Genetic Algorithms

Genetic algorithm

What is Genetic algorithm?

A genetic algorithm (or GA) is a search technique
used in computing to find true or approximate
solutions to optimization and search problem:s.

(GA)s are categorized as global search heuristics.

(GA)s are a particular class of evolutionary
algorithms that use techniques inspired by
evolutionary biology such as inheritance,
mutation, selection, and crossover (also called
recombination).

What is Genetic algorithm?

 Genetic algorithms are implemented as a
computer simulation in which a population of
abstract representations (called chromosomes or
the genotype or the genome) of candidate
solutions (called individuals, creatures, or
phenotypes) to an optimization problem evolves
toward better solutions.

e Traditionally, solutions are represented in binary
as strings of Os and 1s, but other encodings are
also possible.

What is Genetic algorithm?

e The evolution usually starts from a population of

randomly generated individuals and happens in
generations.

* |n each generation, the fitness of every individual
in the population is evaluated, multiple
individuals are selected from the current
population (based on their fitness), and modified

(recombined and possibly mutated) to form a
new population.

What is Genetic algorithm?

e The new population is then used in the next
iteration of the algorithm.

e Commonly, the algorithm terminates when either
a maximum number of generations has been
produced, or a satisfactory fitness level has been
reached for the population.

e |f the algorithm has terminated due to a
maximum number of generations, a satisfactory
solution may or may not have been reached.

Key terms

Individual - Any possible solution
Population - Group of all individuals

Fitness - Target function that we are
optimizing ((each

individual has a fitness)

Trait - Possible aspect (features) of an
individual

Genome - Collection of all chromosomes for
an individual

Genetic algorithm

e Based on Darwinian Paradigm

Reproduction » Competition

Survive |« Selection

e Intrinsically a robust search and optimization mechanism

Genetic algorithm

Initialize Population

Evaluate Fitness

satisfy constraints ?

Select Survivors Randomly Vary Individuals

Output Results

Example: the MAXONE problem

e Suppose we want to maximize the number of
ones in a string of / binary digits

Is it a trivial problem?

e |t may seem so because we know the answer
In advance

 However, we can think of it as maximizing the
number of correct answers, each encoded by
1, to / yes/no difficult questions.

Example (cont)

 An individual is encoded (naturally) as a string
of | binary digits
* The fitness f of a candidate solution to the

MAXONE problem is the number of ones in its
genetic code

e We start with a population of n random
strings. Suppose that | =10and n=6

Example (initialization)

We toss a fair coin 60 times and get the
following Initial population:

s;=1111010101 f(s,)=7

s, =0111000101 f(s,) =5

s;= 1110110101 f(s5) =7

s, =0100010011 f(s,) = 4

s: =1110111101 f(s;) =8

(
(
(
(
(
s, =0100110000 f (s;) = 3

Example (selectionl)

* Next we apply fitness proportionate
selection with the roulette wheel method:

.. o ()
Individual i will have a Zif(i)

We repeat the
extraction as many

times as the number Areais
. . Proportional
of individuals we to fitness

need to have the e
same parent
population size (6
in our case)

probability to be chosen

Example (selection2)

Suppose that, after performing selection, we
get the following population:

s," =1111010101 (s,)
s," =1110110101 (s.)
s,"=1110111101 (s.)
s," =0111000101 (s,)
s.' = 0100010011 (52)
s’ =1110111101 (sc)

Example (crossoverl)

* Next we mate strings for crossover. For each
couple we decide according to crossover
probability (for instance 0.6) whether to
actually perform crossover or not

e Suppose that we decide to actually perform
crossover only for couples (s, , s,) and (s:,
Ss). For each couple, we randomly extract a
crossover point, for instance 2 for the first
and 5 for the second

Example (crossover2)

Before
crossover:

s, =1111010101 s = 0100010011
s, =1110110101 S = 1110111101

After
crossover:

s, =1110110101 s: =0100011101
s, =1111010101 S¢ = 1110110011

Example (mutationl)

The final step Is to apply random mutation: for each bit
that we are to copy to the new population we allow a
small probability of error (for instance 0.1)

Before applying mutation:
s, =1110110101
s, =1111010101
s; =1110111101
s, =0111000101
s =0100011101
s¢ =1110110011

Example (mutation2)

After applying mutation:
s, =1110100101 f
s, =1111110100 f
s; =1110101111 f
s, =0111000101 f
s, =0100011101 f
S¢ =1110110001 f

Example (end)

* In one generation, the total population
fitness changed from 34 to 37, thus
Improved by ~9%

o At this point, we go through the same
process all over again, until a stopping
criterion Is met

Components of a GA

A problem definition as input, and

 Encoding principles (gene, chromosome)
e |nitialization procedure (creation)
e Selection of parents (reproduction)

e Genetic operators (mutation,
recombination)

e Evaluation function (environment)
e Termination condition

The Bin Packing Problem

Set of n items with weights
Bins have a fixed capacity

The size of a solution is the number of bins
with items inside

Try to minimize the solution size

Genetic Encoding

e Bin-based representation

— Fixed length, each gene represents one item and
where it is packed

 Object-based representation

— Permutations of items

e Group-based representation

— Each gene represents an occupied bin and its
group of items

Fitness Function

Yt (Si/c)?
Fgpp = 1m

S; - sum of item weights
¢ — bin capacity

A combination of some nearly full bins and

some nearly empty bins is better than equally
filled bins

Initial Population

e [tems with size larger than fifty percent of the
cost are placed into separate bins which are
randomly ordered

