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A* ALGORITHM

● Additive Evaluation function, f = g + h

● Additive cost function, g = g(n’) + c(n, n’)

A* always finds the shortest path to the goal 
node, if h is admissible.



TYPES OF COST FUNCTION

● Additive Cost Function

● Non-Additive Costs



COST FUNCTIONS
Additive costs sum [c(pi, pi+1)]

NON-ADDITIVE COSTS

Multiplicative costs product [c(pi, pi+1)]

Mean avg [c(pi, pi+1)] 

Median middle value in a sorted list of costs

Mode most frequent [c(pi, pi+1)]

Range max [c(pi, pi+1)] - min [c(pi, pi+1)]

Max-cost max [c(pi, pi+1)]

Last edge cost c(pn-1, pn)



RANGE

         g(P1) = 4-2 = 2                                                     P1 - (A, B, S)

        Arrows indicate the parent nodes
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g(P) = max [c(pi, pi+1)] - min [c(pi, pi+1)]
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          g(P1) = 5-4 = 1           g(P2) = 4-2 = 2
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         g(P2) = 4-1 = 3                                                                    g(P1) = 5-1 = 4 
P2 - (D, A, C, S)                                                                           P1 - (D, A, B, S)

but 4 > 3 !



ORDER PRESERVING COST ORDER 
FUNCTION
Let P1 and P2 be any two paths from “s” node to “n” node and 
P1P3  and P2P3  paths after concatenation of a new path P3, 
if g(P1) >= g(P2)      g(P1P3) >= g(P2P3), g is said to be order 
preserving.
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RANGE IS NON-ORDER PRESERVING
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       g(P1) = 4-2 = 2
       g(P2) = 5-4 = 1

      g(P1) > g(P2)

               g(P1P3) = 4-1 = 3
               g(P2P3) = 5-1 = 4 

       g(P1P3) < g(P2P3)



Order-preserving property for the mean and mode cost 
functions
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g(P) - Mean edge cost
        - P1, g(P1) = 5
        - P2, g(P2) = 5.25
                 - g(P1P3) = 6.7
                 - g(P2P3) = 6.2
g(P1) < g(P2) but g(P1P3) > g(P2P3)

g(P) - Mode (most frequent [c(pi, pi+1)])
        - P1, g(P1) = 3
        - P2, g(P2) = 2
        - P3, g(P1P3) = 3, g(P2P3) = 6

g(P1) > g(P2) but g(P1P3) < g(P2P3)

Legend:
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Order-preserving property for the median and max cost 
functions
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g(P) - Median edge cost
        - P1, g(P1) = 5.5
        - P2, g(P2) = 5
                 - g(P1P3) = 4
                 - g(P2P3) = 5
g(P1) > g(P2) but g(P1P3) < g(P2P3)

g(P) - Max
        - P1,            - P2,           - P3
Let g(P1) >=  g(P2)
if g(P3) >= g(P1) => g(P1P3) = g(P2P3) = g(P3)
if g(P3) < g(P1) => 
g(P1P3) = g(P1) >= max (g(P2), g(P3)) = g(P2P3)

Legend:



If P is a path with nodes p1, p2, …, pn-1, pn and c(pi, pi+1) is an cost value for the edge between nodes pi and 
pi+1. Cost measure function g(P) can be any function:

  

Cost Function Is g(P) order-preserving?

Additive costs sum [c(pi, pi+1)] Yes

Multiplicative costs product [c(pi, pi+1)] Yes when c(pi, pi+1) is positive

Mean avg [c(pi, pi+1)] No

Median middle value in a sorted list of costs No

Mode most frequent [c(pi, pi+1)] No

Range max [c(pi, pi+1)] - min [c(pi, pi+1)] No

Max-cost max [c(pi, pi+1)] Yes

Last edge cost c(pn-1, pn) Yes



BEST FIRST* (BF*) ALGORITHM
● “ f ” is an arbitrary function
eg: f = sqrt[g^2 + h^2]

f = max(g, h)

● Builds path along the least values of f(Pi)

● A* is a special case of BF*



Admissibility of BF*
If in every graph searched by BF* there exists at least one 
optimal solution path along which f attains its maximum 
value on the goal node, then, then BF* is admissible.

S

 - optimal path P1
 - not optimal path P2
 - not optimal path P3

g(P1) <= g(P2),  g(P1) <= g(P3) 
n1, n2, …, nk, …, Г - nodes along P1

BF* is admissible if f(Г) = max(f(ni)) 
along optimal path P1

Г

n1

n2
… nk

…



BF*  ALGORITHM REQUIREMENT

● “ f ” must be Order-preserving for all the 
paths from start node “s” to goal node “Г”.

● “ f ” must be admissible.



BF* EXAMPLE WITH MAX-COST 
FUNCTION  g(Pi) = max [c(pi, pi+1)]

f(Pi) = g(Pi)
h - trivial
f - order-preserving
f - admissible, as it is not 
decreasing with  increasing 
number of nodes
 => f(goal node) = max(fi)



THANK YOU !



QUESTIONS ?
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