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TABLE 3
\ The Optimal Solution of T'(c) with & = 0.5, 0.6,/nd 0.7

\ " 05 0.6 /]J

N\J(@,c) 18.26 25.81 38.73
a, 3.201 3.367 3.508
o 0.1703 0.4260 £ 0.9242
X 0.5788 0.5595 0.5429
¢y 0.0806' 0.1108 0.1530

%
\

regression analysis, including the relationships to the usual regression analysis
as well as the application tethniques and how to decide the degree «, we hope
that such fuzzy regression analysis will become an efficient tool for analyzing
real world systems where thé, amblguity or fuzziness of human subjective
judgment is influential. X /
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ABSTRACT

Branch-and-bound techniques allow intractable problems to be solved by using heuristics
to bound the cost of partial solutions. The use of admissible heuristics can guarantee that the
solutions found are optimal. This paper examines one paradigm—problem relaxation by
constraint deletion—which has been used to develop many admissible heuristics. The
paradigm suggests three steps: simplify (or relax) a problem, solve the simplified problem,
and use that solution to guide the search for a solution to the original problem. We introduce
the following extension to this methodology: by criticizing the feasibility of a relaxed
solution, we arrive at a closer approximation of the solution to the original problem. We
apply this methodology to two well-studied problems in operations research and artificial
intelligence. For the traveling-salesman problem, iteration of our technique yields a series of
novel heuristics, culminating in Held and Karp’s minimum-spanning-tree heuristic. For the
eight puzzle, it yields a heretofore undiscovered heuristic which is shown to perform
significantly better than any previously known.

1. INTRODUCTION

Domain-specific heuristics enable us to solve many otherwise intractable
problems by intelligently directing the search for solutions. Many have at-
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tempted to understand how human experts discover and employ heuristics
[12-14], so as to formulate a general methodology for developing them.

In this paper, we concentrate on one paradigm [3, 4, 10, 13] for the
systematic generation of admissible heuristics in the state-space model of
problem solving [12] (we follow the notation and examples of Pearl [13]). An
admissible heuristic is one which provides an underestimate of the cost to
complete a partial solution. Such admissible heuristics can be used by branch-
and-bound algorithms (such as 4*) to find optimal solutions.

This paradigm, problem relaxation by constraint deletion, offers a method
for deriving heuristics by examining optimal solutions to simplified problem
models. More specifically, the paradigm outlines a three-step process—first,
simplify tpe problem; second, solve the simplified problem (preferably algo-
rithmically [11, 16]); and third, use that solution to guide the search for an
optimal solution to the original problem. We introduce an extension to this
paradigm which enables us to recover some of the information lost in the
relaxation—by more closely investigating those aspects of the original problem
which are isolated by the simplification, and those which are overlooked, one
can criticize the feasibility of the simplified solution and arrive at a better
approximation to the actual solution.

We apply this solution-criticism method towards developing admissible
heuristics for two problems—the traveling-salesman problem [2, 6, 7, 9] and
the eight puzzle [1, 3, 13]. These problems have been used to study and
develop heuristic problem-solving techniques for more than thirty years. We
introduce the'solution-criticism methodology on the traveling-salesman prob-
lem. Using the constraint-deletion paradigm to develop admissible heuristics,
and applying solution criticism to refine them, we can mechanically derive
Held and Karp’s well-known minimum-spanning-tree heuristic [6, 7]. We then
apply the methodology to the eight puzzle to develop a new admissible
heuristic for the problem, which is more powerful then any previously known.

1.1. BACKGROUND

Overview of Heuristic Search. The state-space approach to problem solv-
ing considers a problem as a quadruple, (S, OeSx S, I€S, GC S). S is the
set of possible states of the problem. O is the set of operators, or transitions
from state to state. [ is the one initial state of a problem instance, and G is
the set of goal states. Search problems can be represented as a state-space
graph, where the states are nodes, and the operators are directed, weighted
arcs between nodes [the weight associated with each operator O; is the cost of
applying it, C(O;)]. The problem consists in determining a sequence of
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operators, O,, O,, ..., 0, which, when applied to I, yields a state in G. Such
a sequence is called a solution path (or solution), with length n and cost
£ 7.1 C(O)). A solution with minimum cost is called optimal.

