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\ 

TABLE3 

. 
The Optimal Solution of T1(a) with a= 0.5, 0.6, 

(J'. 0.5 0.6 ---------· 
"q,c) 18.26 25.81 38.73 

ao 3.201 3.367 3.508 
0 0.1703 0.4260 0.9242 
l, 0.5788 0.5595 0.5429 

Cl\ 0.0806 0.110� / 0.1530 

\ 
regression analysis, includ\ng the relationsh· s to the usual regression analysis 
as well as tjl.e application te�pniques and l}&'w to decide the degree a, we hope 
that such fuzzy regression aria,J.ysis will �come an efficient tool for analyzing 
real world systems where the, ambiguity or fuzzi�ess of human subjective 
judgment is influential. \ / 

\ / 
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ABSTRACT 

Branch-and-bound techniques allow intractable problems to be solved by using heuristics 
to bound the cost of partial solutions. The use of admissible heuristics can guarantee t?at the 
solutions found are optimal. This paper examines one paradigm-problem relaxauon by 
constraint deletion-which has been used to develop many admissible heuristics. The 
paradigm suggests three steps: simplify (or relax)� problem, �o�ve the simplified problem, 
and use that solution to guide the search for a solution to the ongmal problem. We mtroduce 
the following extension to this methodology: by criticiz�ng the feasi_b�ity of a relaxed 
solution, we arrive at a closer approximation of the solution to the ongmal proble�. �e 
apply this methodology to two well-studied pro�lems _ in operations r_esearc_h and �fic1al 
intelligence. For the traveling-salesman problem, iteration of our t�hruque y1el�s. a senes of 
novel heuristics, culminating in Held and Karp's minimum-spanmng-tree heunsuc. For the 
eight puzzle, it yields a heretofore undiscovered heuristic which is shown to perform 
significantly better than any previously known. 

1. INTRODUCTION 

Domain-specific heuristics enable us to solve many otherwise intractable 
problems by intelligently directing the search for solutions. Many have at-
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tempted to understand how human experts discover and employ heuristics 
[12-14], so as to formulate a general methodology for developing them. 

In this paper, we concentrate on one paradigm [3, 4, 10, 13] for the 
systematic generation of admissible heuristics in the state-space model of 
problem solving [12] (we follow the notation and examples of Pearl [13]) . An 
admissible heuristic is one which provides an underestimate of the cost to 
complete a partial solution. Such admissible heuristics can be used by branch­
and-bound algorithms (such as A*) to find optimal solutions. 

This paradigm, problem relaxation by constraint deletion, offers a method 
for deriving heuristics by examining optimal solutions to simplified problem 
models. More specifically, the paradigm outlines a three-step process-first, 
simplify tl,Je problem; second, solve the simplified problem (preferably algo­
rithmically [11, 16]); and third, use that solution to guide the search for an 
optimal solution to the original problem. We introduce an extension to this 
paradigm which enables us to recover some of the information lost in the 
relaxation-by more closely investigating those aspects of the original problem 
which are isolated by the simplification, and those which are overlooked, one 
can critidze the feasibility of the simplified solution and arrive at a better 
approximation to the actual solution. 

We apply this solution-criticism method towards developing admissible 
heuristics for two problems-the traveling-salesman problem [2, 6, 7, 9] and 
the eight puzzle [l, 3, 13]. These problems have been used to study and 
develop heuristic problem-solving techniques for more than thirty years. We 
introduce the' solution-criticism methodology on the traveling-salesman prob­
lem. Using the constraint-deletion paradigm to develop admissible heuristics, 
and applying solution criticism to refine them, we can mechanically derive 
Held and Karp's well-known minimum-spanning-tree heuristic [6, 7]. We then 
apply the methodology to the eight puzzle to develop a new admissible 
heuristic for the problem, which is more powerful then any previously known. 

1.1. BACKGROUND 

Overview of Heuristic Search. The state-space approach to problem solv­
ing considers a problem as a quadruple, (S, OeSx S, JeS, GcS) . . S is the 
set of possible states of the problem. 0 is the set of operators, or transitions 
from state to state. I is the one initial state of a problem instance, and G is 
the set of goal states. Search problems can be represented as a state-space 
graph, where the states are nodes, and the operators are directed, weighted 
arcs between nodes [the weight associated with each operator O; is the cost of 
applying it, C(O;)]. The problem consists in determining a sequence of 
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operators, O., 02, • • •  , On which, when applied to I, yields a state in G. Such 
a sequence is called a solution path (or solution), with length n and cost 
E7=1 C(01). A solution with minimum cost is called optimal. 

