A* (BF*) WITH NON-**ADDITIVE COST & EVALUATION FUNCTIONS**

Andrey Balabokhin Neema Kanapala

A* ALGORITHM

• Additive Evaluation function, f = g + h

• Additive cost function, g = g(n') + c(n, n')

A* always finds the shortest path to the goal node, if *h* is admissible.

TYPES OF COST FUNCTION

Additive Cost Function

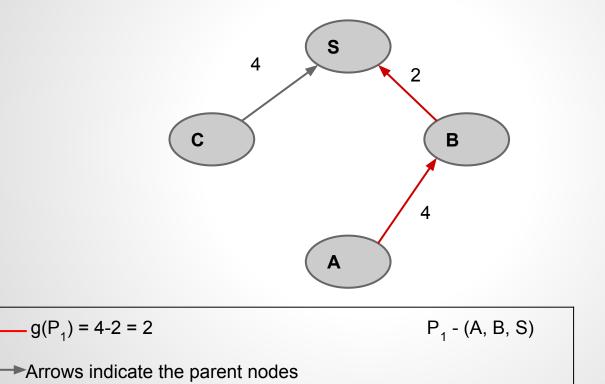
Non-Additive Costs

COST FUNCTIONS

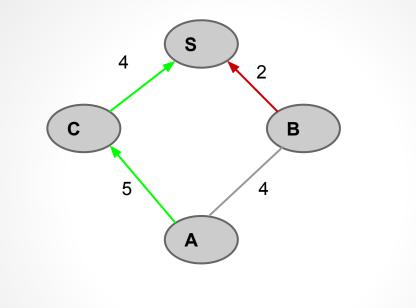
Additive costs	sum [c(p _i , p _{i+1})]	
NON-ADDITIVE COSTS		
Multiplicative costs	product [c(p _i , p _{i+1})]	
Mean	avg [c(p _i , p _{i+1})]	
Median	middle value in a sorted list of costs	
Mode	most frequent [c(p _i , p _{i+1})]	
Range	max [c(p _i , p _{i+1})] - min [c(p _i , p _{i+1})]	
Max-cost	max [c(p _i , p _{i+1})]	
Last edge cost	c(p _{n-1} , p _n)	

RANGE

$$g(P) = \max [c(p_i, p_{i+1})] - \min [c(p_i, p_{i+1})]$$

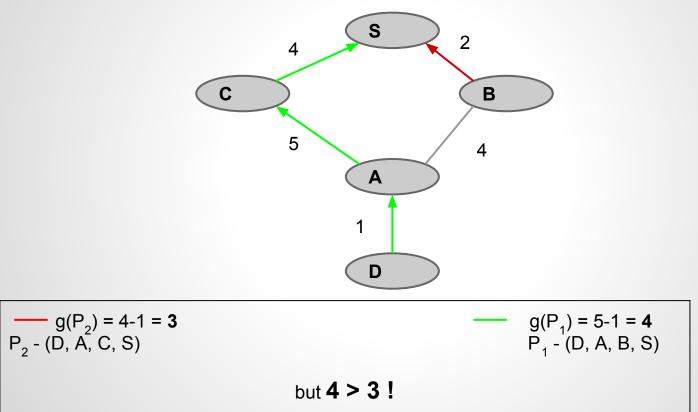


RANGE



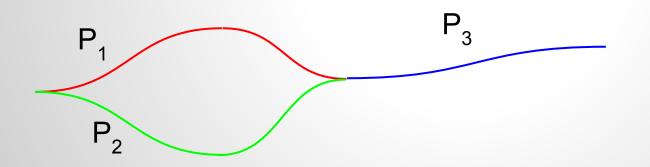
$$g(P_1) = 5-4 = 1$$
 ---- $g(P_2) = 4-2 = 2$

RANGE

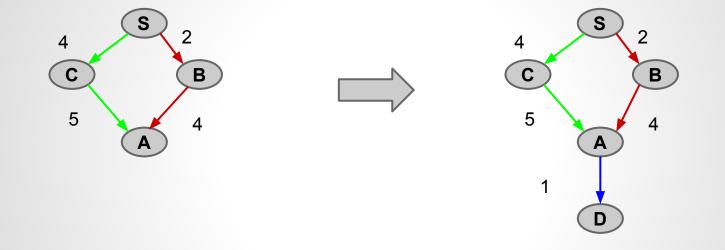


ORDER PRESERVING COST ORDER FUNCTION

Let P₁ and P₂ be any two paths from "s" node to "n" node and P₁P₃ and P₂P₃ paths after concatenation of a new path P₃, if $g(P_1) \ge g(P_2) \Longrightarrow g(P_1P_3) \ge g(P_2P_3)$, g is said to be order preserving.