Solutions to a given problem may be found by brute-force search over the
state space. However, as the sizes of the state spaces of most problems are
prohibitively large, the only hope of finding an optimal solution in reasonable
time is to use an intelligent method of guiding a search through the state space.
Typically, such methods take the form of branch and bound, wherein partial
solutions (equivalently, classes of solutions) are enumerated (‘‘branch’’), and
perhaps eliminated from future consideration by an estimate of solution cost
(“‘bound’’). .One such method, the celebrated A* algorithm [13], orders the
search by associating with each state s two values— g(s), the length of the
shortest path from the initial state to s, and h’(s), an estimate of the length of
the shortest path from s to any goal state [the actual length is A(s)]. In brief,
A* is an ordered best-first search algorithm, which always examines the
successors of the ‘‘most promising’’ state, based on the evaluation function,
fi(s)= g(s)+ K(s).

The following definitions will simplify the discussion:

(1) A heuristic function h’(s) is said to be admissible if ¥s[h’(s) < h(s)].

(2) A heuristic function A’(s) is said to be monotone if vs, s’[ f'(s) < f(s)
(where s’ is a successor of s)] [recall that f(s) is determined by h‘(s)].
Monotonicity implies admissibility [13].

(3) A heuristic function hj(s) is said to be more informed than another
heuristic function h%(s) if Vs[h%(s) < h7(s)] and 3s[A%(s) < hi(s)] and both
are admissible.

Because the real-world cost of applying operators may be prohibitively
expensive, it may be wise to search for optimal solutions, despite the possible
extra time required to do so. If A¥* uses an admissible heuristic, it is
guaranteed to find optimal solutions [13]. We will consider only admissible
heuristics in this paper, and consequently, the word *‘solution’’ will henceforth
imply ‘‘optimal solution.”’

The informedness of two heuristics determines their relative performance in
search. If one has two heuristic functions, hj(s) and h5(s) (both of which are
monotone), such that h}(s) is more informed than h%(s), then one is guaran-
teed that 4™ will examine an equal or smaller number of states if it uses A}(s)
instead of h%(s) [13). Therefore, if it is known that h(s) is never less than
h,(s), then the search time (measured by the number of states expanded) using
hi(s) is guaranteed not to exceed the search time using h%(s). However, the
actual computation time is equal to the product of the number of states
examined and the computational effort needed to calculate the heuristic esti-
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mate. Therefore, in attempting to improve heuristics, one must consider the
complexity of the heuristic function as well as its informedness.

The Traveling-Salesman Problem and the Eight Puzzle. The develop-
ment of lower bounds (i.e., admissible heuristics) for the NP-hard traveling-
salesman problem [2] has been the subject of a great deal of research [6, 13].
The problem is that of finding a shortest Hamiltonian circuit through n
vertices. While recent work on this problem has concentrated on approxima-
tion methods for finding near-optimal solutions quickly, early work was
concerned with branch-and-bound techniques for finding optimal solutions by
using admissible heuristics.

The eight puzzle (Figure 1) is a classic example of small, well-defined, and
conceptually simple problem which is sufficiently. complex to exhibit interest-
ing phenomena; therefore, it serves as a popular testing ground for heuristic
search and problem-solving methods. In particular, it is used to demonstrate
the development of heuristics in [3, 4, 13].

The eight puzzle consists of a 3x3 frame containing eight numbered,
sliding tiles. One of the positions in the frame does not contain a tile; this space
is called the blank. There is one legal operator in this state space—sliding any
one of the tiles which are horizontally or vertically adjacent to the blank into
the blank’s position. A solution to a problem instance is a sequence of
operators which transforms a given initial state into a particular goal state
(Figure 1 shaws the goal state used in this paper).

Developing Heuristics through Problem Relaxation. We focus our atten-
tion on the work of several researchers who propose that a natural method of
developing good heuristics is to ‘‘consult simplified models of the problem
domain’’ [3, 4, 13]. One method for developing such simplified models is
constraint deletion, which involves ignoring selected constraints on the applica-
bility of operators.

