follows the heuristic

- **Weighted A* Search**
 For \(w > 1 \)

\[
f(n) = g(n) + w \cdot h(n)
\]

Larger \(w \) yields ‘greedier’ searches
Basic Heuristic Searches

- **Best-first Search**
 Blindly follows the heuristic

- **Weighted A* Search**
 For $w > 1$

 $$f(n) = g(n) + w \cdot h(n)$$

 Larger w yields ‘greedier’ searches
Graphical Models

Definition (Graphical Model)

A tuple $\mathcal{M} = \langle X, D, F, \otimes \rangle$ where

1. $X = \{X_0, \ldots, X_{n-1}\}$ is a set of variables
2. $D = \{D_0, \ldots, D_{n-1}\}$ is a set of domains
3. $F = \{f_0(X_{S_0}), \ldots, f_{r-1}(X_{S_{r-1}})\}$ is a set of scopes:
 - $X_{S_i} \subseteq X$
 - $\forall i. f_i : X_{S_i} \rightarrow \mathbb{R}^+$
4. A combination operator $\otimes \in \{\Sigma, \Pi\}$

The model \mathcal{M} represents the function

$$C(X) = \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$
Graphical Models

Definition (Graphical Model)

A tuple $\mathcal{M} = \langle X, D, F, \otimes \rangle$ where

1. $X = \{X_0, \ldots, X_{n-1}\}$ is a set of variables
2. $D = \{D_0, \ldots, D_{n-1}\}$ is a set of domains
3. $F = \{f_0(X_{S_0}), \ldots, f_{r-1}(X_{S_{r-1}})\}$ is a set of scopes:
 - $X_{S_i} \subseteq X$
 - $\forall i. f_i : X_{S_i} \to \mathbb{R}^+$
4. A combination operator $\otimes \in \{\Sigma, \Pi\}$

The model \mathcal{M} represents the function

$$C(X) = \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$
Graphical Models
Optimization Problems

Given a model $\mathcal{M} = \langle X, D, F, \otimes \rangle$, the most common optimization task is either *most probable explanation* or *maximum a posteriori*

MPE Find the optimal value C^*:

$$C^* = C(x^*) = \max_{X} \prod_{i=0}^{r-1} f_i(X_{S_i})$$

MAP Find the optimizing configuration x^*:

$$x^* = \arg\max_{X} \prod_{i=0}^{r-1} f_i(X_{S_i})$$
Given a model $\mathcal{M} = \langle X, D, F, \otimes \rangle$, the most common optimization task is either *most probable explanation* or *
maximum a posteriori*

MPE Find the optimal value C^*:

$$
C^* = C(x^*) = \max_{X} \prod_{i=0}^{r-1} f_i(X_{S_i})
$$

MAP Find the optimizing configuration x^*:

$$
x^* = \arg\max_{X} \prod_{i=0}^{r-1} f_i(X_{S_i})
$$
Given a model $\mathcal{M} = \langle X, D, F, \otimes \rangle$, the most common optimization task is either *most probable explanation* or *maximum a posteriori*

MPE Find the optimal value C^*:

$$C^* = C(x^*) = \max_{X} \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$

MAP Find the optimizing configuration x^*:

$$x^* = \arg\max_{X} \bigotimes_{i=0}^{r-1} f_i(X_{S_i})$$
Graphical Models
Optimization Problems: MPE/MAP → WCSP

MPE

\[C^*_{\text{MPE}} = C(x^*) = \max_X \prod_{i=0}^{r-1} f_i(X_{S_i}) \]

WCSP Weighted Constraint Satisfaction Problem
(MPE in negative log-space)

\[C^*_{\text{WCSP}} := C(x^*) = \min_X \prod_{i=0}^{r-1} f_i(X_{S_i}) \]
Graphical Models
Optimization Problems: MPE/MAP \rightarrow WCSP

MPE

$$C^*_{\text{MPE}} = C(x^*) = \max_{x} \prod_{i=0}^{r-1} f_i(X_{S_i})$$

WCSP Weighted Constraint Satisfaction Problem
(MPE in negative log-space)

$$C^*_{\text{WCSP}} := C(x^*) = \min_{x} \prod_{i=0}^{r-1} f_i(X_{S_i})$$
Definition

The *primal graph* of a model is a graph where the vertices are the variables and edges connect variables within the same scope.

Scopes:
- $X_{S_0} = \{A, B\}$
- $X_{S_1} = \{A, C\}$
- $X_{S_2} = \{C, D\}$
- $X_{S_3} = \{B, D\}$
- $X_{S_4} = \{B, F\}$
- $X_{S_5} = \{E, F\}$

Figure: Primal
Definition

The *primal graph* of a model is a graph where the vertices are the variables and edges connect variables within the same scope.

Scopes

- \(X_{S_0} = \{A, B\} \)
- \(X_{S_1} = \{A, C\} \)
- \(X_{S_2} = \{C, D\} \)
- \(X_{S_3} = \{B, D\} \)
- \(X_{S_4} = \{B, F\} \)
- \(X_{S_5} = \{E, F\} \)

Figure: Primal
AND/OR Search Graphs

Pseudotrees

(a) Primal

(b) Induced Graph

Figure: Induced graph over the natural ordering.
AND/OR Search Graphs

Pseudotrees

(a) Primal

(b) Induced Graph

Figure: Induced graph over the natural ordering.
AND/OR Search Graphs
Pseudotrees

(a) Orig + Ind. Edges
(b) Pseudo-tree

Figure: Pseudo-tree with edges chosen to respect the order
Pseudotrees

Figure: Pseudo-tree with edges chosen to respect the order
AND/OR Search Graphs

![Figure: Context-Minimal AND/OR Graph For Pseudotree](image)
Assume a graphical model $\mathcal{M} = \langle X, D, F, \otimes \rangle$ with primal graph G, pseudotree \mathcal{T}, and AND/OR search tree S_T.