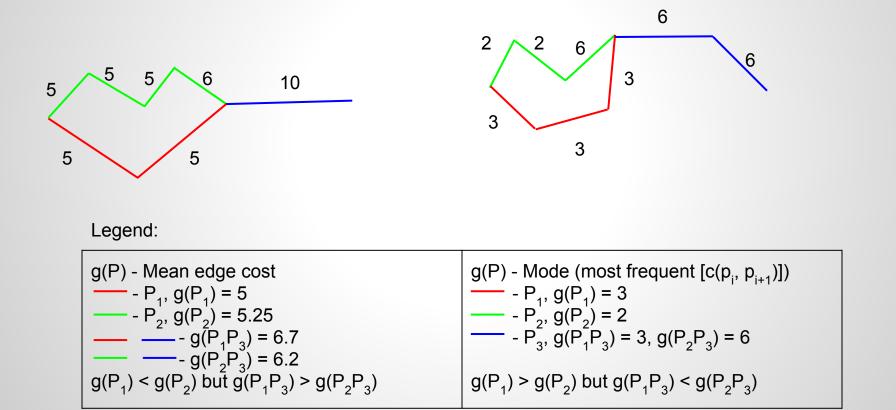


RANGE IS NON-ORDER PRESERVING

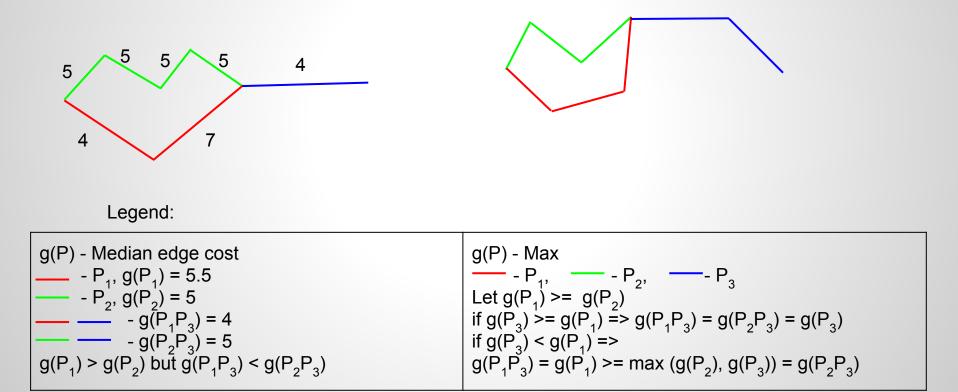


$g(P_1) = 4-2 = 2$ g(P_2) = 5-4 = 1	$ = g(P_1P_3) = 4-1 = 3 = g(P_2P_3) = 5-1 = 4 $
$g(P_1) > g(P_2)$	$g(P_1P_3) < g(P_2P_3)$

Order-preserving property for the mean and mode cost functions



Order-preserving property for the median and max cost functions



If P is a path with nodes $p_1, p_2, ..., p_{n-1}, p_n$ and $c(p_i, p_{i+1})$ is an cost value for the edge between nodes p_i and p_{i+1} . Cost measure function g(P) can be any function:

	Cost Function	Is g(P) order-preserving?
Additive costs	sum [c(p _i , p _{i+1})]	Yes
Multiplicative costs	product [c(p _i , p _{i+1})]	Yes when $c(p_i, p_{i+1})$ is positive
Mean	avg [c(p _i , p _{i+1})]	No
Median	middle value in a sorted list of costs	No
Mode	most frequent [c(p _i , p _{i+1})]	No
Range	max [c(p _i , p _{i+1})] - min [c(p _i , p _{i+1})]	No
Max-cost	max [c(p _i , p _{i+1})]	Yes
Last edge cost	c(p _{n-1} , p _n)	Yes

BEST FIRST* (BF*) ALGORITHM

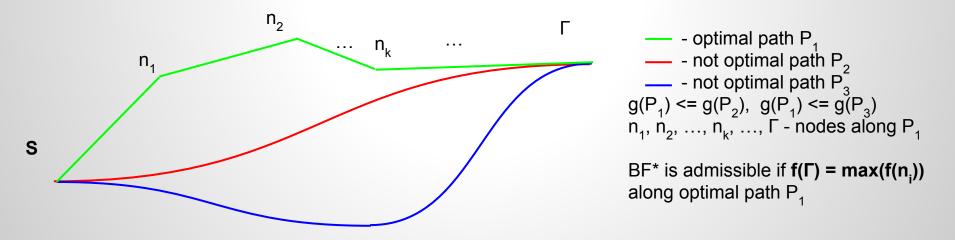
- "*f*" is an arbitrary function
- eg: $f = \operatorname{sqrt}[g^2 + h^2]$ $f = \max(g, h)$

• Builds path along the least values of f(P_i)

• A* is a special case of BF*

Admissibility of BF*

If in every graph searched by BF* there exists at least one optimal solution path along which f attains its maximum value on the goal node, then, then BF* is admissible.

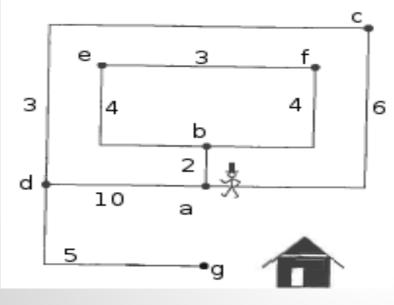


BF* ALGORITHM REQUIREMENT

 "f" must be Order-preserving for all the paths from start node "s" to goal node "Γ".

• "f" must be admissible.

BF* EXAMPLE WITH MAX-COST FUNCTION $g(P_i) = max [c(p_i, p_{i+1})]$



- $g(P_i) = max [c(p_i, p_{i+1})]$ $f(P_i) = g(P_i)$ h - trivial
- 6 f order-preserving
 - f admissible, as it is not decreasing with increasing number of nodes
 - $=> f(goal node) = max(f_i)$

THANK YOU !

QUESTIONS ?

References

 Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving (The Addison-Wesley series in artificial intelligence) 1984; Section 3.3 ("Some Extensions to Nonadditive Evaluation Functions")