When constraints are removed from a problem, new edges and nodes are
introduced into the state-space graph. The shortest path between any two given
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Fig. 1. Eight-puzzle goal state and sample initial state.
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states in the relaxed graph cannot be longer than the shortest path between the
same two states in the original graph (one can always choose to use the original
path). Because it is a lower bound on the cost of an optimal solution to the
original problem, onc can use the solution length of the relaxed problem as an
admissible heuristic for the original problem. Furthermore, because A’(s) is
derived from an actual path length in the relaxed state-space graph [it is equal
to A(s) in this graph], it is easily seen that the resulting evaluation function is
monotone [16].

Our observation is that instead of using the relaxed solution directly to
advise us in finding the solution to the original problem, we can first
investigate characteristics of the relaxed solution (which can be thought of as a
preliminary plan for solution) in comparison with those of the actual solution.
If we can admissibly recover any information that was lost in the process of
relaxation, but is easily identified when comparing the relaxed model and the
original problem, we will have created a more informed admissible estimate
than the heuristic from the relaxed model alone.

2. SOLUTION CRITICISM AND THE TRAVELING-SALESMAN
PROBLEM

The NP-hard traveling-salesman problem [2] is one of the most famous
problems in combinatorial optimization, and the development of heuristics for
its solution has occupied many researchers.

Pearl [13] uses this problem as the very first example of the constraint-dele-
tion method. However, he does not formalize it in terms of the state-space
model of problem solving. Instead, he concentrates on a description of the goal
and the constraints upon it. This formulation gives the flavor of the constraint- .-
relaxation method.

However, to perform a heuristic search, what is required is a lower bound
on the cost of completing a partial solution. To get such a lower bound for a
problem, we must formulate it using a well-defined set of states and operators
instead. We then delete constraints upon the operators to get relaxed models of
the problem, find solutions to these relaxed models (and thus heuristics for the
original problem), and analyze and criticize these solutions (to develop im-
proved heuristics).

2.1. FORMALIZATION OF THE PROBLEM
Consider a search for solutions in a state space of partial tours. From any

given state, the heuristic should be an estimate of the minimum-cost comple-
tion of the partial tour. In other words, if in a given state we have completed a
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partial tour from city, to city,, we want to estimate the length of a minimum
partial tour from city, back to city, which visits all the remaining cities.

To calculate an exact heuristic, we must construct a tour from city, to city,
[denote this by TOUR(city,, city,)]. A tour consists of **visiting”* all of the
remaining cities in the graph (with city, visited last), using the single operator
MOVE(city,, city;), defined as:

MOVE(city;, city;) )
precondition list: ON(salesman, city,) N~ VISITED(city;)
add list: ON(salesman, city )A VISITED(city;)
delete list: ON (salesman, city;)
. cost: DISTANCE city;, city;)
The goal has been reached when, for every ci'tyz that had to be visited,
VISITED(city,) is true. The successful tour consists of the sequence of

applications of the MOVE operator by which the goal was reached.

2.2. HEURISTICS FROM CONSTRAINT DELETION

At any given state, the problem is to construct a TOUR(city,, city,) which
visits all the remaining cities. We may simplify the problem by deleting either
of the preconditions of MOVE.

If we delete the ON(salesman, city;) requirement, we allow the salesman
to jump (freely) to city;, and then move to city;. Because of the way that the
add list was specified, the salesman does not actually visit city; in this move.
We get the optimal solution to this problem by traveling the shortest edge
incident with each city (if there are n cities to visit, we use n edges, one more
than in the minimum-spanning tree). The solution to this nearest-neighbor
problem can be found in polynomial time. We will return to this relaxed model
later, and apply solution criticism to refine the heuristic estimate.

If we instead delete the —VISITED(city;) constraint, we get a simplified
problem in which the optimal solution is given by the shortest tour which visits
all cities, with multiple visits allowed. There seems to be no efficient algorithm
for computing such a shortest relaxed tour. Thus, this particular relaxation did
not produce a useful heuristic.