 Each remaining item is then placed in the first
bin which has enough capacity, or a new
empty bin if none are available

Crossover Operator

 \Want to propagate features which contribute
the most to fitness

 Three approaches considered

— Segment crossover
— Gene crossover
— Ordered gene crossover

Consider a BPP instance with bin capacity cqual to 10 and 9 items N = {0,..,8] with weights (6,3,7.8,5,2,2,5.2).
Given two solutions taken from the populution, there 15 one gene per bin, and every gene stores a group of items.
Bins are considered in descending order of their fullness (which is the sum of the item weights in the bink:

Bin A is packing items 7 and 5 and its fullness is 10

Beginning at the frst gene, individual bins of both parents are compared in parallel, bin by bin (bin A with bin a,
bin B with bin b, bin C with hin ¢, and so0 onj.

For every pair of bins, the “fullest bin™ is the first bin to be inherited to the new selution, followed by the immediate
inhemtance of the other bin {e.g., m the second gene, bin B s fuller than bin b, so we copy bin B before bin b; if
both of the bins have the same fullness, then preference is given 1o the first father’s bin (e.g., for bins A and a, we

Mext, some of the items appear twice in the solution (¢ .g., bin B includes item 2, which is already in bin a), so we
eliminate bins thot include items that are in a previeus bin (bins B, b, ¢, D, d and e). Then, we have some items that
were not packed in the new individual (items 7 and &),

Partial solution

A a : E

To complete the new individual (child), we use FFD packing heuristic to reinsent again the free items and obtain a
new solution (free items 7 and & were packed in bins E and C, respeciively):

Mutation Operator

Introduce random changes in the population
at a low rate to increase fitness

Remove some bins and replace their items

Make the probability of elimination for an
individual bin higher for a less filled bin

Eliminate more bins in less fit solutions

Consider o BPF instance with bin capacity equal to 10 and 10 tems & = {0....9} with weights (6,37 842252 8}
Giiven a BPP solution taken from the population, there is one gene per bin, and every gene stores a group of items.
Bins are considered in descending order of their fullness:

Fullmess 11 10 9 8) 4
ltems 1.5 L7 42 0.6 [F
A B 'S I E F

Given the number of bins in the solution m = 6, the number of incomplete bins ¢ = 4 and the rate of change k = 3.
The elimination proportion is &= 0.83 (Egquation 3) and the elimination probability is p, = 1 - Uniform(0,0.62) = 0.5
(Equation 4, The number of bins o eliminate, which is defined by Equation 2, is my = 2, The 2 leasy full bins (bins
E and F} are gliminated from the solution, and the items that were used to compose those bins (items % and) musi
he reinserted with some rearrangement heuristic.

Partial solution (best bins) Least full bins that were eliminated

10 10 9 8 8 4 Free items
[35 [17 | 82 | 06 ¥ 4 = o4
A 1] C [E F

To complete the new mdividual, we use @ rearmangement procedure to remnsert the free stems and obtain a new
solution. If we had decided to use some packing heuristic such as FF or BF, the new solution will be the same as the
original solution because the bins of the parmal solution do not have a suificienm amount of space. Let us imagine
that we have a rearrangement procedure that can make swaps between the packed and free items (this heuristic will
be described i the nexi section); in that case, we could obtain the oplimal solution (ems 0 and 6 of bin I are
replaced with free item 9 now items @ and 6 are free with item 4, reinseming again the free items in bin I) and a
new hin E).

18 1a] 1a 10
5 j L7 i 82 | 96 | 40
A B C D E

Fig. 4 An example of the adaptive mutation operator that preserves the fullest-bin pattern.

http://dx.doi.org/10.1016/j.cor.2014.10.010

Rearrangement Heuristics

Need to swap packed and free items during
replacement in the mutation operator

Swap free items into a bin if it does not
decrease fullness

Consider single swaps and pairs of free items

Use the first fit packing to replace anything
left over

Reproduction Technique

e Selection

— Elite population of individuals is kept to ensure
selective pressure

— Pair elite individuals with ones chosen at random
from the population

 Promotes survival of good genes as well as diversity

— Mutate “young” solutions in the elite population

Reproduction Technique

e Replacement

— Age-based replacement
e Replace the oldest solutions

— Fitness-based replacement
e Replace the worst solutions

— Random-based replacement
e Replace random solutions
— Age-based and random-based replacement can

lose best solutions, fitness-based can lead to
premature convergence of solutions.

Results

 The authors conclude that their algorithm
produces good results across several
variations of the problem

e There is more work to be done for tuning of
the many parameters of their algorithm

References

e Marcela Quiroz-Castellanos, Laura Cruz-Reyes, Jose Torres-Jimenez,
Claudia Gomez S., Héctor J. Fraire Huacuja, Adriana C.F. Alvim, A grouping
genetic algorithm with controlled gene transmission for the bin packing
problem, Computers & Operations Research, Volume 55, March 2015,
Pages 52-64, ISSN 0305-05438,
http://dx.doi.org/10.1016/j.cor.2014.10.010.