Solutions to a given problem may be found by brute-force search over the 
state space. However, as the sizes of the state spaces of most problems are 
prohibitively large, the only hope of finding an optimal. solution in reasonable 
time is to use an intelligent method of guiding a search through the state space. 
Typically, such methods take the form of branch and bound, wherein partial 
solutions (equivalently, classes of solutions) are enumerated ("branch"), and 
perhaps eliminated from future ·consideration by an estimate of solution cost 
("bound") .. One such method, the celebrated A* algorithm [13], orders the 
search by associating with each state s two values- g(s), the length of the 
shortest path from the initial state to s, and hf(s), an estimate of the length of 
the shortest path from s to any goal state (the actual length is h(s)]. In brief, 
A* is an ordered best-first search algorithm, which always examines the 
successors of the "most promising" state, based on the evaluation function, 
f'(s) = g(s)+ h'(s). 

The following definitions will simplify the discussion: 

(1) A heuristic function h'(s) is said to be admissible if vs[h'(s) � h(s)]. 
(2) A heuristic function h'(s) is said to be monotone if Vs, s'[ f'(s) � f'(s') 

(where s' is a successor of s)] [recall that f'(s) is determined by h'(s)]. 
Monotonicity implies admissibility [ 13]. 

(3) A heuristic function h;(s) is said to be more informed than another 
heuristic function h;(s) if Vs[h;(s) � h'1(s)] and 3s[h;(s) < h'1(s)] and both 
are admissible. 

Because the real-world cost of applying operators may be prohibitively_ 
expensive, it may be wise to search for optimal solutions, despite the possible 
extra time required to do so. If A* uses an admissible heuristic, it is 
guaranteed to find optimal solutions [13]. We will consider only admissible 
heuristics in this paper, and consequently, the word "solution" will henceforth 
imply "optimal solution." 

The infonnedness of two heuristics determines their relative performance in 
search. If one has two heuristic functions, h;(s) and h;(s) (both of which are 
monotone) ,  such that h'1(s) is more informed than h;(s), then one is guaran­
teed that A* will examine an equal or smaller number of states if it uses h;(s) 
instead of h;(s) [13]. Therefore, if it is known that h((s) is never less than 
h;(s), then the search time (measured by the number of states expanded) using 
h((s) is guaranteed not to exceed the search time using h2(s). However, the 
actual computation time is equal to the product of the number of states 
examined and the computational effort needed to calculate the heuristic esti-
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mate. Therefore, in attempting to improve heuristics, one must consider the 
complexity of the heuristic function as well as its informedness. 

The Traveling-Salesman Problem and the Eight Puzzle. The develop­ment of lower bounds (i.e., admissible heuristics) for the NP-hard traveling­
salesman problem [2] has been the subject of a great deal of research [6, 13]. 
The problem is that of finding a shortest Hamiltonian circuit through n 
vertices. While recent work on this problem has concentrated on approxima­
tion methods for finding near-optimal solutions quickly, early work was 
concerned with branch-and-bound techniques for finding optimal solutions by 
using admissible heuristics. 

The eight puzzle (Figure 1) is a classic example of small, well-defined, and 
conceptually simple problem which is sufficiently. complex to exhibit interest­
ing phenomena; therefore, it serves as a popular testing ground for heuristic 
search and problem-solving methods. In particular, it is used to demonstrate 
the development of heuristics in [3, 4, 13]. 

The eight puzzle consists of a 3 x 3 frame containing eight numbered, 
sliding tiles. One of the positions in the frame does not contain a tile; this space 
is called the blank. There is one legal operator in this state space-sliding any 
one of the tiles which are horizontally or vertically adjacent to the blank into 
the blank's position. A solution to a problem instance is a sequence of 
operators which transforms a given initial state into a particular goal state 
(Figure 1 shows the goal state used in this paper). 

Developing Heuristics through Problem Relaxation. We focus our atten­
tion on the work of several researchers who propose that a natural method of 
developing good heuristics is to ''consult simplified models of the problem 
domain" [3, 4, 13). One method for developing such simplified models is 
constraint deletion, which involves ignoring selected constraints on the applica­
bility of operators. 