If we formulate the problem in a slightly different manner, we reach
different relaxed models, and thus different heuristics. Notice that when we
move from city; to city;, we do not assume that city; has been visited in the
process—this is an artifact of the definition of the operators. In the original
description of the problem, we assume that city; has been visited previously;
therefore, VISITED(city;) was not included in the original add list in the
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operator’s definition. However, if we do add VISITED(city;) to the add list,
" and then delete ON(city;) from the precondition list, we arrive at a problem

where the optimal solution is given by the minimum-weight set of edges E
such that every city is incident with an edge in E. The set of edges E is a
solution to the minimum-weight edge cover problem (which can be reduced to
the minimum-weighted-matching problem and solved in polynomial time).

Thus, we have seen the spectrum of constraint relaxation in these three
different relaxations of the original traveling-salesman problem. The first
yielded the nearest-neighbor heuristic, the second yielded no efficiently com-
putable heuristic, and the third was the result of reformulating the problem.
We will now reconsider the first relaxation, and apply the solution-criticism
methodology to it.

2.3. ANALYZING THE NEAREST-NEIGHBOR HEURISTIC

The nearest-neighbor solution is always a subgraph consisting of connected
components, where each component of m nodes is a modified tree of m edges,
which has either a single cycle containing equal (shortest) length edges, or a
duplicated shortest edge (creating a degenerate cycle). Notice that, for problem
instances with very small numbers of evenly distributed cities, this easily
computed heuristic estimate may be higher than the cost of the minimum
spanning tree, because it contains one more edge. As problem size increases,
however, this becomes less likely.

We see that the solutions to the nearest-neighbor relaxed model contain
cycles and may be disconnected. We may admissibly increase the estimate by
breaking these cycles (if there are k¥ components in the subgraph, there will be
k cycles; we break them by deleting k edges), adding the minimum-weight set,
of k—1 edges which connect the components, and then adding another
shortest edge (which creates a cycle). The total length of the new edges will
not be less than the total length of the removed ones, so this new heuristic is
more informed. The resulting graph is simply a minimum-spanning tree with
an added shortest edge (which is computable in low-order polynomial time
[15]).

We may, of course, iterate the process, and apply solution criticism to this
solution in turn. The next criticism is that the resulting graph is not connected
to city, (because it had been visited already in the partial tour from city, to
city,: city, was not visited in the partial tour). We may possibly increase the
estimate by deleting the added shortest edge mentioned above, and adding
instead the shortest edge which connects city, to the minimum-spanning tree.
The resulting graph is merely a minimum-spanning tree which includes city,,
except in the case where city, equals city, (the initial state of the search),-in
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which we get Held and Karp’s minimum-weight 1-tree instead [6, 7]. Interest-
ingly, this heuristic, which we have derived by solution criticism, is one of the
most famous admissible heuristics for the traveling-salesman problem. Its

performance has been thoroughly studied in [7].
3. CONSTRAINT DELETION ON THE EIGHT PUZZLE

In this section, we examine Pearl’s formulation of the eight-puzzle domain,

in order to better understand the effects of the relaxation process. We discuss
three known heuristics—Manhattan distance [1], relaxed adjacency [3], and
misplaced tiles [1]—which Pearl uses to demonstrate the applicability of

constrajnt deletions.

3.1. FORMALIZATION OF THE PROBLEM

Following Pearl, we use three predicates to describe the problem state of the
eight puzzle:

ON(x,y): tile x isoncell y
CLEAR(y):  cell y is clear of tiles
ADJ(y,2):  cell y is horizontally or vertically adjacent to cell z

*

The single operator on the state space is described as follows:

MOVE(x, y, 2)
precondition list:
add list:

delete list:

ON(x, yY)ACLEAR(z)A ADJ(y, 2)
ON(x, z)ACLEAR(y)
ON(x, y)ACLEAR(Z)

By removing preconditions for this operator one is creating a relaxed model
of the problem. This is, of course, only one possible tjgscription of the
problem. As seen in the previous section, refining or changing the set of
predicates used to describe the problem will lead to different relaxations [5]-

3.2. HEURISTICS DEVELOPED THROUGH CONSTRAINT DELETION

Misplaced Tiles. The most severe relaxation is to delete both ADJ(y, Z)
and CLEAR(z). In this model of the puzzle, any tile in any position may be
moved into any other position, with stacking allowed. The obvious algorithm

-
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for solving this puzzle is simply to move each tile from its current position into
its goal position. Thus, the length of the optimal solution is merely the nur.nber
of tiles which are not currently in their goal positions—-the misplaced tiles.

