
 A* (BF*) WITH NON-
ADDITIVE COST &

EVALUATION
FUNCTIONS

Andrey Balabokhin
Neema Kanapala

A* ALGORITHM

● Additive Evaluation function, f = g + h

● Additive cost function, g = g(n’) + c(n, n’)

A* always finds the shortest path to the goal
node, if h is admissible.

TYPES OF COST FUNCTION

● Additive Cost Function

● Non-Additive Costs

COST FUNCTIONS
Additive costs sum [c(pi, pi+1)]

NON-ADDITIVE COSTS

Multiplicative costs product [c(pi, pi+1)]

Mean avg [c(pi, pi+1)]

Median middle value in a sorted list of costs

Mode most frequent [c(pi, pi+1)]

Range max [c(pi, pi+1)] - min [c(pi, pi+1)]

Max-cost max [c(pi, pi+1)]

Last edge cost c(pn-1, pn)

RANGE

 g(P1) = 4-2 = 2 P1 - (A, B, S)

 Arrows indicate the parent nodes

S

B

A

4

4 2

C

g(P) = max [c(pi, pi+1)] - min [c(pi, pi+1)]

RANGE
S

C B

A

4

4 2

5

 g(P1) = 5-4 = 1 g(P2) = 4-2 = 2

RANGE
S

C B

A
4

4 2

5

D

1

 g(P2) = 4-1 = 3 g(P1) = 5-1 = 4
P2 - (D, A, C, S) P1 - (D, A, B, S)

but 4 > 3 !

ORDER PRESERVING COST ORDER
FUNCTION
Let P1 and P2 be any two paths from “s” node to “n” node and
P1P3 and P2P3 paths after concatenation of a new path P3,
if g(P1) >= g(P2) g(P1P3) >= g(P2P3), g is said to be order
preserving.

P1

P2

P3

RANGE IS NON-ORDER PRESERVING
S

C B

A
4

4 2

5

S

C B

A
4

4 2

5

D

1

 g(P1) = 4-2 = 2
 g(P2) = 5-4 = 1

 g(P1) > g(P2)

 g(P1P3) = 4-1 = 3
 g(P2P3) = 5-1 = 4

 g(P1P3) < g(P2P3)

Order-preserving property for the mean and mode cost
functions

655
5

55

10

g(P) - Mean edge cost
 - P1, g(P1) = 5
 - P2, g(P2) = 5.25
 - g(P1P3) = 6.7
 - g(P2P3) = 6.2
g(P1) < g(P2) but g(P1P3) > g(P2P3)

g(P) - Mode (most frequent [c(pi, pi+1)])
 - P1, g(P1) = 3
 - P2, g(P2) = 2
 - P3, g(P1P3) = 3, g(P2P3) = 6

g(P1) > g(P2) but g(P1P3) < g(P2P3)

Legend:

2 2 6

6

3

3
3

6

Order-preserving property for the median and max cost
functions

555
5

74

4

g(P) - Median edge cost
 - P1, g(P1) = 5.5
 - P2, g(P2) = 5
 - g(P1P3) = 4
 - g(P2P3) = 5
g(P1) > g(P2) but g(P1P3) < g(P2P3)

g(P) - Max
 - P1, - P2, - P3
Let g(P1) >= g(P2)
if g(P3) >= g(P1) => g(P1P3) = g(P2P3) = g(P3)
if g(P3) < g(P1) =>
g(P1P3) = g(P1) >= max (g(P2), g(P3)) = g(P2P3)

Legend:

If P is a path with nodes p1, p2, …, pn-1, pn and c(pi, pi+1) is an cost value for the edge between nodes pi and
pi+1. Cost measure function g(P) can be any function:

Cost Function Is g(P) order-preserving?

Additive costs sum [c(pi, pi+1)] Yes

Multiplicative costs product [c(pi, pi+1)] Yes when c(pi, pi+1) is positive

Mean avg [c(pi, pi+1)] No

Median middle value in a sorted list of costs No

Mode most frequent [c(pi, pi+1)] No

Range max [c(pi, pi+1)] - min [c(pi, pi+1)] No

Max-cost max [c(pi, pi+1)] Yes

Last edge cost c(pn-1, pn) Yes

BEST FIRST* (BF*) ALGORITHM
● “ f ” is an arbitrary function
eg: f = sqrt[g^2 + h^2]

f = max(g, h)

● Builds path along the least values of f(Pi)

● A* is a special case of BF*

Admissibility of BF*
If in every graph searched by BF* there exists at least one
optimal solution path along which f attains its maximum
value on the goal node, then, then BF* is admissible.

S

 - optimal path P1
 - not optimal path P2
 - not optimal path P3

g(P1) <= g(P2), g(P1) <= g(P3)
n1, n2, …, nk, …, Г - nodes along P1

BF* is admissible if f(Г) = max(f(ni))
along optimal path P1

Г

n1

n2
… nk

…

BF* ALGORITHM REQUIREMENT

● “ f ” must be Order-preserving for all the
paths from start node “s” to goal node “Г”.

● “ f ” must be admissible.

BF* EXAMPLE WITH MAX-COST
FUNCTION g(Pi) = max [c(pi, pi+1)]

f(Pi) = g(Pi)
h - trivial
f - order-preserving
f - admissible, as it is not
decreasing with increasing
number of nodes
 => f(goal node) = max(fi)

THANK YOU !

QUESTIONS ?

References
1. Judea Pearl. Heuristics: Intelligent Search Strategies for

Computer Problem Solving (The Addison-Wesley series
in artificial intelligence) 1984; Section 3.3 ("Some
Extensions to Nonadditive Evaluation Functions")