Definition

The *context-minimal AND/OR search graph*, denoted C_T, is the AND/OR search graph obtained after merging all identical subproblems.

C_T is exponential in the depth of \mathcal{T}.
Assume a graphical model \(\mathcal{M} = \langle X, D, F, \otimes \rangle \) with primal graph \(G \), pseudotree \(T \), and AND/OR search tree \(S_T \).

Definition

The *context-minimal AND/OR search graph*, denoted \(C_T \), is the AND/OR search graph obtained after merging all identical subproblems.

\(C_T \) is exponential in the depth of \(T \).
AND/OR Search Graphs
Optimization Problems

Assume a graphical model $\mathcal{M} = \langle X, D, F, \otimes \rangle$ with primal graph G, pseudotree \mathcal{T}, and AND/OR search tree $S_\mathcal{T}$

Definition

A solution tree T of $C_\mathcal{T}$ is a subtree satisfying the following conditions:

1. It contains the root of $C_\mathcal{T}$
2. If an internal AND node n is in T, then all the children of n are in T
3. If an internal OR node n is in T, then exactly one child of n is in T
4. Every leaf in T is a terminal node
Assume a graphical model $\mathcal{M} = \langle X, D, F, \otimes \rangle$ with primal graph G, pseudotree T, and AND/OR search tree S_T

Definition

A *solution tree* T of C_T is a subtree satisfying the following conditions:

1. It contains the root of C_T
2. If an internal AND node n is in T, then all the children of n are in T
3. If an internal OR node n is in T, then exactly one child of n is in T
4. Every leaf in T is a terminal node
Assume a graphical model \(\mathcal{M} = (\mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes) \) with primal graph \(G \), pseudotree \(T \), and AND/OR search tree \(S_T \).

Definition

A *solution tree* \(T \) of \(C_T \) is a subtree satisfying the following conditions:

1. It contains the root of \(C_T \)
2. If an internal AND node \(n \) is in \(T \), then all the children of \(n \) are in \(T \)
3. If an internal OR node \(n \) is in \(T \), then exactly one child of \(n \) is in \(T \)
4. Every leaf in \(T \) is a terminal node
Assume a graphical model $\mathcal{M} = \langle X, D, F, \otimes \rangle$ with primal graph G, pseudotree T, and AND/OR search tree S_T

Definition

A *solution tree* T of C_T is a subtree satisfying the following conditions:

1. It contains the root of C_T
2. If an internal AND node n is in T, then all the children of n are in T
3. If an internal OR node n is in T, then exactly one child of n is in T
4. Every leaf in T is a terminal node
State-of-the-art A^* for AND/OR search space.
Too complicated to fit on a slide

Highlights

Input:
- Graphical Model $\mathcal{M} = \langle X, D, F, \Sigma \rangle$
- Initial weight w_0
- Pseudotree T rooted at X_1
- heuristic h_i (precalculated)

Output: Optimal solution to \mathcal{M}
State-of-the-art A^* for AND/OR search space. Too complicated to fit on a slide

Highlights

Input:
- Graphical Model $\mathcal{M} = \langle X, D, F, \Sigma \rangle$
- Initial weight w_0
- Pseudotree T rooted at X_1
- Heuristic h_i (precalculated)

Output: Optimal solution to \mathcal{M}
State-of-the-art A^* for AND/OR search space.
Too complicated to fit on a slide

Highlights

Input:
- Graphical Model $\mathcal{M} = \langle X, D, F, \Sigma \rangle$
- Initial weight w_0
- Pseudotree \mathcal{T} rooted at X_1
- heuristic h_i (precalculated)

Output: Optimal solution to \mathcal{M}
AND/OR Best First Search

Example

Let $\mathcal{M} = \{X, D, F, \Sigma\}$ where

- $X = \{A, B, C, D\}$
- $D = \bigcup_{s \in X} \{0, 1\}_s$
- F is given by the following tables:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$f(A, B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>$f(B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>$f(B, C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$f(A, B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
AND/OR Best First Search

Example

Scopes

\[F = \{ f(A, B), f(B, C), f(A, D), f(B) \} \]
AND/OR Best First Search Example

Scopes

\[F = \{ f(A, B), f(B, C), f(A, D), f(B) \} \]

Figure: Primal Graph
AND/OR Best First Search
Example
Algorithm Sketch

Down Pass: Expand nodes and mark terminal nodes solved

Up Pass: Update $\nu(n)$ for each node according to the following rules:

- **OR Nodes:**
 $$\nu(n) = \min_{k \in \text{succ}(n)} w(n, k) + \nu(k)$$

- **AND Nodes:**
 $$\nu(n) = \sum_{k \in \text{succ}(n)} \nu(k)$$
AND/OR Best First Search

Example

\[\begin{array}{c}
A & B & C & D \\
\text{AND/OR Best First Search Example}
\end{array} \]