Relaxed Adjacency. If we delete only the ADJ(y, z) precondition, we
arrive at a new puzzle in which any tile, anywhere, may swap positions with
the blank. In this relaxed-adjacency model, optimal solutions are given by the
following algorithm, first introduced by Gaschnig [3]. (It can be proven
optimal by viewing the puzzle in terms of cyclic permutations [5].)

While any tile is out of its goal position do
If the blank is in its own goal position,
then swap with any misplaced tile
else swap with the tile that belongs in the blank’s position

Manhattan Distance

If one chooses to delete only CLEAR(z) from the list of preconditions, the
optimal solution length is given by the familiar Manhattan-distance heuristic.
In this new puzzle, a tile may be moved into any horizontally or vertically
adjacent position, with stacking allowed. Obviously, the optimal solution to
this puzzle is found by moving each tile along a shortest path between its
initial and goal positions. For any one tile, the length of this shortest path is the
grid distance (horizontal plus vertical distance) between its current and goal
positions. Therefore, the total solution length is merely the summation of these
grid distances for each tile.

4. REFINING RELAXED MODELS BY SOLUTION CRITICISM

We have seen how constraint deletion can generate a number of admissible
heuristics for the eight puzzle. We may consider such a heuristic function as
examining certain properties of a problem. But, because of the relaxation,
some of the properties are overlooked, and others exaggerated or simplified;
therefore the solution proposed is infeasible for the original problem. The
different relaxations we have seen are weighted heavily towards certain
properties—e.g., the shortest path of a tile to its goal position (Manhattan
distance), and the role of the blank in moving the tiles (relaxed adjacency). We
wish to study the properties which these relaxations stress, and those which
they ignore or simplify, and thereby criticize the feasibility of the simplified
solution. .

Manhattan distance, on the average, is the best of the heuristics discussed
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Fig. 2. Unique and nonunique shortest paths from X to Y.

above. Applying the solution-criticism methodology, we will attempt to im-

prove upon it by contrasting the solution plan which it suggests with that of the
original problem.

4.1. AI\;AL YZING MANHATTAN-DISTANCE SOLUTIONS

Manhattan distance can be thought of as proposing a solution for the
problem. It proposes that the puzzle can be solved by moving each tile along a
shortest path to its goal position. More specifically, the optimal solution in the
Manhattan-distance model is a set of subgoal solutions, one for each tile. A
subgoal solution is any shortest path for a given tile from its current to its goal
position. In many cases, there is a single, unique shortest path—the tile is
already in its correct row (column) and need only move within that row
(column). In other cases, the path is not unique (see Figure 2).

We will explore only what happens to the unique shortest paths, because in
these cases, the subgoal solution given by the relaxed model is uniquely
determined. If it can be shown to be infeasible, we may improve the heuristic
estimate. First, we present the following results about paths:

Lemma 1. If there exists one path from position X to position Y in the

eight puzzle that is of even (odd) length, than all paths from X to Y are of
even (odd) length.

Proof. If the positions are colored like a checkerboard, the blank can move
only from a ‘‘red’’ position to a ‘‘black’’ position—the tile positions clearly
form a bipartite graph. In a bipartite graph, all paths of length 1 move between
the two sides of the graph; therefore, all paths between two positions which are
on opposite sides of the graph are of odd length, and all paths between two
positions which are in the same side are of even length. u

Consequently,
CoRoOLLARY (to Lemma 1). If there is a unique shortest path p between

position X and position Y in the eight puzzle, then any alternate path will
be at least 2 moves longer than p.

A B C D

Fig. 3. Linear-conflict examples.

In comparing the subgoal solutions with the actual optimal solutions, one

" notices that the unique shortest paths of two tiles occasionally conflict. In these

cases, one tile may be forced to take an alternate path, increasing the solution
length by at least two (from the corollary to Lemma 1). In fact, there are
several distinct cases in which this phenomenon occurs (the ex.ample_s be1f>w
indicate some of these). In general, these conflicts can only exist in a given line
when two or more tiles have both their current and goal positions in that
line—in that case, there are at least two unique shortest paths and the
possibility of a local subgoal conflict. . .