When constraints are removed from a problem, new edges and nodes are 
introduced into the state-space graph. The shortest path between any two given 

1 2 2 1 

3 4 5 4 3 8 
6 7 8 7 6 5 

Fig. l. Eight-puzzle goal state and sample initial state. 
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states in the relaxed graph cannot be longer than the shortest path between the 
same two states in the original graph (one can always choose to use the original 
path). Because it is a lower bound on the cost of an optimal solution to the 
original problem, one can use the solution length of the relaxed problem as a_n 
admissible heuristic for the original problem. Furthermore, because h'(s) ts 
derived from an actual path length in the relaxed state-space graph [it is equal 
to h(s) in this graph], it is easily seen that the resulting evaluation function is 
monotone (16]. 

Our observation is that instead of using the relaxed solution directly to 
advise us in finding the solution to the original problem, we can first 
investigate characteristics of the relaxed solution (which can be thought of �s a 
preliminary plan for solution) in comparison with those of the actual solution. 
If we can admissibly recover any information that was lost in the process of 
relaxation, but is easily identified when comparing the relaxed model and the 
original problem, we will have created a more informed admissible estimate 
than the heuristic from the relaxed model alone. 

2. SOLUTION CRITICISM AND THE TRAVELING-SALESMAN 
PROBLEM 

The NP-hard traveling-salesman problem (2] is one of the most famous 
problems in combinatorial optimization, and the development of heuristics for 
its solution has occupied many researchers. 

Pearl (13] uses this problem as the very first example of the constraint-dele­
tion method. However, he does not formalize it in terms of the state-space 
model of problem solving. Instead, he concentrates on a description of the g

_
�al 

and the constraints upon it. This fonnulation gives the flavor of the constramt­
relaxation method. 

However, to perfonn a heuristic search, what is required is a lower bound 
on the cost of completing a partial solution. To get such a lower bound for a 
problem, we must formulate it using a well-defined set of states and operators 
instead. We then delete constraints upon the operators to get relaxed models of 
the problem, find solutions to these relaxed models (and thus heuristics for 

_
the 

original problem), and analyze and criticize these solutions (to develop lffi­
proved heuristics). 

2.1. FORMALIZATION OF THE PROBLEM 

Consider a search for solutions in a state space of partial tours. From any 
given state, the heuristic should be an estimate of the minimum-cost comple­
tion of the partial tour. In other words, if in a given state we have completed a 
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partial tour from city 0 to city k, we want to estimate the length of a minimum 
partial tour from city k back to city a which visits all the remaining cities. 

To calculate an exact heuristic, we must construct a tour from city to city 
[den�t� this

.
�y �OUR(cityk, city0)]. A tour consists of "visiting" �I of th; 

remammg c1t1es m the graph (with city 0 visited last), using the single operator 
MOVE(city1, city), defined as: 

MOVE(city1, cityi) 
precondition list: 

add list: 
delete list: 

cost: 

ON( salesman, city1)A..., VISITED( city.) . J 
ON(sa/esman, c1ty)A VISITED( city) 
ON (salesman, city1) 
DISTANCE(city1, city) 

The goal has been reached when, for every city that had to be visited 
VIS�TE_D(cityz) is true. The successful tour consists of the sequence of 
apphcat1ons of the MO VE operator by which the goal was reached. 

2.2. HEURISTICS FROM CONSTRAINT DELETION 

At any given state, the problem is to construct a TOUR( city , city ) which 
visits all the remaining cities. We may simplify the problem by �elet�g either 
of the preconditions of MOVE. · 

If we delete the ON(salesman, city1) requirement, we allow the salesman 
to ju�p (freely) t

.
o city,, and then move to cityi. Because of the way that the 

add hst was specified, the salesman does not actually visit city1 in this move. 
'!" e

. 
get th� optimal

_ 
solution to this problem by traveling the shortest edge 

mc1d�nt with e
.
a�h city (if there are n cities to visit, we use n edges, one more 

than m the mm1mum-spanning tree). The solution to this nearest-neighbor 
problem can be found in polynomial time. We will return to this relaxed model 
later, and apply solution criticism to refine the heuristic estimate. 

If we 
_
inste�d delete the ..., VISITED( city) constraint, we get a simplified 

problem m which the optimal solution is given by the shortest tour which visits 
all cities, "'.ith multiple visits allowed. There seems to be no efficient algorithm 
for computmg such a shortest relaxed tour . Thus, this particular relaxation did 
not produce a useful heuristic. 