The idea of shortest paths is only brought to our attention by studying the
optimal solutions to this relaxed problem. We rr.lu_st then attempt to look
critically at this concept, which influences the heuristic offered by th.e relaxed
model, and attempt to gauge the degree to which it affects the solution to the
relaxed model. Once one can recognize and characterize .the cases .where the
unique shortest paths are necessarily violated in the optimal solution t'o th.e
original problem, one may determine how to compensate for these o.ver51mp11—-' '
fications. Before describing a precise method for doing so, we examine several
examples of this phenomenon.

Examples of Conflicting Shortest Paths. Figure 3 illustrates four typical
examples of conflicts between unique shortest paths. . .

In example A, either the 5 or the 3 must move outside of the middle row to
make room for the other to pass. Therefore, two should be added to the
estimate of Manhattan distance (one for the move out of the line and another
for the move returning to the line). .

B shows a conflict in which a tile which had previously bee_n ‘_‘s'olved
presents an obstacle to another tile. This conflict contradicts the.mtumon that
solved subgoals will not be disturbed. To resolve this conflict, either the 4 or
the 3 will have to follow a nonshortest path, adding at least two moves to thc
Manhattan-distance estimate. -
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In C, the 5 tile is in conflict with the 3 and the 4. Clearly, either the 5 has to
move out of the way (two extra moves) and allow the others to pass to their
goal positions, or the 3 and 4 have to move and allow the 5 to pass (four extra
moves).

D illustrates the most complex case, where cach tile is in conilict with the
other two. This can only be resolved by moving two of the tiles off line. One
should therefore add four to the Manhattan-distance estimate when this case is
recognized.

If one can devise an algorithm for tabulating the additional moves forced by
conflicting subgoals, one can add that total to the Manhattan-distance estimate
and create a new admissible heuristic for this problem. Intuitively, one
examines the puzzle state, row by row and column by column, and adds to the
Manhattan distance the minimum number of additional moves necessary to
resolve the conflicts within each row and column; therefore, this linear-con-
Jflict estimate is still a lower bound on the actual optimal solution length (a
precise algorithm is given below). To give some idea of the relative informed-
ness of this heuristic, we compare its estimates with those of Manhattan
distance, relaxed adjacency, and misplaced tiles, for the puzzle instances
shown in Figure 4.

While the linear-conflict heuristic is clearly more informed than the Manhat-
tan-distance heuristic, one notes that, because the space of relaxations is a
partial order [5], one cannot presuppose the relationship between the relative
informedness of the linear-conflict and relaxed-adjacency heuristics. In fact,
there are instances of the fifteen puzzle (a 4 X 4 frame with 15 tiles) for which

Puzzle 7|45 5|4|3[||8 7I1I5(4]3

Misplaced Tiles 4 4 8 7
Relaxed Adjacency 6 6 10 10
Manhattan Distance 6 6 22 14
Linear Coaflict 8 12 22 24
Actual Distance 22 20 26 26

Fig. 4. Comparison of heuristic estimates.
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relaxed adjacency is more informed than linear conflict [e.g. the state

. (B1374526913 101181214 15)].

" 4.2, THE LINEAR-CONFLICT HEURISTIC FUNCTION

We present an algorithm, LC (Figure 5), which calculates the heuri§tic
function described informally above by performing an analog of plan criticism

. upon the unique shortest paths which exist in any given line. We first define a
 linear conflict:

DermnmioN. Two tiles ¢; and ¢, are in a linear conflict if t; and ¢, are in
the same line, the goal positions of ¢; and ¢, are both in that line, 7; is to the
right of #,, and the goal position of ¢; is to the left of the goal position of ¢,.

Theorems establishing the correctness of the heuristic and its monotonicity
(and hence, admissibility) may be found in [5].

Computational Complexity of the Linear-Conflict Heuristic. Th‘e calcu-
lation of MD(s) requires O(N) operations. To calculate LC(s) requires, for
each line of tiles, O(N) operations in the worst case. Since there are 2V N +1
lines, it requires N 1.5 operations. However, during a search, one can calculate
the heuristic estimate for a given state more efficiently, assuming that one has
the estimate for its parent in the search space. Thus, even in a naive
implementation, MD(s) costs O(1), and LC(s) costs O(N). In our imple-
mentation, we reduced both calculations to table lookup. To prepare the
linear-conflict table, we precomputed the linear conflicts possible in a line. We
stored with each tile in the state two numbers indicating whether it is in the.
goal row and column, and if so, where its goal position is in its current row
and column. Thus, in our implementations, LC(s) merely costs a small
number of table-lookup operations. In fact, the calculation of LC(s) causefd
the search program for the fifteen puzzle to be, on average, only 5% slower in
examining each node, and this was more than compensated for by the dramatic
decrease in the number of nodes that needed to be examined when the
linear-conflict heuristic was used (cf. Section 4.3).

" 43. EMPIRICAL ANALYSIS OF THE LINEAR-CONFLICT HEURISTIC

We have developed a new heuristic for the eight puzzle (generalizable to the
N puzzle), which is more informed than the Manhattan-distance heuristic
{which had been known to be, on average, the most informed heuristic for the



Begin {Algorithm LC}

0ce

{s is the current state}

{L is the size of a line (row or column) in the puzzle. L = /N +1} -

{C(t;, ) is the number of tiles in row 1:.- with which ¢; is in conflict}

{C(t;,ci) similarly}

{lc(s, rj) is the number of tiles that must be removed from row r; to resolve the linear conflicts}
{lc(s, ¢j) similarly}

{md(s,t;) is the Manhattan Distance of tile t;}

{M D(s) is the sum of the Manhattan Distances of all the tiles in s}

{LC(s) is the minimum number of additonal moves needed to resolve the linear conflicts in s}

For each row r; in the state s
le(s,ri) =0
For each tile t; in r;
determine C(t;, ;)
While there is a non-zero C(tj,r;) value
Find t; such that there is no
C(tj,ri) > C(tk,ri)  { As ty is the tile with the most conflicts,

Fig. 5. Algorithm LC.
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we choose to move it out of r; }
C(tk, 1‘,') = 0
For every tile t; which had been in conflict with 2
C(tj,m) = Cltj,m) — 1
le(s,mi) = lc(s,mi) +1

{ Check similarly for linear conflicts in each column ¢;, computing lc(s, ¢j ). }

LC(s) = 2[lc(s,™) + - - .+ le(s,rr) + (s, a)+...+lc(s,ce)]
For each tiletj in s
determine md(s, t;)
MD(s) = ms(s,t;) + ... + md(s, a).
h'(s) = M D(s)+ LC(s)
End {Algorithm LC}
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Fig. 5. (Continued).
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problem). The pruning power of the two heuristics was examined by solving
the 100 random fifteen puzzles used in the tests of [8], and comparing the
number of node expansions (this measure is proportional to search time).

Figure 6 in the Appendix (an extension of a similar table in [8]) shows that,
for the fifteen puzzle, the average number of states examined using linear
conflict is only one-eighth of the average number of states examined using
Manhattan distance. For 61 out of 100 puzzle instances, linear conflict
performed less than 20% of the search required by Manbhattan distance; in only
7 cases did it exceed 30%. Manhattan distance caused the search to examine
over 100 million states in 40 puzzle instances, and over 500 million states in 17
puzzle instances, while linear conflict caused the search to examine over 100
million states in only 11 puzzle instances, and no state required the examina-
tion of 500 million states. If the puzzles were sorted by problem difficulty
(number of states examined), one would see that the linear-conflict heuristic
fiemonstratcs more pruning power on more difficult fifteen-puzzle problem
Instances. For the 20 most difficult problems, a search using linear conflicts
would be over ten times as fast as one using Manhattan distance. We refer the
interested reader to [5), where additional experiments are described.