If we formulate the problem in a slightly different manner we reach 
different relaxed models, and thus different heuristics. Notice th�t when we 
move from city, to cityi, we do not assume that city. has been visited in the 
proce

_
ss-:--this is an artifact of the definition of the oi>erators. In the original 

descnption of the problem, we assume that city1 has been visited previously; 
therefore, VISITED(city1) was not included in the original add list in the 
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operator's definition. However, if we do add VISITED(cityi) to the add list, 

and then delete ON(city1) from the precondition list, we arrive at a problem 

where the optimal solution is given by the minimum-weight set of edges E 

such that every city is incident with an edge in E. The set of edges E is a 

solution to the minimum-weight edge cover problem (which can be reduced to 

the minimum-weighted-matching problem and solved in polynomial time). 

Thus, we have seen the spectrum of constraint relaxation in these three 

t� different relaxations of the original traveling-salesman problem. The first 

yielded the nearest-neighbor heuristic, the second yielded no efficiently com­

putable heuristic, and the third was the result of reformulating the problem. 

We will now reconsider the first relaxation, and apply the solution-criticism 

methodology to it. 

2.3. ANALYZING THE NEAREST-NEIGHBOR HEURISTIC 

The nearest-neighbor solution is always a subgraph consisting of connected 
components, where each component of m nodes is a modified tree of m edges, 
which has either a single cycle containing equal (shortest) length edges, or a 
duplicated shortest edge (creating a degenerate cycle). Notice that, for problem 
instances with very small numbers of evenly distributed cities, this easily 
computed heuristic estimate may be higher than the cost of the minimum 
spanning tree, because it contains one more edge. As problem size increases, 
however, this becomes less likely. 

We see that the solutions to the nearest-neighbor relaxed model contain 
cycles and may be disconnected. We may admissibly increase the estimate by 
breaking these cycles (if there are k components in the subgraph, there will be 
k cycles; we break them by deleting k edges), adding the minimum-weight set, 
of k-1 edges which connect the components, and then adding another

·
· 

shortest edge (which creates a cycle). The total length of the new edges will 
not be less than the total length of the removed ones, so this new heuristic is 
more informed. The resulting graph is simply a minimum-spanning tree with 
an added shortest edge (which is computable in low-order polynomial time 
[15)). 

We may, of course, iterate the process, and apply solution criticism to this 
solution in tum. The next criticism is that the resulting graph is not connected 
to cityk (because it had been visited already in the partial tour from city 0 to 
cityk: city0 was not visited in the partial tour). We may possibly increase the 
estimate by deleting the added shortest edge mentioned above, and adding 
instead the shortest edge which connects cityk to the minimum-spanning tree. 
The resulting graph is merely a minimum-spanning tree which includes city k, 
except in the case where cityk equals city0 (the initial state of the search),-in 
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which we get Held and Karp's minimum-weight I-tree instead [6, 7]. Interest­
ingly, this heuristic, which we have derived by solution criticism, is one of the 
most famous admissible heuristics for the traveling-salesman problem. Its 
performance has been thoroughly studied in [7]. 

3. CONSTRAINT DELETION ON THE EIGHT PUZZLE 

In this section, we examine Pearl's formulation of the eight-puzzle domain 
in order to better understand the effects of the relaxation process. We discus� 
three known heuristics-Manhattan distance [l], relaxed adjacency [3], and 
misplaced tiles [ 1 ]-which Pearl uses to demonstrate the applicability of 
constra�nt deletions. 

3.1. FORMALIZATION OF THE PROBLEM 

Following Pearl, we use three predicates to describe the problem state of the 
eight puzzle: 

ON(x, y): 
CLEAR(y): 
ADJ(y, z): 

tile x is on cell y 
cell y is clear of tiles 

cell y is horizontally or vertically adjacent to cell z 

The single operator on the state space is described as follows: 

MOVE(x, y, z) 
precondition list: 
add list: 
delete list: 

ON(x, y)/\ CLEAR(z)/\ ADJ(y, z) 
ON(x, Z)/\ CLEAR(y) 
ON(x, y)/\CLEAR(z) 

By removing preconditions for this operator one is creating a relaxed model 
of the problem. This is, of course, only one possible description of the 
problem. As seen in the previous section, refining or ch�ging the set of 
predicates used to describe the problem will lead to different relaxations [5]. 

3.2. HEURISTICS DEVELOPED THROUGH CONSTR AINT DELETION 

Misplaced Tiles. The most severe relaxation is to delete both ADJ(y, z) 
and CLEAR(z). In this model of the puzzle, any tile in any position may be 
moved into any other position, with stacking allowed. The obvious algorithm 
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for solving this puzzle is simply to move each tile from its current position into 

its goal position. Thus, the Ieng� of �e optimal s
.
o�ution is mer��y the nu�b�r 

of tiles which arc not cu1Tcntly m their goal pusitlons--the rm�p/aced tile�. 