5. DISCUSSION OF THE SOLUTION-CRITICISM METHOD

The process of relaxation allows us to concentrate on certain aspects of the
problem while ignoring others. This often makes the problem easier to
analyze, and perhaps easier to solve algorithmically. However, these solutions
are poor approximations of a feasible solution to the original problem. For
example, one of the relaxed traveling-salesman problems allows us to simplify
the problem of visiting all the cities in a proper tour into the many subproblems
of visiting each city, without regard to the connections between these subtours.
By correcting this disconnected solution, we arrive at the well-known mini-
mum-spanning-tree and minimum-weight 1-tree heuristics. Similarly, the Man-
hattan-distance relaxed model allows us to consider optimal solutions for each
tile, without regard to the global conflicts which may result because of the
interaction of these subgoal solutions. We may improve upon this relaxed
model by taking account of those constraints which it overlooks.

The method of solution criticism is a general approach to restoring the
global view to these myopic relaxed solutions, by comparing them with actual
solutions to gain an understanding of those global considerations that they
overlook. In many cases, we may be able to increase the estimate provided by
the relaxed solution, either by refining it into a more feasible solution, or
simply by adding some abstract lower-bound measure of what has been
overlooked.
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- We note that several traveling-salesman heuristics, developed over years
ik usmg sophisticated algorithmic methods, were shown to evolve naturally from
M . lution criticism. Through they are not new for that problem, they can be
b gerived systematically, suggesting the potential of the approac}‘l for less
B~ well-studied or newly posed problems. For example, although the eight puzzle
'a'has been used for many years as a research example to.demonstrate the
development of heuristics, the Manhattan-distance heuristic ha-s not ’be.en
improved upon. We believe that our improvement, the linear-conflict heuristic,
is difficult to find directly without following the methodology sug.gesteq .ht?re.
Although implementing the constraint-relaxation with solutlon-crftlmsm
% method is beyond the scope of this paper, this could be accomp1i§hed using the
type of plan-debugging facilities common to classical Al plgnnmg programs.
=" Consider that at any point during a heuristic search, there exists a partial plan
which leads from the problem’s initial state to the current state. To evaluate ‘the
partial plan, or equivalently, the cost of completing it, one consults the solun.on
~ to a relaxed model: This will provide an abstract sketch of the plan which
: ultimately will become necessary to reach the goal state. ‘
" Solution criticism is merely a careful examination of the feasibility of this
‘ plan sketch. For example, solutions to the nearest-neighbor relaxed model will
have unordered sets of operators on which no total ordering can be imposed
(i.e., the cycles in the graph indicate cycles of temporal precedepce among
operators). Solutions in the Manhattan-distance relaxed model which contain
linear conflicts will contain conflicting operators (the preconditions for one
operator are destroyed by the postconditions of another). General condiFions
such as these could easily be detected by the plan critics used in nonlinear

. planners.

6. CONCLUSION

The process of solution criticism, i.e. criticizing the solutions to relaxed
models, is suggested as a valuable addition to the method of problem relaxation
by constraint deletion. The preceding analysis and empirical data show that one
can develop very powerful heuristics easily, be attempting to understand the
infeasibility of a proposed relaxed solution, and recovering some of the
information that was lost- in the relaxation. As evidence of this, we have
» demonstrated how such criticism can be used to derive powerful admissible
heuristics for the traveling-salesman problem and the eight puzzle, which equal
or surpass the product of years of human study.

The combination of constraint deletion and solution criticism is analogous to
techniques used by human problem solvers. Relaxing a problem results in- a
preliminary plan for solution, which must then be modified dynamically by the
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Fig. 6. Comparative performance: search on random fifteen-puzzle instances; cf. {8]. MD INIT: initial heuristic estimate for Manhattan distance; LC
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226 OTHAR HANSSON, ANDREW MAYER, AND MOTI YUNG

problem solver. This, of course, is a generally effective approach (utilized in

everyday life, as well as scientific analysis) to understanding complex sijtua- -

tions—make simplifying assumptions, and then, as understanding increases
(aided by that simplified model) or circumstances demand, reconsider factors
ignored by the simplification. We believe that the process of relaxation and
subsequent tightening captures and codifies one of the methods used by humans
in coping with hard problems.

APPENDIX

In Fjgure 6, the performance of various heuristics on the fifteen puzzle is
compared.
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