Relaxed Adjacency. If we delete only the ADJ(y, z) precondition, we 
arrive at a new puzzle in which any tile, anywhere, may swap positions with 
the blank. In this re/axed-adjacency model, optimal solutions are given by the 
following algorithm, first introduced by Gaschnig [3]. (It can be proven 
optimal by viewing the puzzle in terms of cyclic permutations [5].) 

While any tile is out of its goal position do 
If the blank is in its own goal position, 

then swap with any misplaced tile 
else swap with the tile that belongs in the blank's position 

Manhattan Distance 

If one chooses to delete only CLEAR(z) from the list of preconditions, the 
optimal solution length is given by the familiar Manha�an-distance heu�istic. 
In this new puzzle, a tile may be moved into any honzontally or ve�1cally 
adjacent position, with stacking allowed. Obviously, the optimal solution 

_
to 

this puzzle is found by moving each tile along a short�st path betwe�n its 
initial and goal positions. For any one tile, the length of this shortest path is the 
grid distance (horizontal plus vertical distance) between its curre?t and goal 
positions. Therefore, the total solution length is merely the summat10n of these 
grid distances for each tile. 

4. REFINING RELAXED MODELS BY SOLUTION CRITICISM 

; . 

We have seen how constraint deletion can generate a number of admissible 

heuristics for the eight puzzle. We may consider such a heuristic functio� as 

examining certain properties of a problem. But, because of the r�lax�tion, 

some of the properties are overlooked, and others exaggerated or s1mphfied; 

therefore the solution proposed is infeasible for the original problem. The 

different relaxations we have seen are weighted heavily towards certain 

properties-e.g., the shortest path of a tile to its goal positio� (Manhattan 

distance), and the role of the blank in moving the tiles (relaxed adjacency). v:'e 

wish to study the properties which these relaxations stress, and those which 

they ignore or simplify, and thereby criticize the feasibility of the simplified 

��00. . 
Manhattan distance, on the average, is the best of the heuristics discussed 



· · -'-' 

216 
j:j,• 

OTHAR HANSSON, ANDREW MAYER, AND MOTI YUNa:'·. . 

x y x 

y 

Fig. 2. Unique and nonunique shortest paths from X to Y. 

above. App�ying the solution-criticism methodology, we will attempt to im­
pr��e upon It by contrasting the solution plan which it suggests with that of the 
ongmal problem. 

,1 
4.1. ANALYZING MANHAITAN-DISTANCE SOLUTIONS 

Manhattan distance can be thought of as proposing a solution for the 
problem. It pro�oses that th

.
e. puzzle can be solved by moving each tile along a 

shortest path to Its goal pos1t1on. More specifically, the optimal solution in the 
Manhattan-di�tan�e model is a set of subgoal solutions, one for each tile. A 
sub�?al solut10n IS any shortest path for a given tile from its current to its goal 
pos1tion.

_ 
In

. 
many cases, there is a single, unique shortest path-the tile is 

already m Its correct row (column) and need only move within that row 
(column): In other cases, the path is not unique (see Figure 2). 

We wdl e(l:plore only what happens to the unique shortest paths, because in 
these �ases, tt:e subgoal solution given by the relaxed model is uniquely 
det�nruned: If it can be shown to be infeasible, we may improve the heuristic 
estimate. Fust, we present the following results about paths: 

. 
LEMMA 1. If there exists one path from position X to position yin the 

eight puzzle that is of even (odd) length, than all paths from x to y are of 
even (odd) length. 

Proof. If the positions are colored like a checkerboard, the blank can move 
only froi:i a '.'red" position to a "black" position-the tile positions clearly 
form a b1?artite graph. In a bipartite graph, all paths of length 1 move between 
the two s1

.
des ?f the graph; therefore, all paths between two positions which are 

on ��pos1te .sides of the graph are of odd length, and all paths between two 
pos1t10ns which are in the same side are of even length. • 

Consequently, 
C:�ROLLARY (to ��a 1�. If there is a unique shortest path p between 

posztwn X and pos1t10n Y m the eight puzzle, then any alternate path will 
be at least 2 moves longer than p. 
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5 3 4 3 5 3 4 5 4 3 

A B c D 
Fig. 3. Linear-conflict examples. 

In comparing the subgoal solutions with the actual optimal solutions, one 

notices that the unique shortest paths of two tiles occasionally conflict. In these 

cases, one tile may be forced to take an alternate path, increasing the solution 

length by at least two (from the corollary to Lemma l). In fact, there are 

several distinct cases in which this phenomenon occurs (the examples below 

indicate some of these). In general, these conflicts can only exist in a given line 

when two or more tiles have both their current and goal positions in that 

· · line-in that case, there are at least two unique shortest paths and the 

; possibility of a local subgoal conflict. 
The idea of shortest paths is only brought to our attention by studying the 

optimal solutions to this relaxed problem. We must then attempt to look 
critically at this concept, which influences the heuristic offered by the relaxed 
model, and attempt to gauge the degree to which it affects the solution to the 
relaxed model. Once one can recognize and characterize the cases where the 
unique shortest paths are necessarily violated in the optimal solution to the 
original problem, one may determine how to compensate for these oversimpli-.. 
fications. Before describing a precise method for doing so, we examine several

'· 

examples of this phenomenon. 

Examples of Conflicting Shortest Paths. Figure 3 illustrates four typical 
examples of conflicts between unique shortest paths. 

In example A, either the 5 or the 3 must move outside of the middle row to 
make room for the other. to pass. Therefore, two should be added to the 
estimate of Manhattan distance (one for the move out of the line and another 
for the move returning to the line). 

B shows a conflict in which a tile which had previously been "solved" 
presents an obstacle to another tile. This conflict contradicts the intuition that 
solved subgoals will not be disturbed. To resolve this conflict, either the 4 or 
the 3 will havl( to follow a nonshortest path, adding at least two moves to the 
Manhattan-d�stance estimate. 
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In C, the 5 tile is in conflict with the 3 and the 4. Clearly, either the 5 has to 
move out of the way (two extra moves) and allow the others to pass to their 
goal positions, or the 3 and 4 have to move and allow the 5 to pass (four extra 
moves). 

D illnstr:itC3 the most complex case, where each tik is in conflict with the 
other two. This can only be resolved by moving two of the tiles off line. One 
should therefore add four to the Manhattan-distance estimate when this case is 
recognized. 

If one can devise an algorithm for tabulating the additional moves forced by 
conflicting subgoals, one can add that total to the Manhattan-distance estimate 
and create a new admissible heuristic for this problem. Intuitively, one 
examine� the puzzle state, row by row and column by column, and adds to the 
Manhattan distance the minimum number of additional moves necessary to 
resolve the conflicts within each row and column; therefore, this lin ear-con ­
flict estimate is still a lower bound on the actual optimal solution length (a 
precise algorithm is given below). To give some idea of the relative informed­
ness of this heuristic, we compare its estimates with those of Manhattan 
distance, relaxed adjacency, and misplaced tiles, for the puzzle instances 
shown in Figure 4. 

While the linear-conflict heuristic is clearly more informed than the Manhat­
tan-distance heuristic, one notes that, because the space of relaxations is a 
partial order [5], one cannot presuppose the relationship between the relative 
informedness of the linear-conflict and relaxed-adjacency heuristics. In fact, 
there are instances of the fifteen puzzle (a 4 X 4 frame with 15 tiles) for which 

Puzzle tiD] tiD] WE ~ 
Misplaced Tiles 4 4 8 7 -
Relaxed Adjacency 6 6 10 10 
Manhattan Distance 6 6 22 14 
Linear Conflict 8 12 22 24 
Actual Distance 22 20 26 26 

Fig. 4. Comparison of heuristic estimates. 
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:'.relaxed adjacency is more informed than linear conflict [e.g. the state 

. (B 137452691310118121415)]. 

: 4.1. THE LINEAR·CONFLICT HEURISTIC FUNCTION 

We present an algorithm, LC (Figure 5), which calculates the heuristic 

function described infonnally above by performing an analog of plan criticism 

upon the unique shortest paths which exist in any given line. We first define a 

linear conflict: 

DEFINIDON. Two tiles t . and t k are in a lin ear con flict if t j and t k are in 
the same line, the goal positions of tj and tk are both in that line, tj is to the 
right of t k, and the goal position of t j is to the left of the goal position of t k. 

Theorems establishing the correctness of the heuristic and its monotonicity 
(and hence, admissibility) may be found in [5]. 

Computation al Complexity of the Linear-Con flict Heuristic. The calcu­

lation of MD(s) requires O(N) operations. To calculate LC(s) requires, for 

each line of tiles, 0( N) operations in the worst case. Since there are 2 JN + 1 

lines, it requires Nu operations. However, during a search, one can calculate 

the heuristic estimate for a given state more efficiently, assuming that one has 
the estimate for its parent in the search space. Thus, even in a naive 

implementation, MD(s) costs 0(1), and LC(s) costs O(N). In our imple­

mentation, we reduced both calculations to table lookup. To prepare the 

linear-conflict table, we precomputed the linear conflicts possible in a line. We 

stored with each tile in the state two numbers indicating whether it is in the .. 

goal row and column, and if so, where its goal position is in its current row 

and column. Thus, in our implementations, LC(s) merely costs a small 

number of table-lookup operations. In fact, the calculation of LC(s) caused 

the search program for the fifteen puzzle to be, on average, only 5 % slower in 

examining each node, and this was more than compensated for by the dramatic 

decrease in the number of nodes that needed to be examined when the 

linear-conflict heuristic was used (cf. Section 4.3). 

4.3. EMPIRICAL ANALYSIS OF THE LINEAR-CONFLICT HEURISTIC 

We have developed a new heuristic for the eight puzzle (generalizable to the 
N puzzle), which is more informed than the Manhattan-distance heuristic 
(which had been known to be, on average, the most informed heuristic for the 



Begin {Algorithm LC} 
{ s is the current state} 

{ L is the size of a line (row or column) in the puzzle. L ::: v N + 1} • ..,. 
-

{ C(t;, r;) is the number of tiles in row r; with which t; is in conflict} 

{ C(t;, c;) similarly} 

{lc(s, r;) is the number of tiles that must be removed from row r; to resolve the linear conflicts} 

{lc(s, c;) similarly} 

{ md( s, t;) is the Manhattan Distance of tile t;} 

{M D(s) is the sum of the Manhattan Distances of all the tiles in s} 

{LC(s) is the minimum number of additonal moves needed to resolve the linear conflicts ins} 

For each row r; in the state s 

lc(s, r;) = 0 

For each tile t; in r; 

determine C(t;, r;) 

While there is a non-zero C(t;, r;) value 

Find t,. such that there is no 

C(t;, r;) > C(t,., r;) { Ast,. is the tile with the most conflicts, 

Fig. 5. Algorithm LC. 

we choose to move it out of r; } 

G(t,., r;) = 0 

For every tile t; which had been in conflict with t,. 

G(t;, r;) = C(t;, r;) - 1 

lc(s, r;) == lc(s, r;) + 1 

{Check similarly for linear conflicts in each column c;, computing lc(s, c; ). } 

LC(s) = 2[lc(s, r1) + . .. + lc(s, rL) + lc(s, ci) + . . . + lc(s, cL)] 

For each tile t; in s 

determine md(s, t;) 

M D(s)::: ms(s, t;) + . .. + md(s, tn)· 

h'(s) = M D(s) + LC(s) 

End {Algorithm LC} 
Fig. 5. (Continued). 
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problem). The pruning power of the two heuristics was examined by solving _ 
the I 00 random fifteen puzzles used in the tests of [8], and comparing the 
number of node expansions (this measure is proportional to search time). 

Figure 6 in the Appendix (an extension of a similar table in (8)) shows that, 
for the fifteen puzzle, the average number of states examined using linear 
conflict is 01�ly one-eighth of the average number of states examined using 
Manhattan distance. For 61 out of 100 puzzle instances, linear conflict 
performe� l�ss than 20% of the search required by Manhattan distance; in only 
7 cases did it exceed 30 % . Manhattan distance caused the search to examine 
over 100 million states in 40 puzzle instances, and over 500 million states in 17 
puzzle instances, while linear conflict caused the search to examine over 100 
million states in only 11 puzzle instances, and no state required the examina­
tion of 500 million states. If the puzzles were sorted by problem difficulty 
(number of states examined), one would see that the linear-conflict heuristic �emonstrates more pruning power on more difficult fifteen-puzzle problem 
mstances. For the 20 most difficult problems, a search using linear conflicts 
would be over ten times as fast as one using Manhattan distance. We refer the 
interested reader to [5], where additional experiments are described. 

5. DISCUSSION OF THE SOLUTION-CRITICISM METHOD 

The process of relaxation allows us to concentrate on certain aspects of the 
problem while ignoring others. This often makes the problem easier to 
analyze, and perhaps easier to solve algorithmically. However, these solutions 
are poor approximations of a feasible solution to the original problem. For 
example, one of the relaxed traveling-salesman problems allows us to simplify 
the �r??lem of vi�iting all the cities in a proper tour into the many subproblems 
of v1s1tmg each city, without regard to the connections between these subtours. 
By correcting this disconnected solution, we arrive at the well-known mini­
mum-sp�nning-tree and minimum-weight 1-tree heuristics. Similarly, the Man­
�attan-?1�tance relaxed model allows us to consider optimal solutions for each 
�Ile, w1�hout regard to the global conflicts which may result because of the 
mteractlon o� these subgoal solutions. We may improve upon this relaxed 
model by taking account of those constraints which it overlooks. 

The ?1ethod of solution criticism is a general approach to restoring the 
global view to these myopic relaxed solutions, by comparing them with actual 
solutions to gain an understanding of those global considerations that they 
overlook. In many cases, we may be able to increase the estimate provided by 
the relaxed solution, either by refining it into a more feasible solution or 
simply by adding some abstract lower-bound measure of what has been 
overlooked. 
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- We note that several traveling-salesman heuristics, developed over years 

-�;�ing sophisticated algorithmic methods, were shown to evolve naturally from 

solution criticism. Through they are not new for that problem, they can be 

-derived systematically, suggesting the potential of the approac� for less 

, well-studied or newly posed problems. For example, although the eight puzzle 

�has been used for many years as a research example to demonstrate the 

{development of heuristics, the Manhattan-distance heuristic h�s not ?e�n 

.· improved upon. We believe that our improvement, the linear-confhct heunstic, 

• is difficult to find directly without following the methodology suggested here. 
�. Although implementing the constraint-relaxation with solution-criticism 

method is beyond the scope of this paper, this could be accomplished using the 

type of plan-debugging facilities common to classical AI pl�nning pr�grams. 

Consider that at any point during a heuristic search, there exists a partial plan 

which leads from the problem's initial state to the current state. To evaluate the 

partial plan, or equivalently, the cost of completing it, one consults the solut�on 

to a relaxed modeL This will provide an abstract sketch of the plan which 

ultimately will become necessary to reach the goal state. 
-

Solution criticism is merely a careful examination of the feasibility of this 

plan sketch. For example, solutions to the nearest-neighbo� relaxed m�del will 

have unordered sets of operators on which no total ordering can be imposed 

(i.e., the cycles in the graph indicate cycles of temporal precedence among 
.._,-...�.operators). Solutions in the Manhattan-distance relaxed model :V

.
hich contain 

linear conflicts will contain conflicting operators (the precond1t10ns for one 

operator are destroyed by the postconditions of another). General conditions 

such as these could easily be detected by the plan critics used in nonlinear 

planners. 

6. CONCLUSION 

The proc'ess of solution criticism, i.e. criticizing the solutions to relaxed 
models, is suggested as a valuable addition to the method of problem relaxation 
by constraint deletion. The preceding analysis and empirical data show that one 
can develop very powerful heuristics easily, be attempting to understand the 
infeasibility of a proposed relaxed solution, and recovering some of the 
information that was lost- in the relaxation. As evidence of this, we have 
demonstrated . how such criticism can be used to derive powerful admissible 
heuristics for the traveling-salesman problem and the eight puzzle, which equal 
or surpass the product of years of human study. 

The combination of constraint deletion and solution criticism is analogous to 
techniques used by human problem solvers. Relaxing a problem results in- a 
preliminary plan for solution, which must then be modified dynamically by the 
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fig. 6. Comparative performance: search on random fifteen-puzzle instances; cf. [8]. MD INIT: initial heuristic estimate for Manhattan distance; LC 
INIT: initial heuristic estimate for linear conflict; LEN: length of optimal solution; MD STATES: total number of states examined using Manhattan 
distance; LC STATES: total number of states examined using linear conflict; PCT: 100 x [(LC STATES) /(MD STATES)] . 
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problem solver. This, of course, is a generally effective approach (utilized in _ .'.< 
everyday life, as well as scientific analysis) to understanding complex situa- · -:. · 
tions-make simplifying assumptions, and then, as understanding increases ·· . . 

-

(aided by that simplified model) or circumstances demand, reconsider factors 
ignored by the simplification. We believe that the process of relaxation and 
subsequent tightening captures and codifies one of the methods used by humans 
in coping with hard problems. 

APPENDIX 

In Fjgure 6,  the performance of various heuristics on the fifteen puzzle is 
compared. 
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